# A. Bellacosa et al. Altered Gene Expression in Morphologically Normal Epithelial Cells from Heterozygous Carriers of BRCA1 or BRCA2 Mutations

### SUPPLEMENTARY INFORMATION

#### **Correlation between Affymetrix Data and Low-Density Arrays**

In order to determine the correlation between fold changes from the original Affymetrix microarray data and the LDA real-time RT-PCR data, we measured Spearman's  $\rho$  for select candidate biomarkers, divided with respect to the genotypes and epithelial cultures in which the biomarkers were originally identified. The results, shown in Table S1, indicate that the highest correlations were found for breast and ovarian candidate biomarkers originally associated with the *BRCA1* genotype.

#### **Exploratory Data Mining**

For initial exploratory analyses, we considered the pre-processed data for breast and ovarian samples for each of the three genotypes (*BRCA1*, *BRCA2* and *WT*). With 6 biological replicates in each condition, this dataset consisted of 36 samples and corresponding expression profiles for 54675 probe sets. In order to reduce the dimensionality, we applied several variation filters to this dataset. Specifically, we first removed probe sets whose maximum expression intensity was less than 200 across the 36 samples. We then removed probe sets whose coefficient of variation (computed as a percentage ratio of standard deviation to mean) was less than 75, i.e., we retained only the top 25% of the most variable probe sets. This resulted in 4635 most variable probe sets being retained in our dataset.

We applied the bi-clustering procedure based on non-negative matrix factorization (NMF) (Pascual-Montano et al., BMC Bioinformatics, 2006) to this reduced dataset consisting of breast and ovarian samples. This method potentially identifies sub-groups of genes that are strongly correlated with sub-groups of samples. The best model based on 200 random runs of the NMF algorithm was chosen. This model identified six clusters of probe sets, with clusters 1 and 5 preferentially correlating with ovarian epithelial cultures, and clusters 2, 3, 4 and 6 preferentially correlating with breast epithelial cultures. However, no difference related to the genotype was identified in this approach.

We then considered the breast and ovarian datasets separately and further filtered the datasets as above. These resulted in 1832 and 2553 probe sets, respectively, for breast and ovarian samples. We applied standard NMF in conjunction with consensus clustering (1, 2) based on 200 runs of the algorithm to the dataset for each target organ. In addition, we applied hierarchical clustering using average linkage with correlation as the metric. Neither approach was able to identify a clear separation of the genotypes (BRCA1, BRCA2 and WT) within each target organ (Figure S1).

#### Pathway and ontology analyses - Methods and discussion

An association analysis was conducted to identify the association between BRCA1 and BRCA2 profiles. We identified 4 datasets *viz.* i,ii,iii and iv described in main methods section. The datasets except Hedenfalk *et al.* study (iv), data were normalized using RMA and lists of differentially expressed genes were obtained by applying Linear Models for Microarray Data (LIMMA) (3) using a p-value cutoff of 0.001. These analyses involved a much larger number of microarrays relative to our study for the various comparisons of interest. LIMMA is suitable for

analyzing microarray data involving factorial designs (multiple conditions) and enables to extract relevant contrasts (treatment combinations) of interest for further analysis. For the Hedenfalk *et al.* study (4), pre-normalized data were obtained from supplemental information (http://www.nejm.org/general/content/supplemental/hedenfalk/index.html) and LIMMA was applied to obtain lists of differentially expressed genes between BRCA1 vs. MCF10-A, BRCA2 vs. MCF10-A, BRCA1 vs. BRCA2, BRCA2 vs. sporadic and BRCA1 vs. sporadic. We also generated a manually curated list of over 180 genes involved in DNA repair by parsing functional information from GeneRIF in Entrez Gene database.

In addition to pathway and association analyses, gene ontology analysis was performed to identify overrepresented biological processes on upregulated and downregulated genes, separately for all four comparisons. This approach allowed the identification of overrepresented categories for up- and down-regulated genes (see Table S2). This analysis revealed that a significant number of down-regulated genes in breast *BRCA1* heterozygous cells are involved in major cellular processes such as differentiation, development, proliferation, adhesion and apoptosis. On the other hand, significant numbers of up-regulated genes are involved in biosynthetic metabolic processes, including transcription, splicing, DNA replication and repair (Fig. 2, Table S2). Likewise, for down-regulated genes in breast *BRCA2* heterozygous cells, processes such as small GTPase-mediated signal transduction and cell cycle progression are enriched. For up-regulated genes in breast *BRCA2* heterozygous cells, biological processes such as immunologic and inflammatory processes, adhesion, oocyte differentiation and ovulation are over-represented (Fig. 2, Table S2).

