

sup2



 $(Ala^{28} \rightarrow Glu) sup3$ 

Figure S1



0.5 1 2 4 8 16 His<sub>6</sub>-SinI (μM) 0 0.5 0.5 0.5 0.5 0.5 0.5 His<sub>6</sub>-SinR (μM)



1 2 4 8 16 32 His<sub>6</sub>-SIrA (μM) 0 0.5 0.5 0.5 0.5 0.5 0.5 His<sub>6</sub>-SinR (μM)



Figure S2

## Supplemental figure legends:

**Figure S1.** (A) In six independent inoculations of the  $\Delta ywcC \Delta sinl$  cells in 2X SGG medium, three out of six (*sup*1, *sup*2, *sup*3) cultures showed or began to show robust pellicle formation after three days of incubation at 23°C. (B) All three cultures contained suppressor mutants that are different from the parent strain and form robust biofilms. One such suppressor mutant (*sup*3) acquired a mutation that was mapped to the *sinR* gene as a missense mutation (Ala<sup>28</sup>  $\rightarrow$  Glu).

**Figure S2.** SIrA inhibits SinR from binding to DNA in EMSA (A) His<sub>6</sub>-SinR bound to and shifted the promoter sequence of the *epsA-O* operon in a concentration dependent manner. Increasing amounts of His<sub>6</sub>-SinI (as indicated in panel B) or His<sub>6</sub>-SIrA (as indicated in panel C) were mixed with a fixed amount of His-SinR (0.5  $\mu$ M) in EMSA. Note that the His-tagged SinI (and we presume the His-tagged SIrA) was less potent that the purified untagged SinI used in our previous EMSA experiments [Kearns et al (2005)].

## Supplemental experimental procedures:

## Electrophoretic mobility shift assay (EMSA)

Proteins were purified as described above. The DNA probe for the promoter sequence of the *eps* operon was generated by PCR using chromosomal DNA from 3610 and the primers  $P_{epsA}$ -F1 and  $P_{epsA}$ -R1 (Table S2). The DNA probe was digested with EcoRI, gel purified, and filled-in using klenow (*exo*<sup>-</sup>), dTTP, and [ $\alpha$ -32P]-dATP (NEB). EMSA was conducted following a protocol that has been described previously (Kearns et al., 2005).

