Electronic Supporting Information

Rhodium-Catalyzed Asymmetric Enyne Cycloisomerization of Terminal Alkynes and Formal Total Synthesis of (–)-Platensimycin

K. C. Nicolaou, * Ang Li, Shelby P. Ellery, and David J. Edmonds

Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093

Email : <u>kcn@scripps.edu</u>

General Procedures. All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Dry tetrahydrofuran (THF), methanol, triethylamine (Et₃N), and methylene chloride (CH₂Cl₂) were obtained by passing commercially available pre-dried, oxygen-free formulations through activated alumina columns. Dimethylsulfoxide (DMSO) and ethanol (EtOH) were purchased in anhydrous form and used without further purification. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Reactions were monitored by thin layer chromatography (TLC) carried out on S-2 0.25 mm E. Merck silica gel plates (60F-254) using UV light as visualizing agent and ethanolic *p*-anisaldehyde. aqueous ammonium cerium nitrate/ammonium molybdate, or basic aqueous potassium permanganate as developing agents. E. Merck silica gel (60, particle size 0.040-0.063 mm) was used for flash column chromatography. Preparative thin layer chromatography separations were carried out on 0.25 or 0.50 mm E. Merck silica gel plates (60F-254). NMR spectra were recorded on Bruker AV-400, DRX-500 or DRX-600 instruments and calibrated using residual undeuterated chloroform ($\delta_{\rm H}$ = 7.26 ppm) or CDCl₃ ($\delta_{\rm C}$ = 77.0 ppm) as an internal reference. The following abbreviations are used to designate multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, quint = quintet, br = broad. IR spectra were recorded on a Perkin-Elmer Spectrum 100 FT-IR spectrometer. Melting points (m.p.) are uncorrected and were recorded on a Thomas Hoover Uni-Melt apparatus. High-resolution mass spectra (HRMS) were recorded on an Agilent ESITOF (time of flight) mass spectrometer at a 4000 V emitter voltage.

Preparation of catalyst [Rh((*S*)-**BINAP**)]**SbF**₆. The [Rh((*S*)-BINAP)]SbF₆ catalyst was freshly prepared according to the procedure reported by Wender et al.¹ and used within days. [Rh(cod)Cl]₂ (25.1 mg, 0.0509 mol) and AgSbF₆ (35.0 mg, 0.1019 mol) were weighed out in a flame-dried 25 mL round-bottom flask filled with argon. Acetone (2.5 mL) was added, and a white precipitate formed immediately. After stirring at 23 °C for 20 min, the yellow suspension was filtered under argon into a flask containing (*S*)-BINAP (63.4 mg, 0.1018 mol). The resulting acetone solution was stirred for 20 min and could be directly used for entries 5, 8 and 9 in Table 2. Acetone was then carefully removed

under bubbling argon and finally under vacuum. The residue was dissolved in 1,2-dichloroethane (DCE, 2.5 mL) and the resulting solution was stirred at 23 °C for 5 min until homogeneous. The catalyst in both acetone and DCE kept at 4 °C for 5 days gave the same efficiency and optical activity in the cycloisomerization reaction as tested with substrates **1** and **6** (entries 1 and 6, Table 2).

General procedure for Rh-catalyzed cycloisomerization. To a vial containing 0.08 mmol of the 1,6enyne substrate under argon was added [Rh((*S*)-BINAP)]SbF₆ solution (0.20 mL, 0.04 M in DCE or acetone). The resulting mixture was stirred at 23 °C for 12–16 h. After removal of the solvent by a stream of argon, the residue was purified by flash column chromatography using EtOAc/hexanes (1:3– 1:1) as eluent.

Measurement of enantiomeric excess (ee). Racemic and optically active aldehydes were prepared with $[Rh((\pm)-BINAP)]SbF_6$ and $[Rh((S)-BINAP)]SbF_6$ employing the general procedure described below, respectively. Cyclized products were reduced with NaBH₄ (**1a**, **2a**, **4a**, **7a**, **9a** and **10a**) or LiBH₄ (**5a** and **8a**) and ee's were measured after derivatization to the corresponding *p*-bromobenzoate esters² (Table 2, entries 1 and 2, by chiral HPLC, OD-H column) or to Mosher esters² (Table 2, entries 3–5 and 7–10, by ¹H and ¹⁹F NMR spectroscopic analysis). Compounds **6a** and **11a** were converted to the corresponding ethylene glycol acetals (TMSOCH₂CH₂OTMS, TMSOTf) and the ee's were measured by chiral HPLC (OD-H column).