In the case of ovary, in *BRCA1* heterozygous cells, up-regulated genes show significant enrichment for processes involved in development, differentiation and cell morphogenesis, and

down-regulated genes are associated with DNA repair, replication and cell cycle (Fig. 2, Table S2). *BRCA2* heterozygous cells show an enrichment of genes involved in catabolic processes , antigen processing, DNA fragmentation and G2/M transition (Fig. 2, Table S2).

Table S1 – Correlation between fold changes from microarray and low density array (LDA) data for candidate biomarkers in breast and ovarian cultures for different genotypes (Spearman's  $\rho$  are shown)

| Candidate markers<br>originally identified in<br>(culture, genotype): | Correlation in<br>culture of <i>BRCA1</i><br>genotype | Correlation in<br>culture of <i>BRCA2</i><br>genotype |
|-----------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| Breast, BRCA1                                                         | 0.94                                                  | 0.85                                                  |
| Breast, BRCA2                                                         | 0.79                                                  | 0.09                                                  |
| Ovarian, BRCA1                                                        | 0.94                                                  | 0.38                                                  |
| Ovarian, BRCA2                                                        | 0.6                                                   | 0.2                                                   |

| 1      |           |          |       |      |                                                          |
|--------|-----------|----------|-------|------|----------------------------------------------------------|
| Pvalue | OddsRatio | ExpCount | Count | Size | Term                                                     |
| 0.001  | 2.069     | 21       | 35    | 2984 | multicellular organismal process                         |
| 0      | 2.268     | 19       | 34    | 2795 | developmental process                                    |
| 0.002  | 2.45      | 7        | 16    | 1033 | organ development                                        |
| 0      | 2.517     | 10       | 22    | 1506 | cell differentiation                                     |
| 0.008  | 2.522     | 5        | 11    | 667  | cell proliferation                                       |
| 0.007  | 2.534     | 5        | 11    | 664  | cell adhesion                                            |
| 0.001  | 2.684     | 7        | 17    | 1018 | negative regulation of biological process                |
| 0.004  | 2.742     | 4        | 11    | 617  | proteolysis                                              |
| 0.003  | 2.751     | 5        | 12    | 676  | apoptosis                                                |
| 0.002  | 2.809     | 5        | 13    | 724  | cell death                                               |
| 0.003  | 3.022     | 4        | 10    | 508  | regulation of cell cycle                                 |
| 0.007  | 3.055     | 3        | 8     | 396  | cell morphogenesis                                       |
| 0.007  | 3.134     | 3        | 8     | 437  | system development                                       |
| 0.004  | 3.167     | 3        | 9     | 434  | cytoskeleton organization and biogenesis                 |
| 0.008  | 3.676     | 2        | 6     | 245  | enzyme linked receptor protein signaling pathway         |
| 0.006  | 3.892     | 2        | 6     | 232  | growth                                                   |
| 0      | 4.54      | 2        | 10    | 346  | cell motility                                            |
| 0.002  | 4.744     | 1        | 6     | 192  | negative regulation of progression through cell cycle    |
| 0.002  | 5.017     | 1        | 6     | 182  | actin cytoskeleton organization and biogenesis           |
| 0.003  | 11.976    | 0        | 3     | 39   | icosanoid metabolic process                              |
| 0      | 12.11     | 1        | 9     | 123  | ectoderm development                                     |
| 0.002  | 13.477    | 0        | 3     | 35   | epidermis morphogenesis                                  |
| 0.01   | 14.976    | 0        | 2     | 21   | response to UV                                           |
| 0.006  | 18.976    | 0        | 2     | 17   | prostaglandin metabolic process                          |
| 0.006  | 18.976    | 0        | 2     | 17   | antigen processing and presentation of peptide or        |
|        |           |          |       |      | polysaccharide antigen via MHC class II                  |
| 0.001  | 21.584    | 0        | 3     | 23   | keratinocyte differentiation                             |
| 0      | 25.4      | 0        | 3     | 20   | keratinization                                           |
| 0.004  | 25.884    | 0        | 2     | 13   | regulation of striated muscle development                |
| 0      | 30.85     | 0        | 3     | 17   | peptide cross-linking                                    |
| 0.001  | 47.473    | 0        | 2     | 8    | protein homotetramerization                              |
| 0.001  | 47.473    | 0        | 2     | 8    | regulation of nucleotide metabolic process               |
| 0      | 72.029    | 0        | 3     | 9    | endothelial cell migration                               |
| 0.007  | Inf       | 0        | 1     | 1    | pyrimidine ribonucleoside catabolic process              |
| 0.007  | Inf       | 0        | 1     | 1    | hydrogen peroxide biosynthetic process                   |
| 0.007  | Inf       | 0        | 1     | 1    | regulatory T cell differentiation                        |
| 0.007  | Inf       | 0        | 1     | 1    | isopeptide cross-linking via N6-(L-isoglutamyl)-L-lysine |
| 0.007  | Inf       | 0        | 1     | 1    | pyrimidine salvage                                       |
| 0.007  | Inf       | 0        | 1     | 1    | cytidine deamination                                     |
| 0.007  | Inf       | 0        | 1     | 1    | skeletal muscle regeneration                             |
| 0.007  | Inf       | 0        | 1     | 1    | negative regulation of low-density lipoprotein receptor  |
|        |           |          |       |      | catabolic process                                        |
| 0.007  | Inf       | 0        | 1     | 1    | extracellular transport                                  |
| 0.007  | Inf       | 0        | 1     | 1    | cytidine metabolic process                               |
|        |           |          |       |      |                                                          |