## Table S1. Strains used in this study.

| E. coli     |                                                                                                                                                              |                             |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| DH5a        | an <i>E_coli</i> strain used for molecular cloning                                                                                                           | Invitrogen                  |
|             | $E$ coli $B$ $E^{-}$ dcm ompT bsdS( $r_{p}$ - $m_{p}$ ) col $\lambda$ (DE3)                                                                                  | Stratagene                  |
| EC505       | a PL 21/DE3 derivative for everyprossion of CST SIrP. Cm <sup>R</sup> Amp <sup>R</sup>                                                                       | (EC uppublished)            |
| DI 4210     | a BL21/DE3 derivative for overexpression of GOT-SirK, Cirl, Anip                                                                                             | (Koorpo of al. 2005)        |
| RL4219      | a DL21/DE3 derivative for everypression of His-Sinfl, Cirl, Kall                                                                                             | (Kearns et al., 2005)       |
| RL4ZZU      | a BL21/DE3 derivative for overexpression of His-SinR, Cm, Kan                                                                                                | (Reams et al., 2005)        |
| 10388       | a BL21/DE3 derivative for overexpression of His6-SIFA, Kan                                                                                                   | this work                   |
| B. subtilis |                                                                                                                                                              |                             |
| PY79        | laboratory strain used as a host for transformation                                                                                                          |                             |
| 3610        | undomesticated wild strain capable of forming robust biofilms                                                                                                | (Branda et al., 2001)       |
| RL3856      | $\Delta sinR$ , $\Delta epsH$ in 3610, Spc <sup>R</sup> , Tet <sup>R</sup>                                                                                   | (Kearns et al., 2005)       |
| FC134       | amyE::P <sub>yqxM</sub> -lacZ, $\Delta epsH$ in 3610, Cm <sup>R</sup> , Tet <sup>R</sup>                                                                     | (Chu <i>et al.</i> , 2008)  |
| FC135       | amyE:: $P_{yqxM}$ -lacZ, $\Delta sinR$ , $\Delta epsH$ in 3610, Cm <sup>R</sup> , Spc <sup>R</sup> , Tet <sup>R</sup>                                        | (Chu et al., 2008)          |
| YC122       | amyE::P <sub>slrR</sub> -lacZin 3610, Cm <sup>R</sup>                                                                                                        | this work                   |
| YC130       | amyE::PepsA-lacZ in 3610, Cm <sup>R</sup>                                                                                                                    | (Chai <i>et al.</i> , 2008) |
| YC131       | $\Delta s lr R$ in 3610, Spc <sup>R</sup>                                                                                                                    | this work                   |
| YC132       | amyE::P <sub>ensA</sub> -lacZ, $\Delta$ slrR in 3610, Cm <sup>R</sup> , Spc <sup>R</sup>                                                                     | this work                   |
| YC133       | amvE::PensA-lacZ. $\Delta$ sinR. $\Delta$ epsH in 3610. Cm <sup>R</sup> . Spc <sup>R</sup> . Tet <sup>R</sup>                                                | this work                   |
| YC148       | amyE::P <sub>strR</sub> -lacZ, $\Delta$ strR in 3610, Cm <sup>R</sup> , Spc <sup>R</sup>                                                                     | this work                   |
| YC189       | amyE::P <sub>vaxM</sub> -cfp in 3610, Spc <sup>R</sup>                                                                                                       | (Chai <i>et al.</i> , 2008) |
| YC274       | amyE:: $P_{vaxM}$ -lacZ, $\Delta$ slrR in 3610, Spc <sup>R</sup> , Tet <sup>R</sup>                                                                          | this work                   |
| YC294       | $\Delta s lr A$ in 3610, Kan <sup>R</sup>                                                                                                                    | this work                   |
| YC295       | $\Delta ywcC$ in 3610, Kan <sup>R</sup>                                                                                                                      | this work                   |
| YC296       | $\Delta ywcC$ -slrA in 3610, Kan <sup>R</sup>                                                                                                                | this work                   |
| YC297       | $\Delta \gamma wcC$ , $\Delta s lr R$ in 3610, Kan <sup>R</sup> , Spc <sup>R</sup>                                                                           | this work                   |
| YC298       | $\Delta vwcC$ , $\Delta sinl$ in 3610, Kan <sup>R</sup> , Spc <sup>R</sup>                                                                                   | this work                   |
| YC501       | $amvE::P_{Var} - lacZ$ . $\Delta slrA$ in 3610. Cm <sup>R</sup> . Kan <sup>R</sup>                                                                           | this work                   |
| YC502       | $amvE::P_{ens,4}-lacZ$ , $\Delta s/rA$ in 3610, Cm <sup>R</sup> , Kan <sup>R</sup>                                                                           | this work                   |