1a: 19.2 mg, 86 %, >99 % ee (chiral HPLC analysis of the corresponding *p*-bromobenzoate ester,^[2] OD-

H column, see graph). $R_f = 0.17$ (silica, EtOAc:hexanes 3:7); $[\alpha]_{10}^{20} = -43.1$ (c = 1.86 in CHCl₃); IR (film): $v_{max} = 2841$, 2729, 1721, 1667, 1597, 1494, 1402, 1343, 1304, 1160, 1094, 1044, 901, 816, 709, 663 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 9.75$ (s, 1 H), 7.70 (d, J = 8.2 Hz, 2 H), 7.34 (d, J = 8.5 Hz, 2 H), 4.97 (dd, J = 3.9, 1.9 Hz, 1 H), 4.89 (dd, J = 4.4, 2.1 Hz, 1 H), 3.87–3.77 (m, 2 H), 3.54 (dd, J = 9.7, 7.4 Hz, 1 H), 3.20–2.95 (m, 1 H), 2.91 (dd, J = 9.7, 6.5 Hz, 1 H), 2.70 (ddd, J = 18.4, 4.9, 0.8 Hz, 1 H), 2.54 (ddd, J = 18.4, 8.7, 0.8 Hz, 1 H), 2.44 (s, 3 H) ppm;

¹³C NMR (151 MHz, CDCl₃): δ = 199.80, 146.70, 143.83, 132.40, 129.74, 127.83, 107.63, 53.25, 51.77, 46.74, 36.72, 21.55 ppm; HRMS (*m/z*): [M + H]⁺ calcd for C₁₄H₁₈NO₃S⁺ 280.1002, found 280.1001.

2a: 28.3 mg, 90 %, 97 % ee (chiral HPLC analysis of the corresponding *p*-bromobenzoate ester,^[2] OD-

H column, see graph). $R_f = 0.58$ (silica, EtOAc:hexanes 3:7); $[\alpha]_{10}^{30} = -28.2$ (c = 0.57in CHCl₃); IR (film): $v_{max} = 2930$, 2858, 1661, 1598, 1472, 1349, 1305, 1254, 1162, 1095, 1052, 929, 839, 814, 783, 708, 663 cm⁻¹; ⁻¹H NMR (600 MHz, CDCl₃): $\delta =$ 7.70 (d, J = 8.2 Hz, 2 H), 7.33 (d, J = 7.9 Hz, 2 H), 6.28 (d, J = 12.0 Hz, 1 H), 4.93 (dd, J = 4.4, 2.1 Hz, 1 H), 4.86 (dd, J = 4.9, 2.4 Hz, 1 H), 4.63 (dd, J = 11.9, 9.3 Hz, 1 H), 4.04 (dt, J = 14.2, 2.9 Hz, 1 H), 3.67–3.59 (m, 2 H), 3.17–3.09 (m, 1 H), 2.66 (t, J = 9.7 Hz, 1 H), 2.44 (s, 3 H), 0.90 (s, 9 H), 0.13 (s, 6 H) ppm; ⁻¹³C NMR (151 MHz, CDCl₃): $\delta = 147.87$, 143.62, 143.54, 132.71, 129.67, 127.79, 108.28, 107.74, 54.03, 51.78, 42.52, 25.60, 21.54, 18.33, -5.30, -5.31 ppm; HRMS (m/z): [M + H]⁺ calcd for C₂₀H₃₂NO₃SSi⁺ 394.1867, found 394.1868.

4a: 13.8 mg, 85 %, > 98 % ee (Mosher ester^[2] analysis, see ¹H NMR spectrum). $R_f = 0.26$ (silica, **b** EtOAc:hexanes 1:1); $[\alpha]_D^{30} = -28.9$ (c = 0.45 in CHCl₃); IR (film): $v_{max} = 2933$, 1718, 1386, 1325, 1264, 1217, 1148, 1108, 1048, 961, 897, 822, 789, 749, 701, 659 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 9.83-9.81$ (m, 1 H), 5.09 (dd, J = 4.2, 2.0 Hz, 1 H), 5.00 (dd, J = 4.4, 2.1 Hz, 1 H), 4.00 (dd, J = 3.6, 2.1 Hz, 2 H), 3.74 (dd, J = 9.8, 7.5 Hz, 1 H), 3.31–3.22 (m, 1 H), 3.06 (dd, J = 9.8, 7.0 Hz, 1 H), 2.86 (s, 3 H), 2.86–2.80 (m, 1 H), 2.67 (ddd, J = 18.5, 8.4, 0.9 Hz, 1 H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 199.73$, 146.79, 108.05, 53.24, 51.86, 46.59, 37.30, 35.22