Table S2. Over-represented gene ontology categories for clusters of up- and down-regulated genes in breast and ovary BRCA1 and BRCA21 mutant cells vs. WT

Cluster

| 2      |           |          |       |      |                                                      |
|--------|-----------|----------|-------|------|------------------------------------------------------|
| Pvalue | OddsRatio | ExpCount | Count | Size | Term                                                 |
| 0.007  | 1.645     | 60       | 73    | 6735 | cellular metabolic process                           |
| 0.008  | 1.722     | 22       | 33    | 2477 | regulation of metabolic process                      |
| 0.003  | 1.753     | 60       | 75    | 6788 | primary metabolic process                            |
| 0.003  | 1.869     | 20       | 32    | 2239 | transcription                                        |
| 0.002  | 1.901     | 20       | 32    | 2208 | regulation of nucleobase, nucleoside, nucleotide and |
|        |           |          |       |      | nucleic acid metabolic process                       |
| 0.001  | 1.918     | 52       | 70    | 5890 | macromolecule metabolic process                      |
| 0.001  | 2.019     | 18       | 31    | 2026 | regulation of transcription, DNA-dependent           |
| 0.001  | 2.041     | 18       | 32    | 2083 | RNA biosynthetic process                             |
| 0.008  | 2.97      | 3        | 8     | 324  | response to endogenous stimulus                      |
| 0.003  | 3.066     | 4        | 10    | 476  | RNA metabolic process                                |
| 0.005  | 3.53      | 2        | 7     | 239  | mRNA processing                                      |
| 0.006  | 3.969     | 2        | 6     | 182  | induction of apoptosis                               |
| 0.005  | 3.992     | 2        | 6     | 181  | DNA replication                                      |
| 0.001  | 4.128     | 2        | 8     | 237  | DNA repair                                           |
| 0      | 4.836     | 2        | 8     | 204  | RNA splicing                                         |
| 0.002  | 45.498    | 0        | 2     | 7    | ATP-dependent proteolysis                            |
| 0.009  | Inf       | 0        | 1     | 1    | ethanolamine metabolic process                       |
| 0.009  | Inf       | 0        | 1     | 1    | phosphatidylethanolamine biosynthetic process        |
| 0.009  | Inf       | 0        | 1     | 1    | deoxyribonucleoside catabolic process                |
| 0.009  | Inf       | 0        | 1     | 1    | nucleobase catabolic process                         |
| 0.009  | Inf       | 0        | 1     | 1    | G0 to G1 transition                                  |
| 0.009  | Inf       | 0        | 1     | 1    | deoxyribonucleoside monophosphate biosynthetic       |
|        |           |          |       |      | process                                              |
| 0.009  | Inf       | 0        | 1     | 1    | pyrimidine deoxyribonucleoside monophosphate         |
|        |           |          |       |      | metabolic process                                    |
| 0.009  | Inf       | 0        | 1     | 1    | otic vesicle formation                               |
| 0.009  | Inf       | 0        | 1     | 1    | glucose 1-phosphate metabolic process                |
| 0.009  | Inf       | 0        | 1     | 1    | endosomal lumen acidification                        |
| 0.009  | Inf       | 0        | 1     | 1    | natural killer cell degranulation                    |
| 0.009  | Inf       | 0        | 1     | 1    | cytotoxic T cell degranulation                       |
| 0.009  | Inf       | 0        | 1     | 1    | pronephros development                               |
| 0.009  | Inf       | 0        | 1     | 1    | negative regulation of astrocyte differentiation     |
| 0.009  | Inf       | 0        | 1     | 1    | adult somatic muscle development                     |
| 0.009  | Inf       | 0        | 1     | 1    | uracil catabolic process                             |
| 0.009  | Inf       | 0        | 1     | 1    | thymidine catabolic process                          |
| 0.009  | Inf       | 0        | 1     | 1    | dTMP biosynthetic process                            |