| YC503       | $amvE::P_{strR}-lacZ$ , $\Delta strA$ in 3610, $Cm^R$ , Kan <sup>R</sup>                                                                                     | this work                   |
| YC505       | amvE::PygyM-lacZ. AvwcC. AepsH in 3610. Cm <sup>R</sup> . Kan <sup>R</sup> . Tet <sup>R</sup>                                                                | this work                   |
| YC506       | $amvE::P_{ensA}-lacZ$ , $\Delta vwcC$ , $\Delta epsH$ in 3610, $Cm^{R}$ , $Kan^{R}$ , $Tet^{R}$                                                              | this work                   |
| YC507       | $amvE::P_{str_R}$ -lacZ, $\Delta vwcC$ , $\Delta epsH$ in 3610, Cm <sup>R</sup> , Kan <sup>R</sup> , Tet <sup>R</sup>                                        | this work                   |
| YC509       | $amvF$ ::P <sub>vort</sub> - lacZ. $\Delta vwcC$ -s/rA in 3610. Cm <sup>R</sup> . Kan <sup>R</sup>                                                           | this work                   |
| YC510       | $amyE::P_{ens4}-lacZ, AvwcC-s/rA in 3610, CmR, KanR$                                                                                                         | this work                   |
| YC517       | $amvE::P_{var} = lacZ$ , $\Delta vwcC$ , $\Delta slrR$ in 3610, $Cm^R$ , $Kan^R$ , $Mls^R$                                                                   | this work                   |
| YC518       | $amvF$ ::Porst-lacZ, $\Delta vwcC$ , $\Delta slrR$ in 3610, $Cm^R$ , $Kan^R$ , $Mls^R$                                                                       | this work                   |
| YC519       | $amvE::P_{strR}$ -lacZ. $\Delta vwcC$ . $\Delta strR$ . $\Delta epsH$ in 3610. Cm <sup>R</sup> . Kan <sup>R</sup> . Spc <sup>R</sup> . Tet <sup>R</sup>      | this work                   |
| YC526       | amvE::P <sub>stra</sub> -lacZ. $\Delta epsH$ in 3610. Cm <sup>R</sup> . Tet <sup>R</sup>                                                                     | this work                   |
| YC527       | $amvE::P_{stra-lacZ}$ , $\Delta vwcC$ , $\Delta epsH$ in 3610, $Cm^{R}$ , Kan <sup>R</sup> , Tet <sup>R</sup>                                                | this work                   |
| YC528       | amvE::Pygyhr lacZ. AslrR. AepsH in 3610. Cm <sup>R</sup> . Mls <sup>R</sup> . Tet <sup>R</sup>                                                               | this work                   |
| YC529       | amvE::P <sub>voxM</sub> -lacZ. $\Delta$ vwcC. $\Delta$ slrR. $\Delta$ epsH in 3610. Cm <sup>R</sup> . Kan <sup>R</sup> . Mls <sup>R</sup> . Tet <sup>R</sup> | this work                   |
| YC530       | $\Delta ywcC$ -slrA, $\Delta slrR$ in 3610, Kan <sup>R</sup> , Mls <sup>R</sup>                                                                              | this work                   |
| YC531       | amvE::P <sub>strR</sub> -lacZ. $\Delta$ vwcC-slrA. $\Delta$ slrR in 3610. Cm <sup>R</sup> . Kan <sup>R</sup> . Mls <sup>R</sup>                              | this work                   |
| YC540       | amvE::PygyM=cfp. \DvwcC. \DepsH in 3610. Spc <sup>R</sup> . Kan <sup>R</sup> . Tet <sup>R</sup>                                                              | this work                   |
| YC563       | amyE::P <sub>s/rA</sub> -s/rA, ∆s/rA in 3610, Cm <sup>R</sup> , Kan <sup>R</sup>                                                                             | this work                   |
| YC564       | amyE::P <sub>slrA</sub> -sinI, ∆slrA in 3610, Cm <sup>R</sup> , Kan <sup>R</sup>                                                                             | this work                   |
| YC567       | amyE::P <sub>s/rA</sub> -gfp in 3610, Cm <sup>R</sup>                                                                                                        | this work                   |
| YC568       | amyE::P <sub>vaxM</sub> -lacZ, $\Delta$ sinR, $\Delta$ slrA, $\Delta$ epsH in 3610. Cm <sup>R</sup> . Spc <sup>R</sup> . Kan <sup>R</sup> . Tet <sup>R</sup> | this work                   |
| YC569       | amyE::P <sub>epsA</sub> -lacZ, $\Delta$ sinR, $\Delta$ sIrA, $\Delta$ epsH in 3610, Cm <sup>R</sup> , Spc <sup>R</sup> , Kan <sup>R</sup> , Tet <sup>R</sup> | this work                   |
|             |                                                                                                                                                              |                             |

Table S2. Primes used in this study.

| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | <pre>/-gtcggatccctagaaattctcctctattcctgtcg-3' /-gtcgaattcctagaaattctcctctattcctgtcg-3' /-gtcgaattcctagaaaatgcaaatgcatataattctttg-3' /-gtaggatcctcagaaaggatttacggtatg-3' /-gtaggatccctagtcttgccggacggttttt-3' /-gacgccgataaaatggttttccg-3' /-caattcgccctatagtgagtcgttcagtgaagtatagagaaata-3' /-caataaaagcgcgtttctgctt -3' /-gagagtgcgtctaaaaagctgcg-3' /-caattcgccctatagtgagtcgttcatagtaacctccaattgta-3' /-ccagcttttgttccctttagtgagaagactagtccgaacaggcgg-3'</pre> |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| slrA-P3: 5                                           | '-ccagcttttgttccctttagtgagaagactagtccgaacaggcgg-3'                                                                                                                                                                                                                                                                                                                                                                                                               |
| slrA-P4: 5                                           | '-gatgtacaagacaacgagataag -3'                                                                                                                                                                                                                                                                                                                                                                                                                                    |