5a: 15.6 mg, 75 %, 98 % ee (Mosher ester^[2] analysis, see ¹⁹F NMR spectrum). $R_f = 0.40$ (silica, **Figure 15.6** mg, 75 %, 98 % ee (Mosher ester^[2] analysis, see ¹⁹F NMR spectrum). $R_f = 0.40$ (silica, **EtOAc:**hexanes 3:2); $[\alpha]_{10}^{20} = -29.0$ (c = 0.10 in CHCl₃); IR (film): $v_{max} = 3275$, 2923, **2850**, 1721, 1692, 1662, 1610, 1513, 1458, 1442, 1246, 1176, 1110, 1092, 1032, 800 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 9.81$ (s, 1 H), 7.19 (d, J = 8.5 Hz, 2 H), 6.87 (d, J = 8.6 Hz, 2 H), 5.03–5.01 (m, 1 H), 4.98–4.95 (m, 1 H), 4.47 (dd, J = 34.5, 14.6 Hz, 2 H), 3.93–3.82

ppm; HRMS (m/z): $[M + Na]^+$ calcd for C₈H₁₃NNaO₃S⁺ 226.0508, found 226.0501.

(m, 2 H), 3.80 (s, 3 H), 3.55–3.47 (m, 1 H), 3.10–3.03 (m, 1 H), 2.93 (dd, J = 18.4, 6.5 Hz, 1 H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 199.50$, 173.39, 159.19, 141.18, 129.58, 127.89, 114.12, 108.95, 55.30, 51.09, 45.93, 44.53, 41.11 ppm; HRMS (m/z): $[M + H]^+$ calcd for C₁₅H₁₈NO₃⁺ 260.1281, found 260.1269.

6a: 16.3 mg, 89 %, 93 % ee (chiral HPLC analysis of the corresponding ethylene glycol acetal, OD-H column, see graph). $R_f = 0.38$ (silica, EtOAc:hexanes 3:2); $[α]_{p}^{30} = -68.9$ (c = 0.35 in CHCl₃); IR (film): $v_{max} = 2923$, 2853, 1720, 1685, 1656, 1494, 1440, 1358, 1314, 1198, 1080, 1030, 930, 808, 748, 701 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 9.78$ (s, 1 H), 7.35–7.27 (m, 3 H), 7.26–7.22 (m, 2 H), 6.11 (d, J = 2.8 Hz, 1 H), 5.34 (d, J = 2.4 Hz, 1 H), 4.54 (s, 2 H), 3.60 (dd, J = 10.3, 8.3 Hz, 1 H), 3.39–3.33 (m, 1 H), 2.91–2.82 (m, 2 H), 2.63 (dd, J = 18.7, 9.3 Hz, 1 H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 199.73$, 167.00, 142.95, 135.93, 128.77, 128.30, 127.77, 116.25, 50.11, 49.00, 47.09, 29.84 ppm; HRMS (m/z): [M + H]⁺ calcd for C₁₄H₁₆NO₂⁺ 230.1175, found 230.1174.

7a: 15.0 mg, 78 %, 97 % ee (Mosher ester^[2] analysis, see ¹⁹F NMR spectrum). $R_f = 0.34$ (silica, MeO₂C CO₂Me EtOAc:hexanes 3:7); $[\alpha]_D^{20} = -45.6$ (c = 0.75 in CHCl₃); IR (film): $v_{max} = 2992$, 2956, 2840, 2724, 1730, 1658, 1435, 1255, 1199, 1162, 1071, 1031, 890 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 9.80$ (s, 1 H), 5.01–4.98 (m, 1 H), 4.82–4.78 (m, 1 H), 3.74 (s, 3 H), 3.72 (s, 3 H), 3.14–2.92 (m, 3 H), 2.72 (ddd, J = 21.2, 15.6, 6.7 Hz, 2 H), 2.52 (dd, J = 17.3, 8.0 Hz, 1 H), 1.88 (dd, J = 13.1, 10.4 Hz, 1 H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 201.09$, 171.94, 171.89, 150.40, 107.09, 58.30, 52.92, 52.86, 47.95, 40.58, 39.83, 36.44 ppm; HRMS (m/z): [M + H]⁺ calcd for C₁₂H₁₇O₅⁺ 241.1070, found 241.1068.