Cluster 

| 3      |           |          |       |      |                                                   |
|--------|-----------|----------|-------|------|---------------------------------------------------|
| Pvalue | OddsRatio | ExpCount | Count | Size | Term                                              |
| 0.009  | 1.9       | 21       | 31    | 4365 | biological regulation                             |
| 0.006  | 1.971     | 18       | 28    | 3731 | regulation of cellular process                    |
| 0.004  | 3.764     | 2        | 7     | 418  | small GTPase mediated signal transduction         |
| 0      | 3.788     | 3        | 11    | 688  | cell cycle process                                |
| 0.01   | 4.12      | 1        | 5     | 267  | mitotic cell cycle                                |
| 0.001  | 4.141     | 2        | 9     | 504  | regulation of progression through cell cycle      |
| 0.008  | 16.723    | 0        | 2     | 27   | DNA replication initiation                        |
| 0.007  | 17.421    | 0        | 2     | 26   | monosaccharide biosynthetic process               |
| 0.003  | 27.893    | 0        | 2     | 17   | antigen processing and presentation of peptide or |
|        |           |          |       |      | polysaccharide antigen via MHC class II           |
| 0.001  | 59.81     | 0        | 2     | 9    | endothelial cell migration                        |
|        |           |          |       |      |                                                   |

| 0.01  | 206 | 0 | 1 | 2 | isotype switching to IgA isotypes                        |
|-------|-----|---|---|---|----------------------------------------------------------|
| 0.01  | 206 | 0 | 1 | 2 | positive regulation of isotype switching to IgA isotypes |
| 0.005 | Inf | 0 | 1 | 1 | succinate transport                                      |
| 0.005 | Inf | 0 | 1 | 1 | inositol biosynthetic process                            |
| 0.005 | Inf | 0 | 1 | 1 | skeletal muscle regeneration                             |

#### Cluster 4

| 4      |           |          |       |      |                                                     |
|--------|-----------|----------|-------|------|-----------------------------------------------------|
| Pvalue | OddsRatio | ExpCount | Count | Size | Term                                                |
| 0.005  | 6.572     | 1        | 4     | 272  | behavior                                            |
| 0.009  | 15.202    | 0        | 2     | 57   | activation of immune response                       |
| 0.008  | 16.4      | 0        | 2     | 53   | immunoglobulin mediated immune response             |
| 0.001  | 20.258    | 0        | 3     | 67   | humoral immune response                             |
| 0.003  | 26.177    | 0        | 2     | 34   | activation of plasma proteins during acute          |
|        |           |          |       |      | inflammatory response                               |
| 0.002  | 33.525    | 0        | 2     | 27   | complement activation, classical pathway            |
| 0.008  | 203.145   | 0        | 1     | 3    | L-serine biosynthetic process                       |
| 0.008  | 203.145   | 0        | 1     | 3    | negative regulation of gliogenesis                  |
| 0.008  | 203.145   | 0        | 1     | 3    | Golgi to plasma membrane protein transport          |
| 0.003  | Inf       | 0        | 1     | 1    | negative regulation of Golgi to plasma membrane     |
|        |           |          |       |      | protein transport                                   |
| 0.003  | Inf       | 0        | 1     | 1    | regulation of Golgi to plasma membrane CFTR protein |
|        |           |          |       |      | transport                                           |
| 0.003  | Inf       | 0        | 1     | 1    | cytoplasmic sequestering of CFTR protein            |
| 0.003  | Inf       | 0        | 1     | 1    | negative regulation of astrocyte differentiation    |
|        |           |          |       |      |                                                     |

