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ABSTRACT Common acute lymphoblastic leukemia anti-
gen (CALLA) is a 100-kDa cell-surface glycoprotein expressed
on most acute lymphoblastic leukemias and certain other
immature lymphoid malignancies and on normal lymphoid
progenitors. The latter are either uncommitted to B- or T-cell
lineage or committed to only the earliest stages of IJ- or
T-lymphocyte maturation. To elucidate the primary structure
of CALLA, we purified the protein to homogeneity, obtained
the NH2-terminal sequence from both the intact protein and
derived tryptic and V8 protease peptides and isolated CALLA
cDNAs from a Nalm46 cell line AgtlO library using redundant
oligonucleotide probes. The CALLA cDNA sequence predicts
a 750-amino acid integral membrane protein with a single
24-amino acid hydrophobic segment that could function as both
a transmembrane region and a signal peptide. The COOH-
terminal 700 amino acids, including six potential N-linked
glycosylation sites compose the extracellular protein segment,
whereas the 25 NH2-terminal amino acids remaing after
cleavage of the initiation methionine form the cytoplasmic taih
CALLA+ cells contain CALLA transcripts of 2.7 to 5.7
kilobases with the major 5.7- and 3.7-kilobase mRNAs being
preferentially expressed in specific cell types.

Common acute lymphoblastic leukemia antigen (CALLA)
was identified by heteroantisera and then by monoclonal
antibodies (mAbs) as a 100-kDa cell-surface glycoprotein on
most acute lymphoblastic leukemias (1, 2). Additional lym-
phoid malignancies including lymphoblastic, Burkitt, and
nodular poorly differentiated lymphocytic lymphomas as
well as chronic myelogenous leukemias in lymphoid blast
crisis express CALLA (3). In contrast, acute myelogenous
leukemias and mature B- and T-cell lymphomas lack the
antigen (3).

Originally thought to be a tumor-specific antigen, CALLA
was later identified on early lymphoid progenitor cells within
bone marrow and fetal liver (3-5). These CALLA + cells have
phenotypic markers ofa population either uncommitted to B-
or T-cell lineage or committed to only the earliest stages of
B-cell differentiation. CALLA is also expressed on fetal and
pediatric thymocytes with the structural and phenotypic
markers ofvery early T-cell precursors (3, 6, 7). The selective
expression ofCALLA in lymphoid malignancies is thought to
reflect the restricted expression of the antigen during the
earliest stages of normal lymphoid differentiation.
Although antibodies against CALLA are used extensively

in diagnosis and therapy of lymphoid malignancies (3, 8), the
primary structure and function of CALLA remain unknown.
To further define this important cell-surface structure in
molecular terms, we obtained amino acid sequence from the

purified CALLA protein and isolated the full-length CALLA
cDNA.11

MATERIALS AND METHODS
Immunoprecipitation, Protein Purification, and Microse-

quencing. Nalm-6 cells (3 x 107) were radioiodinated using
lactoperoxidase and lysed in radioimmunoprecipitation assay
(RIPA) buffer (9) containing 1% Triton X-100 (TX-100), 0.15
M NaCl, 1 mM phenylmethylsulfonyl fluoride, 80 mM io-
doacetamide, trypsin inhibitor at 0.02 /ug/ml, and chymo-
statin, leupeptin, pepstatin, and antipain each at 0.5 ;Lg/ml.
Ultracentr'fuged lysates were precleared sequentially with
preimmune rabbit immunoglobulin and mouse mAb anti-,f2
microglobulin coupled to protein A-Sepharose CL-4B, and
CALLA was immunoprecipitated with the mouse mAb J5 (3)
coupled to protein A-Sepharose. The anti-CALLA beads
were washed with (i) 10 mM Tris, pH 8/0.15 M NaCi
(Tris-buffered saline, TBS)/1% deoxycholate, (ii) TBS/1%
deoxycholate/0.05%o NaDodSO4, and (iii) TBS/1% Nonidet
P-40. Bound CALLA was eluted with NaDodSO4 sample
buffer containing 5% (vol/vol) 2-mercaptoethanol. Endogly-
cosidase-F treatment was accomplished as described (10),
and aliquots of samples were analyzed with and without
enzyme treatment on 10%o NaDodSO4/PAGE.
For preparative isolation of the CALLA protein, 101

Nalm-6 cells were lysed for 1 hr at 40C in 400 ml of lysis
buffer. Affinity purification of CALLA was completed as
described (10) with mAb J5. Purified CALLA protein was
then analyzed for NH2-terminal sequence on a gas-phase
protein sequenator (Applied Biosystems, Foster City, CA;
model 470A equipped with an on-line 120A phenylthiohy-
dantoin analyzer using program 03RPTH).