8a: 19.9 mg, 84 %, > 98 % ee (Mosher ester^[2] analysis, see ¹H NMR spectrum). $R_f = 0.43$ (silica, i_{PrO_2C} CO₂*i*_{Pr} EtOAc:hexanes 3:7); $[\alpha]_{10}^{20} = -49.5$ (c = 0.96 in CHCl₃); IR (film): $v_{max} = 2982, 2931,$ 1725, 1467, 1375, 1257, 1191, 1106, 893, 827 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ **8a** = 9.80 (s, 1 H), 5.08–4.99 (m, 2 H), 4.98–4.96 (m, 1 H), 4.80–4.77 (m, 1 H), 3.08– 3.04 (m, 1 H), 3.04–2.99 (m, 1 H), 2.91 (ddd, J = 16.9, 4.3, 2.1 Hz, 1 H), 2.73 (ddd, J = 17.4, 5.2, 1.6 Hz, 1 H), 2.63 (ddd, J = 12.9, 8.0, 0.7 Hz, 1 H), 2.52 (ddd, J = 17.4, 8.3, 1.8 Hz, 1H), 1.84 (dd, J = 13.1, 10.1 Hz, 1 H), 1.25–1.20 (m, 12 H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 201.27$, 171.01, 170.99, 150.82, 106.76, 69.01, 68.98, 58.41, 47.96, 40.39, 39.61, 36.49, 21.50 ppm; HRMS (m/z): [M + H]⁺ calcd for C₁₆H₂₅O₅⁺ 297.1696, found 297.1695.

9a: 29.8 mg, 92 %, 87 % ee (Mosher ester^[2] analysis, see ¹⁹F NMR spectrum). $R_f = 0.54$ (silica, PhO₂S, SO₂Ph EtOAc:hexanes 1:1); $[\alpha]_{10}^{20} = -29.1$ (c = 0.95 in CHCl₃); IR (film): $v_{max} = 3066$, 1719, 1663, 1583, 1478, 1447, 1426, 1326, 1308, 1215, 1141, 1075, 1024, 998, 895, 750, **9a** 730, 718, 685, 666 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 9.78$ (s, 1 H), 8.13–7.98 (m, 4 H), 7.75–7.71 (m, 2 H), 7.64–7.58 (m, 4 H), 4.93–4.89 (d, J = 2.1 Hz, 1 H), 4.77–4.73 (m, 1 H), 3.29 (s, 2 H), 3.24–3.14 (m, 1 H), 2.94 (dd, J = 15.1, 8.6 Hz, 1 H), 2.80 (dd, J = 18.1, 4.7 Hz, 1 H), 2.57 (dd, J = 18.1, 8.7 Hz, 1 H), 2.31 (dd, J = 15.1, 10.0 Hz, 1 H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta =$ 200.13, 148.07, 136.40, 135.81, 134.79, 134.70, 131.27, 131.15, 128.84, 128.77, 107.53, 91.14, 47.48, 38.13, 37.18, 36.85 ppm; HRMS (m/z): $[M + H]^+$ calcd for C₂₀H₂₁O₅S₂⁺ 405.0825, found 405.0818.

10a: 18.7 mg, 85 %, > 98 % ee (Mosher ester^[2] analysis, see ¹⁹F NMR spectrum). $R_f = 0.64$ (silica,

EtOAc:hexanes 1:3); $[\alpha]_{D}^{20} = -21.7$ (c = 0.86 in CHCl₃); IR (film): $v_{max} = 3065$, 2916, 2721, 1721, 1654, 1476, 1447, 1308, 1219, 1155, 1101, 1031, 1008, 935, 885, 759, 732, 666 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 9.88$ (t, J = 1.7 Hz, 1 H), 7.75–7.68 (m, 2 H), 7.50 (d, J = 7.5 Hz, 1 H), 7.45–7.41 (m, 1 H), 7.39–7.25 (m, 4 H), 5.16

(dd, J = 4.1, 2.2 Hz, 1 H), 5.08 (dd, J = 4.3, 2.3 Hz, 1 H), 3.65–3.55 (m, 1 H), 3.07 (ddd, J = 16.2, 4.9, 2.4 Hz, 1 H), 2.98 (ddd, J = 17.2, 5.1, 1.7 Hz, 1 H), 2.79–2.73 (m, 1 H), 2.73–2.64 (m, 1 H), 2.27 (ddd, J = 13.0, 8.2, 1.4 Hz, 1 H), 2.08 (dd, J = 13.0, 10.7 Hz, 1 H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 201.55$, 154.33, 152.81, 150.99, 140.02, 139.42, 127.62, 127.58, 127.38, 127.31, 123.22, 122.66, 119.92, 119.86, 107.52, 55.61, 49.55, 45.86, 45.18, 37.87 ppm; GC/MS (m/z): [M]⁺ calcd for C₂₀H₁₈O⁺ 274, found 274.