Cluster 5

| C      |           |          |       |      |                                                           |
|--------|-----------|----------|-------|------|-----------------------------------------------------------|
| Pvalue | OddsRatio | ExpCount | Count | Size | Term                                                      |
| 0.005  | 22.077    | 0        | 2     | 73   | cell-matrix adhesion                                      |
| 0.01   | 123.578   | 0        | 1     | 7    | positive regulation of tumor necrosis factor biosynthetic |
|        |           |          |       |      | process                                                   |
| 0.01   | 123.578   | 0        | 1     | 7    | oocyte differentiation                                    |
| 0.01   | 123.578   | 0        | 1     | 7    | pH reduction                                              |
| 0.01   | 123.578   | 0        | 1     | 7    | regulation of cellular pH                                 |
| 0.009  | 148.306   | 0        | 1     | 6    | ovulation (sensu Mammalia)                                |
| 0.009  | 148.306   | 0        | 1     | 6    | positive regulation of interleukin-6 biosynthetic process |
| 0.007  | 185.397   | 0        | 1     | 5    | phagocytosis, engulfment                                  |
| 0.007  | 185.397   | 0        | 1     | 5    | positive regulation of erythrocyte differentiation        |
| 0.007  | 185.397   | 0        | 1     | 5    | stress fiber formation                                    |
| 0.006  | 247.216   | 0        | 1     | 4    | negative regulation of bone mineralization                |
| 0.004  | 370.853   | 0        | 1     | 3    | oocyte maturation                                         |
| 0.004  | 370.853   | 0        | 1     | 3    | antral ovarian follicle growth                            |
| 0.001  | Inf       | 0        | 1     | 1    | initiation of primordial ovarian follicle growth          |
| 0.001  | Inf       | 0        | 1     | 1    | endosomal lumen acidification                             |
|        |           |          |       |      |                                                           |

| Cluster<br>6 |           |          |       |      |                                      |
|--------------|-----------|----------|-------|------|--------------------------------------|
| Pvalue       | OddsRatio | ExpCount | Count | Size | Term                                 |
| 0.005        | 2.136     | 10       | 19    | 1529 | cellular developmental process       |
| 0.001        | 2.29      | 13       | 25    | 1984 | multicellular organismal development |
| 0            | 2.586     | 12       | 25    | 1791 | anatomical structure development     |
| 0.001        | 3.809     | 3        | 9     | 417  | nervous system development           |
| 0.01         | 4.094     | 1        | 5     | 196  | neuron differentiation               |

| 0.004 | 4.231   | 2 | 6  | 230 | neurogenesis                                |
|-------|---------|---|----|-----|---------------------------------------------|
| 0     | 4.32    | 4 | 16 | 664 | cell adhesion                               |
| 0.007 | 4.474   | 1 | 5  | 180 | cell projection organization and biogenesis |
| 0.007 | 4.474   | 1 | 5  | 180 | cell part morphogenesis                     |
| 0.006 | 5.981   | 1 | 4  | 108 | wound healing                               |
| 0.001 | 6.841   | 1 | 5  | 120 | homophilic cell adhesion                    |
| 0.001 | 10.765  | 0 | 4  | 62  | morphogenesis of an epithelium              |
| 0.006 | 19.099  | 0 | 2  | 18  | neural plate development                    |
| 0.006 | 20.374  | 0 | 2  | 17  | neural tube formation                       |
| 0.004 | 23.512  | 0 | 2  | 15  | negative regulation of angiogenesis         |
| 0.003 | 27.792  | 0 | 2  | 13  | neural tube closure                         |
| 0.001 | 61.171  | 0 | 2  | 7   | apical protein localization                 |
| 0     | 101.967 | 0 | 2  | 5   | establishment of planar polarity            |
| 0.007 | Inf     | 0 | 1  | 1   | PML body organization and biogenesis        |
| 0.007 | Inf     | 0 | 1  | 1   | intermediate mesoderm development           |
| 0.007 | Inf     | 0 | 1  | 1   | synaptic vesicle priming                    |
| 0.007 | Inf     | 0 | 1  | 1   | androgen catabolic process                  |

```
Cluster
```

| 7      |           |          |       |      |                                                       |
|--------|-----------|----------|-------|------|-------------------------------------------------------|
| Pvalue | OddsRatio | ExpCount | Count | Size | Term                                                  |
| 0.005  | 2.094     | 13       | 22    | 2317 | cellular component organization and biogenesis        |
| 0.008  | 2.542     | 5        | 11    | 883  | response to stress                                    |
| 0.003  | 3.642     | 2        | 8     | 465  | regulation of progression through cell cycle          |
| 0      | 5.082     | 2        | 8     | 324  | response to endogenous stimulus                       |
| 0.002  | 5.083     | 1        | 6     | 237  | DNA repair                                            |
| 0      | 5.343     | 2        | 9     | 352  | chromosome organization and biogenesis                |
| 0.003  | 5.497     | 1        | 5     | 181  | DNA replication                                       |
| 0      | 6.547     | 3        | 16    | 648  | cell cycle process                                    |
| 0.009  | 7.474     | 0        | 3     | 113  | cell cycle                                            |
| 0      | 9.616     | 1        | 8     | 177  | microtubule-based process                             |
| 0.001  | 9.848     | 0        | 4     | 82   | phosphoinositide-mediated signaling                   |
| 0.001  | 10.526    | 0        | 4     | 77   | interphase                                            |
| 0.002  | 12.93     | 0        | 3     | 47   | viral reproduction                                    |
| 0.009  | 15.592    | 0        | 2     | 26   | ear morphogenesis                                     |
| 0.009  | 15.592    | 0        | 2     | 26   | regulation of progression through mitotic cell cycle  |
| 0.008  | 16.271    | 0        | 2     | 25   | establishment of organelle localization               |
| 0.001  | 17.255    | 0        | 3     | 36   | viral infectious cycle                                |
| 0      | 17.45     | 1        | 15    | 231  | mitotic cell cycle                                    |
| 0      | 18.921    | 1        | 18    | 248  | M phase                                               |
| 0      | 19.855    | 1        | 14    | 185  | cell division                                         |
| 0.001  | 21.913    | 0        | 3     | 29   | sister chromatid segregation                          |
| 0.001  | 22.058    | 0        | 3     | 30   | chromosome segregation                                |
| 0      | 24.275    | 1        | 18    | 198  | mitosis                                               |
| 0.004  | 24.965    | 0        | 2     | 17   | positive regulation of progression through cell cycle |
| 0.003  | 26.751    | 0        | 2     | 16   | mitotic chromosome condensation                       |
| 0.002  | 34.054    | 0        | 2     | 13   | G2/M transition of mitotic cell cycle                 |
| 0      | 36.744    | 0        | 4     | 25   | cytokinesis                                           |
| 0.002  | 41.629    | 0        | 2     | 11   | regulation of exit from mitosis                       |
| 0.001  | 46.836    | 0        | 2     | 10   | deoxyribonucleotide metabolic process                 |
| 0.001  | 49        | 0        | 2     | 10   | spindle organization and biogenesis                   |
| 0.001  | 53.531    | 0        | 2     | 9    | regulation of viral genome replication                |
| 0      | 71.318    | 0        | 3     | 11   | mitotic spindle organization and biogenesis           |

| 0.001 | 74.955  | 0 | 2 | 7 | embryonic skeletal morphogenesis                     |
|-------|---------|---|---|---|------------------------------------------------------|
| 0     | 93.701  | 0 | 2 | 6 | retroviral genome replication                        |
| 0     | 124.945 | 0 | 2 | 5 | sensory perception of temperature stimulus           |
| 0.005 | Inf     | 0 | 1 | 1 | cytokinesis after mitosis                            |
| 0.005 | Inf     | 0 | 1 | 1 | centric heterochromatin formation                    |
| 0.005 | Inf     | 0 | 1 | 1 | maintenance of DNA methylation                       |
| 0.005 | Inf     | 0 | 1 | 1 | deoxyribonucleoside monophosphate biosynthetic       |
|       |         |   |   |   | process                                              |
| 0.005 | Inf     | 0 | 1 | 1 | pyrimidine deoxyribonucleoside monophosphate         |
|       |         |   |   |   | metabolic process                                    |
| 0.005 | Inf     | 0 | 1 | 1 | DNA mediated transformation                          |
| 0.005 | Inf     | 0 | 1 | 1 | positive regulation of retroviral genome replication |
| 0.005 | Inf     | 0 | 1 | 1 | dTMP biosynthetic process                            |
|       |         |   |   |   |                                                      |