11a: 20.7 mg, 92 %, > 99 % ee (chiral HPLC analysis of the corresponding ethylene glycol acetal, OD-

H column, see graph). $R_f = 0.09$ (silica, EtOAc:hexanes 3:7); $[\alpha]_{10}^{30} = -95.0$ (c = 0.28in CHCl₃); IR (film): $\nu_{max} = 3073$, 2916, 2850, 2724, 1720, 1662, 1623, 1407, 1256, 1183, 1016, 860 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 9.82$ (s, 1 H), 6.96 (dd, J = 10.1, 3.0 Hz, 1 H), 6.78 (dd, J = 9.9, 3.0 Hz, 1H), 6.33–6.23 (m, 2 H), 6.11 (dd, J = 5.0, 2.4 Hz, 1 H), 3.39–3.32 (m, 1 H), 2.90 (dd, J = 18.3, 5.3 Hz, 1 H), 2.70 (dd, J = 17.9, 7.0 Hz, 1 H), 2.67–2.59 (m, 2 H), 2.21 (ddd, J = 12.8, 7.4, 1.5 Hz, 1 H), 1.80 (dd, J = 12.7, 11.4 Hz, 1 H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 199.64, 185.64, 153.59, 151.14, 148.14, 129.31, 127.88, 101.25, 48.61, 46.17, 44.58, 44.13, 37.02 ppm; HRMS (<math>m/z$): [M + H]⁺ calcd for C₁₃H₁₄BrO₂⁺ 280.0172, found 280.0172.

12a: 22.2 mg, 93 %, > 98 % ee (Mosher ester^[2] analysis, see ¹H NMR spectrum). $R_f = 0.36$ (silica, **Ts** EtOAc:hexanes 1:4); $[\alpha]_{10}^{30} = -31.1$ (c = 1.13 in CHCl₃); IR (film): $v_{max} = 2920$, 2855, 1665, 1597, 1494, 1450, 1380, 1345, 1306, 1290, 1215, 1159, 1093, 1049, 1017, 997, Me **12a** 965, 896, 813, 708, 661 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.70$ (d, J = 8.3 Hz, 2 H), 7.33 (d, J = 7.9 Hz, 2 H), 5.52 (dqd, J = 15.1, 6.5, 0.7 Hz, 1 H), 5.10 (dddd, J = 15.2, 8.2, 3.2, 1.6 Hz, 1 H), 4.95–4.92 (m, 1 H), 4.85–4.82 (m, 1 H), 3.99 (ddd, J = 14.1, 3.4, 2.2 Hz, 1H), 3.69 (ddd, J =14.1, 4.1, 2.0 Hz, 1H), 3.59 (dd, J = 9.4, 7.9 Hz, 1H), 3.22–3.14 (m, 1 H), 2.79 (t, J = 9.3 Hz, 1H), 2.44 (s, 3H), 1.65 (dd, J = 6.5, 1.6 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 147.39$, 143.62, 132.76, 129.67, 129.16, 128.24, 127.81, 107.80, 53.52, 51.86, 46.76, 21.55, 17.88 ppm; HRMS (m/z): [M + H]⁺ calcd for C₁₅H₂₀NO₂S⁺ 278.1209, found 278.1207.

13a: 27.0 mg, 83 %, 94 % ee (chiral HPLC analysis of the corresponding *p*-bromobenzoate ester,^[2] OD-Ts H column, see graph). $R_f = 0.50$ (silica, EtOAc:hexanes 1:1); $[\alpha]_{10}^{20} = -65.9$ (c = 0.39in CHCl₃); IR (film): $v_{max} = 2923$, 2850, 1781, 1719, 1663, 1597, 1468, 1383, 1346, **13a** 1306, 1162, 1094, 1048, 957, 884, 816, 716, 663 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.89-7.84$ (m, 2 H), 7.77-7.74 (m, 2 H), 7.72 (d, J = 8.2 Hz, 2 H), 7.35 (d, J = 8.0 Hz, 2 H), 6.69 (d, J = 14.6 Hz, 1 H), 6.32 (dd, J = 14.7, 9.0 Hz, 1 H), 5.04–5.01 (m, 1 H), 4.94–4.91 (m, 1 H), 4.11–4.05 (m, 1 H), 3.76–3.70 (m, 2 H), 3.35–3.28 (m, 1 H), 2.88 (t, J = 9.5 Hz, 1 H), 2.44 (s, 3 H) ppm; ¹³C NMR (151 MHz, CDCl₃): $\delta = 166.30$, 146.47, 143.83, 134.58, 132.52, 131.48, 129.79, 127.83, 123.68, 120.41, 118.15, 108.94, 53.63, 51.88, 45.69, 21.55 ppm; HRMS (m/z): [M + Na]⁺ calcd for C₂₂H₂₀N₂NaO₄S⁺ 431.1036, found 431.1034.