| Cluster |
|---------|
| 8       |

| 8      |           |          |       |      |                                                        |
|--------|-----------|----------|-------|------|--------------------------------------------------------|
| Pvalue | OddsRatio | ExpCount | Count | Size | Term                                                   |
| 0.006  | 3.931     | 4        | 9     | 2815 | developmental process                                  |
| 0.01   | 4.695     | 1        | 5     | 1033 | organ development                                      |
| 0.003  | 4.931     | 4        | 9     | 2941 | multicellular organismal process                       |
| 0.006  | 9.235     | 0        | 3     | 289  | biopolymer catabolic process                           |
| 0.004  | 10.953    | 0        | 3     | 245  | enzyme linked receptor protein signaling pathway       |
| 0.001  | 40.881    | 0        | 2     | 43   | blood pressure regulation                              |
| 0.001  | 64.544    | 0        | 2     | 28   | peptidoglycan metabolic process                        |
| 0      | 88.372    | 0        | 2     | 21   | multicellular organismal catabolic process             |
| 0      | 93.289    | 0        | 2     | 20   | collagen catabolic process                             |
| 0      | 93.289    | 0        | 2     | 20   | multicellular organismal macromolecule catabolic       |
|        |           |          |       |      | process                                                |
| 0      | 93.289    | 0        | 2     | 20   | multicellular organismal protein metabolic process     |
| 0      | 93.289    | 0        | 2     | 20   | protein digestion                                      |
| 0.009  | 131.312   | 0        | 1     | 7    | chitin catabolic process                               |
| 0.008  | 157.588   | 0        | 1     | 6    | endosome to lysosome transport                         |
| 0.008  | 157.588   | 0        | 1     | 6    | positive regulation of bone remodeling                 |
| 0.008  | 157.588   | 0        | 1     | 6    | negative regulation of G-protein coupled receptor      |
|        |           |          |       |      | protein signaling pathway                              |
| 0.007  | 197       | 0        | 1     | 5    | negative regulation of body size                       |
| 0.007  | 197       | 0        | 1     | 5    | brown fat cell differentiation                         |
| 0.007  | 197       | 0        | 1     | 5    | heat generation                                        |
| 0.007  | 197       | 0        | 1     | 5    | imprinting                                             |
| 0.005  | 262.688   | 0        | 1     | 4    | adaptation of signaling pathway                        |
| 0.005  | 262.688   | 0        | 1     | 4    | segment specification                                  |
| 0.005  | 262.688   | 0        | 1     | 4    | negative regulation of erythrocyte differentiation     |
| 0.004  | 394.062   | 0        | 1     | 3    | positive regulation of bone mineralization             |
| 0.004  | 394.062   | 0        | 1     | 3    | diet induced thermogenesis                             |
| 0.004  | 394.062   | 0        | 1     | 3    | norepinephrine-epinephrine vasodilation during         |
|        |           |          |       |      | regulation of blood pressure                           |
| 0.004  | 394.062   | 0        | 1     | 3    | regulation of organismal metabolic process             |
| 0.004  | 394.062   | 0        | 1     | 3    | transmembrane receptor protein tyrosine kinase         |
|        |           |          |       |      | activation (dimerization)                              |
| 0.003  | 788.188   | 0        | 1     | 2    | regulation of sodium ion transport                     |
| 0.003  | 788.188   | 0        | 1     | 2    | arrestin mediated desensitization of G-protein coupled |
|        |           |          |       |      | receptor protein signaling pathway                     |
| 0.003  | 788.188   | 0        | 1     | 2    | negative regulation of smooth muscle contraction       |
|        |           |          |       |      |                                                        |

| Cluster |           |          |       |      |                                                                                              |
|---------|-----------|----------|-------|------|----------------------------------------------------------------------------------------------|
| 9       |           |          | 0     | 0.   | -                                                                                            |
| Pvalue  | OddsRatio | ExpCount | Count | Size | lerm                                                                                         |
| 0.009   | 131.312   | 0        | 1     | 17   | antigen processing and presentation of peptide or<br>polysaccharide antigen via MHC class II |
| 0.008   | 161.654   | 0        | 1     | 14   | DNA fragmentation during apoptosis                                                           |
| 0.007   | 175.139   | 0        | 1     | 13   | G2/M transition of mitotic cell cycle                                                        |
| 0.006   | 210.2     | 0        | 1     | 11   | positive regulation of JNK cascade                                                           |
| 0.003   | 420.567   | 0        | 1     | 6    | adult feeding behavior                                                                       |
| 0.003   | 525.75    | 0        | 1     | 5    | regulation of response to food                                                               |
| 0.003   | 525.75    | 0        | 1     | 5    | regulation of response to extracellular stimulus                                             |
| 0.003   | 525.75    | 0        | 1     | 5    | Golgi to plasma membrane transport                                                           |
| 0.002   | 1051.667  | 0        | 1     | 3    | positive regulation of appetite                                                              |
| 0.002   | 1051.667  | 0        | 1     | 3    | positive regulation of response to external stimulus                                         |
| 0.002   | 1051.667  | 0        | 1     | 3    | positive regulation of response to nutrient levels                                           |
| 0.001   | 2103.5    | 0        | 1     | 2    | Golgi to plasma membrane CFTR protein transport                                              |