Conversion of diene 12a to the corresponding Mosher ester. To a stirred solution of diene **12a** (5.5 mg, 0.02 mmol) and NMO (2.8 mg, 0.024 mmol) in acetone/water (4:1, 0.5 mL) was added K₂OsO₄•2H₂O (1.5 mg, 0.004 mmol) at 23 °C. The resulting mixture was stirred at that temperature for 4 h before it was quenched with saturated aq. Na₂S₂O₄ solution (2 mL). The mixture was extracted with EtOAc (5 × 2 mL), and the combined organic phase was dried over MgSO₄. After filtration and evaporation of the solvent, the residue was dissolved in EtOH/water (1:1, 0.5 mL). To the resulting solution was added NaIO₄ (12.8 mg, 0.06 mmol) in one portion at 0 °C. The reaction mixture was stirred at that temperature for 5 min before it was quenched with saturated aq. NH₄Cl solution (2 mL). After extraction with EtOAc (5 × 2 mL), the combined organic phase was dried over MgSO₄ and filtered. The solvent was evaporated and the resulting crude alcohol was subjected to Mosher ester formation according to the general procedure.^[2]

Conversion of imide 13a to the corresponding *p***-bromobenzoate ester.** To a vial containing imide **13a** (8.2 mg, 0.02 mmol) in THF (0.3 mL) was added aq. HCl solution (3.0 M, 0.3 mL). The vial was sealed and heated at 85 °C for 5 h before the reaction was quenched with saturated aq. NaHCO₃ solution (2 mL). The resulting mixture was extracted with EtOAc (5 × 2 mL), and the combined organic phase was dried over MgSO₄. After filtration and evaporation of the solvent, the residue was dissolved in EtOH (0.5 mL). To the resulting solution was added NaBH₄ (1.1 mg, 0.03 mmol) at 0 °C and the mixture was stirred at that temperature for 15 min before it was quenched with saturated aq. NaHCO₃ solution (1 mL). The resulting mixture was extracted with EtOAc (5 × 2 mL), and the combined organic phase was dried over MgSO₄. After filtration and evaporation of the solvent, the resulting crude alcohol was subjected to *p*-bromobenzoate ester formation according to the general procedure.^[2]

p-Bromophenyl carbamate 1b: To a stirred solution of aldehyde 1a (10.0 mg, 0.0358 mmol) in ethanol (0.30 mL) at 0 °C was added NaBH₄ (2.0 mg, 0.0537 mmol). The resulting mixture was stirred at 0 °C

for 15 min before saturated aq. NaHCO₃ solution (1 mL) was slowly added. The mixture was diluted with brine (1 mL) and extracted with EtOAc (5 \times 2 mL). The combined organic phase was dried over MgSO₄ and filtered. After removal of the solvent under vacuum, the

residue was purified by column chromatography with EtOAc/hexanes (2:1), giving the corresponding alcohol as a colorless oil. To a stirred solution of this alcohol in CH₂Cl₂ (0.20 mL) at 0 °C was sequentially added Et₃N (3.5 mg, 0.0346 mmol) and *p*-bromophenyl isocyanate (6.8 mg, 0.0343 mmol), and the resulting mixture was stirred for 1 h at 0 °C before it was quenched with saturated aq. NaHCO₃ solution (1.0 mL). The resulting mixture was extracted with EtOAc (5 \times 2 mL), and the combined organic phase was dried over MgSO₄. After filtration and evaporation of the solvent, the residue was purified by flash column chromatography with EtOAc/hexanes (1:3), giving carbamate **1b** as a white amorphous solid (12.4 mg, 72 % overall). **1b**: $R_f = 0.23$ (silica, EtOAc:hexanes 3:7); $[\alpha]_p^{20} = -30.2$ (c =0.42 in CHCl₃); IR (film): v_{max} = 3340, 2956, 2924, 2850, 1731, 1594, 1532, 1491, 1400, 1342, 1307, 1219, 1160, 1094, 1075, 1008, 898, 817, 768, 708, 664 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 7.69$ (d, J = 8.1 Hz, 2 H), 7.42 (d, J = 8.8 Hz, 2 H), 7.34–7.28 (d, J = 8.2 Hz, 4 H), 6.82–6.69 (br, 1 H), 4.98 (d, J = 8.2 Hz, 4 H), 4.98 (d, J = 8.2 Hz, 4 H), 4.98 (d, J = 8.2 Hz, 4.88 (d, J = 8.2 Hz, 4.88 (d, J = 8.2 Hz, 4.88 (d, J = 8.2 Hz, = 1.9 Hz, 1 H), 4.92 (d, J = 2.1 Hz, 1 H), 4.22-4.14 (m, 2 H), 3.88-3.76 (m, 2 H), 3.45 (dd, J = 9.4, 7.3Hz, 1 H), 3.03 (dd, J = 9.2, 6.3 Hz, 1 H), 2.78-2.69 (m, 1 H), 2.42 (s, 3 H), 1.93 (dt, J = 20.9, 6.2 Hz, 1 H)H), 1.67 (ddt, J = 14.7, 8.6, 6.1 Hz, 2 H) ppm: ¹³C NMR (151 MHz, CDCl₃); $\delta = 153.09$, 146.99, 143.79, 136.90, 132.55, 132.01, 129.73, 127.77, 120.15, 116.00, 107.56, 63.14, 53.22, 51.83, 40.15, 31.45, 21.55 ppm; HRMS (m/z): $[M + H]^+$ calcd for C₂₁H₂₄BrN₂O₄S 479.0635, found 479.0630.