| Table 55. Misig bb gene sets enriched in bleast and ovarian brock i and brock i nutant cens |                                                                                                                                                                                                                                         |               |               |  |  |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|--|--|
| Gene Set                                                                                    | Description                                                                                                                                                                                                                             | Gene set size | PMID          |  |  |
| ALCALAY_AML_NPMC_DN                                                                         | Genes downregulated in NPMc+ leukemias                                                                                                                                                                                                  | 187           | PMID:15831697 |  |  |
|                                                                                             | Upregulated gene signature putatively involved<br>in the maintenance of a stem-cell phenotype<br>suggesting that NPMc+ AML may derive from<br>a multipotent hematopoietic progenitor                                                    |               |               |  |  |
| BRCA_ER_NEG                                                                                 | Down regulated genes whose expression is<br>consistently negatively correlated with<br>estrogen receptor status in breast cancer -<br>higher expression is associated with ER-<br>negative tumors                                       | 929           | PMID:11823860 |  |  |
| DOX_RESIST_GASTRIC_UP                                                                       | Upregulated in gastric cancer cell lines reistant<br>to doxorubicin, compared to parent<br>chemosensitive lines                                                                                                                         | 44            | PMID:14734480 |  |  |
| GAY_YY1_DN                                                                                  | List of YY1 target genes identified in MEFs<br>expressing ~25% of YY1 Down                                                                                                                                                              | 281           | PMID:16611997 |  |  |
| HOFFMANN_BIVSBII_BI_TABLE2                                                                  | Genes with at least five fold change in<br>expression between Pre-BI and Large Pre-BII<br>cells (B-cell)                                                                                                                                | 254           | PMID:11779835 |  |  |
| IDX_TSA_UP_CLUSTER3                                                                         | Strongly up-regulated at 16-24 hours during<br>differentiation of 3T3-L1 fibroblasts into<br>adipocytes with IDX (insulin, dexamethasone<br>and isobutylxanthine), vs. fibroblasts treated<br>with IDX + TSA to prevent differentiation | 90            | PMID:15033539 |  |  |
| IRITANI_ADPROX_LYMPH                                                                        | Lympocyte proliferation expression profile                                                                                                                                                                                              | 127           | PMID:12234922 |  |  |
| LEE_TCELLS2_UP                                                                              | Transcripts enriched in more mature cells (SP4, CB4, and AB4) more than 3-fold, with average signal value differences of at least 100 between less mature (ITTP, DP) and more mature (SP4, CB4, and AB4) cells                          | 1141          | PMID:15210650 |  |  |
| LEE_TCELLS3_UP                                                                              | Transcripts enriched in both ITTP and DP more<br>than 3-fold, with average signal value<br>differences of at least 100 between less<br>mature (ITTP, DP) and more mature (SP4,<br>CB4, and AB4) cells                                   |               | PMID:15210650 |  |  |
| POD1_KO_UP                                                                                  | Up-regulated in glomeruli isolated from Pod1<br>knockout mice, versus wild-type controls                                                                                                                                                | 416           | PMID:16207825 |  |  |
| SERUM_FIBROBLAST_CELLCYCL                                                                   | Cell-cycle dependent genes regulated<br>following exposure to serum in a variety of<br>human fibroblast cell lines                                                                                                                      | 138           | PMID:14737219 |  |  |
| SHEPARD_BMYB_MORPHOLINO_                                                                    | Genes upregulated in control vs bmyb<br>morpholino knockdown in zebra fish                                                                                                                                                              | 208           | PMID:16150706 |  |  |

## Table S3. Msig Db gene sets enriched in breast and ovarian BRCA1 and BRCA2 mutant cells

| STEMCELL_EMBRYONIC_UP    | Enriched in mouse embryonic stem cells,<br>compared to differentiated brain and bone<br>marrow cells                                                                                               | 1344 | PMID:12228720 |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| STEMCELL_NEURAL_UP       | Enriched in mouse neural stem cells,<br>compared to differentiated brain and bone<br>marrow cells                                                                                                  | 1838 | PMID:12228720 |
| TARTE_PLASMA_BLASTIC     | Genes overexpressed in mature plasma cells<br>isolated from tonsils (TPCs) and mature<br>plasma cells isolated from bone marrow<br>(BMPCs) as compared to polyclonal<br>plasmablastic cells (PPCs) | 310  | PMID:12663452 |
| ZHAN_MM_CD138_PR_VS_REST | Top 50 genes from various sub-groups of<br>multiple myeloma molecular classification                                                                                                               | 49   | PMID:16728703 |
| LEI_MYB_REGULATED_GENES  | Myb-regulated genes                                                                                                                                                                                | 325  | PMID:15105423 |

NEXT PAGE:

**Figure S1**. Hierarchical clustering for comparisons between *BRCA1* and *WT*, and *BRCA2* and *WT*, for breast and ovarian epithelial cultures.



## References

- 1. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857-68.
- Devarajan K. Nonnegative matrix factorization A new paradigm in large-scale biological data analysis, Proceedings of the Joint Statistical Meetings, Seattle, Washington (CD-ROM). 2006.
- 3. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004;3:Article3.
- 4. Hedenfalk I, Duggan D, Chen Y, et al. Gene-expression profiles in hereditary breast cancer. N Engl J Med 2001;344:539-48.