Enone 15: To a stirred solution of β -ethoxy enone **14** (3.80 g, 10.48 mmol) in THF (30 mL) was added DIBAL-H (12.0 mL, 1.0 M in hexanes) at -78 °C. The resulting solution was warmed up to -20 °C over a period of 30 min before aq. HCl solution (2.0 M, 30 mL) was slowly added. The mixture was stirred at 0 °C for 30 min and then quickly extracted with EtOAc (3 × 50 mL). The combined organic

phase was washed with saturated aq. NaHCO₃ solution (2 \times 20 mL) and dried over MgSO₄. After

filtration and evaporation of the solvent, the residue was purified by flash column chromatography with EtOAc/hexanes (1:8–1:4), giving enone **15** as a pale yellow oil (2.94 g, 88 %). **15**: $R_f = 0.41$ (silica, EtOAc:hexanes 3:7); IR (film): $v_{max} = 3310, 2953,$ 2929, 2856, 1680, 1471, 1463, 1388, 1361, 1252, 1168, 1081, 1005, 938, 834, 774, 663 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 6.80$ (d, J = 10.2 Hz, 1 H), 6.01 (d, J = 10.2 Hz, 1 H), 5.79– 5.72 (m, 1 H), 5.49–5.42 (m, 1 H), 4.26 (dd, J = 6.2, 1.0 Hz, 2 H), 2.49–2.45 (m, 2H), 2.44–2.30 (m, 4H), 2.09 (t, J = 2.6 Hz, 1 H), 2.06–1.96 (m, 2 H), 0.92 (s, 9 H), 0.09 (s, 6 H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 198.68, 155.34, 133.85, 129.13, 124.32, 80.07, 71.50, 59.23, 38.72, 35.08, 33.85, 31.12,$ 27.72, 25.90, 18.31, -5.17 ppm; HRMS (<math>m/z): [M + H]⁺ calcd for C₁₉H₃₁O₂Si⁺ 319.2088, found 319.2086.

Bis-enone alcohol 16: To a stirred solution of enone 15 (2.94 g, 9.23 mmol) and Et₃N (1.40 g, 13.85

mmol) in CH₂Cl₂ (20 mL) was slowly added TMSOTf (2.27 g, 10.2 mmol) at 0 °C. After stirring for 30 min at that temperature, the reaction mixture was quenched with saturated aq. NaHCO₃ solution (100 mL). The resulting mixture was extracted with ether (3×100

 $_{16}$ ^{|||} mL) and the combined organic phase was washed with brine (50 mL) and dried over MgSO₄. After filtration and evaporation of the solvent, a solution of IBX (3.07 g, 11.0 mmol) and MPO (1.38 g, 11.0 mmol) in DMSO (18 mL) was slowly added to the residue, and the mixture was stirred for 1 h at 23 °C before it was quenched with saturated aq. NaHCO₃ solution (100 mL). The resulting mixture was extracted with EtOAc (3 × 100 mL). The combined organic phase was dried over MgSO₄ and filtered. After removal of the solvent under vacuum, the residue was purified by flash column chromatography with EtOAc/hexanes (1:6–1:3), giving the TBS bis-enone as a pale yellow oil. This compound was dissolved in THF (20 mL), and to this solution was added aq. HCl solution (1.0 M, 20 mL) at 0 °C. The resulting mixture was vigorously stirred at 0 °C for 1 h before it was quenched with saturated aq. NaHCO₃ solution (30 mL). After extraction with EtOAc (3 × 50 mL), the combined organic phase was dried over MgSO₄, filtered, and evaporated under vacuum. The residue was purified

by flash column chromatography with EtOAc/hexanes (1:1), giving enone alcohol **16** as a colorless oil (1.27 g, 68 % over three steps). **16**: $R_f = 0.11$ (silica, EtOAc:hexanes 1:1); IR (film): $v_{max} = 3417$, 3920, 3019, 2908, 2860, 1658, 1619, 1429, 1405, 1262, 1176, 1102, 1013, 858, 769, 728, 708 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 6.87-6.79$ (m, 2 H), 6.34–6.27 (m, 2 H), 5.73–5.65 (m, 1 H), 5.32–5.24 (m, 1 H), 4.18–4.10 (m, 2 H), 2.54–2.49 (m, 2 H), 2.43 (d, J = 2.7 Hz, 2 H), 2.12 (t, J = 2.7 Hz, 1 H), 2.11 (br, 1 H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 185.75$, 152.23, 132.68, 130.16, 124.94, 78.50, 72.37, 58.13, 43.96, 35.07, 28.20 ppm; HRMS (m/z): [M + H]⁺ calcd for C₁₃H₁₄NaO₂⁺ 225.0886, found 225.0893.

Bis-enone aldehyde 17: To a flame-dried flask containing enyne 16 (1.27 g, 6.28 mmol) under argon

was quickly added [Rh((*S*)-BINAP)]SbF₆ solution prepared freshly as described above (7.85 mL, 0.04 M in DCE). The resulting solution was stirred under argon at 23 °C for 12 h before the solvent was removed under vacuum. The residue was purified by flash column chromatography with EtOAc/hexanes (1:2), giving bis-enone aldehyde **17** as a pale yellow oil (1.09 g, 86 %, > 99 % ee, chiral HPLC analysis of the corresponding ethylene glycol acetal, OD-H column, see graph). **17**: $R_f = 0.31$ (silica, EtOAc/hexane 1:1); $[\alpha]_{0}^{\infty} = -68.4$ (c = 0.75 in CHCl₃); IR (film): $v_{max} = 2831$, 2725, 1718, 1657, 1621, 1406, 1284, 1259, 1180, 1090, 1059, 1023, 888, 858, 706 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 9.83$ (t, J = 1.3 Hz, 1 H), 6.98–6.95 (m, 1 H), 6.79–6.76 (m, 1 H), 6.27–6.23 (m, 2 H), 5.11–5.09 (m, 1 H), 4.99–4.97 (m, 1 H), 3.31–3.23 (m, 1 H), 2.85 (ddd, J = 17.9, 4.9, 1.2 Hz, 1 H), 2.68 (dq, J = 16.0, 2.4 Hz, 1 H), 2.64 (ddd, J = 17.8, 8.3, 1.4 Hz, 1 H), 2.47 (dd, J = 16.0, 1.6 Hz, 1 H), 2.15 (ddd, J = 13.0, 8.0, 1.6 Hz, 1 H), 1.69 (dd, J = 13.0, 10.3 Hz, 1 H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 200.5$, 185.8, 154.2, 152.1, 151.2, 128.7, 127.7, 108.5, 49.2, 46.8, 44.4, 43.7, 36.2 ppm; HRMS (m/z): [M + H]⁺ calcd for C₁₃H₁₅O₂ [M + H]⁺: 203.1067; found 203.1067.

References

 P. A. Wender, L. J. Haustedt, J. A. Love, T. J. Williams, J. Y. Yoon, J. Am. Chem. Soc. 2006, 128, 6302–6303. [2] General procedure for the preparation of Mosher esters: To a stirred solution of the alcohol (0.02 mmol) derived from the corresponding aldehyde in CH₂Cl₂ (0.20 mL) at 0 °C was sequentially added DMAP (0.2 mg, 0.002 mmol), Et₃N (4.0 mg, 0.04 mmol) and Mosher acid chloride (7.6 mg, 0.03 mmol). After stirring at 0 °C for 30 min, the reaction mixture was directly purified by flash column chromatography with EtOAc/hexanes (1:6–1:3). Longer reaction times (i. e. 1 h) had no effect on the *de* value of the resulting Mosher ester, confirming that there was no kinetic resolution of the 30 min period. *p*-Bromobenzoate esters were also prepared in this procedure using *p*-bromobenzoyl chloride as acylating reagent.

¹H and ¹³C NMR spectra

HPLC Traces. Racemic and optically active *p*-bromobenzoate esters (Table 2, entries 1 and 2) or ethylene glycol acetals (Table 2, entries 6 and 11, and compound **15**) were analyzed with chiral HPLC (OD-H column, 1 mL/min) to determine retention time and enantiomeric excesses.

¹⁹**F** and ¹**H** NMR spectroscopic analysis. For entries 3–5 and 7–10 in Table 2, enantiomeric excesses were determined by ¹⁹F or ¹H NMR spectroscopic analysis of the Mosher esters derived from corresponding racemic and optically active aldehydes.

Entry 4

Entry 8