Protein Fragmentation. Four hundred picomoles of elec-
troeluted CALLA in 50 mM NH4HCO3/0.1% NaDodSO4
was mixed with V8 protease (Boehringer Mannheim) to give
a protein/enzyme ratio of 5:1. After incubation at 370C for 1
hr and then at 220C for 16 hr, the sample was made 0.1% in
trifluoroacetic acid and applied to a reverse-phase C18 HPLC
column to separate fragments as described below.
One nanomole of electroeluted CALLA was made 0.1 M

Tris-HCI, pH 8/20 mM dithiothreitol/2%o (wt/vol) NaDod-
S04 and adjusted 60 min later to 50 mM in iodoacetic acid.
The reduced S-carboxymethylated preparation was then
precipitated by addition of 9 vol of ethanol at - 20'C for 16
hr, dissolved in 0.1 M Tris-HCI, pH 8/2 mM CaCI2, mixed
with tosylphenylalanine chloromethyl ketone-treated (TPCK)
trypsin (Cooper) to give a protein/enzyme ratio of 50:1, and

Abbreviations: CALLA, common acute lymphoblastic leukemia
antigen; mAb, monoclonal antibody; TBS, Tris-buffered saline.
§Deceased, January 24, 1988.
IThe sequence reported in this paper is being deposited in the
EMBL/GenBank data base (Intelligenetics, Mountain View, CA,
and Eur. Mol. Biol. Lab., Heidelberg) (accession no. J03779).
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incubated for 16 hr at 370C. After addition of trifluoroacetic
acid to 0.1% and microcentrifuging, the supernatant was
subjected to reverse-phase HPLC (Vydak, TP54, 4.6 mm x
25 cm, 5-trm C18) at 1 ml/min, eluting in 0.1% trifluoroacetic
acid, using a HP1090 chromatograph equipped with a diode-
array detector (Hewlett-Packard). A 0-50%o acetonitrile
gradient over 50 min was produced, and elution fractions of
1 ml were collected. Selected fractions were further HPLC-
purified using an acetonitrile gradient of 25-45% over 15 min
with aflow rate of 1 ml/min and collection of0.5-ml fractions.
V8 protease fragments and tryptic peptides were then ana-
lyzed for NH2-terminal sequence.
cDNA Library Construction and Screening and DNA Se-

quencing. Nalm-6 cell line RNA was selected with oligo(dT)
twice and used to construct a AgtlO cDNA library (11, 12).
Redundant oligonucleotide probes were synthesized on an
Applied Biosystems model 381A DNA synthesizer, labeled at
their 5' ends, and used to screen the Nalm-6 cDNA library.
Filters were hybridized with the appropriate oligonucleotide
probe for 16 hr in 6 x standard saline citrate (SSC) (1 x SSC
= 0.15 M sodium chloride/0.015 M sodium citrate, pH 7)/5 x
Denhardt's solution (1 x Denhardt's solution = 0.02% poly-
vinylpyrrolidone/0.02% Ficoll/0.02% bovine serum albumin)/
single-stranded DNA at 10 ,ug/ml/0.1% NaDodSO4/0.05%
NaPiPO4 and washed in 6 x SSC/0.1% NaDodSO4. Hybrid-
ization and final wash temperatures were 44°C and 48°C for
oligonucleotide 1, 26°C and 30°C for oligonucleotide 2, and
38°C and 42°C for oligonucleotide 3.

Individual EcoRI inserts from clones 1.1 and 1.2 were
subcloned into the M13 vector mpl8 for sequencing by the
Sanger dideoxy chain-termination method (13); the universal
M13 primer and sequence-specific oligonucleotide primers
were used. Bgl II/HindIII fragments from clone 1.2 were also
subcloned into mpl8 and sequenced to confirm the orienta-
tion and positions of individual EcoRI fragments. Clones 2.1,
2.2, 2.3, and 3.1 were subcloned and sequenced as above. All
sequences were determined in both directions.
RNA Analysis. RNA samples were prepared and analyzed

by blotting (14). Filters were hybridized with a 32P-labeled
1587-bp EcoRI CALLA cDNA fragment, which includes bp
541-2227 (Fig. 2C). Filters were washed in 2 x SSC/0.1%
NaDodSO4/PAGE at 25°C for 30 min and 65°C for 30 min and
then in 0.2 x SSC/0.1% NaDodSO4 at 65°C for 60 min. Cell
lines used included Nalm-6, Raji, MOLT-4, HSB, Jurkat, and
J77 (from laboratory stocks) and HB-100, CCL-227, and
G-361 (gifts from L. B. Chen and M. Wick, Dana-Farber
Cancer Institute).

RESULTS AND DISCUSSION
Biochemical Characterization, Purification, and Microse-

quencing of the CALLA Protein. To isolate CALLA protein,
we used the Nalm-6 line as a cellular source in conjunction
with the anti-CALLA mAb J5 (2). The Nalm-6 cell line was
originally derived from a patient with chronic myelogenous
leukemia in lymphoid blast crisis and expresses high levels of
surface CALLA (15). Fig. LA (lane a) shows that mAb J5
immunoprecipitates a structure of 97- to 100-kDa from
125I-surface-labeled Nalm-6 cells. After digestion with en-
doglycosidase F, molecular mass of CALLA decreases by
=10 kDa, indicating at least 10% of the molecular mass of
CALLA results from N-linked carbohydrates (Fig. 1A, lane
b and ref. 16). Two-dimensional electrophoresis shows
CALLA protein to migrate as a single polypeptide exhibiting
limited microheterogeneity (data not shown and ref. 16).
Purified CALLA was obtained by passing detergent lysates
from 1011 Nalm-6 cells over an immunoaffinity column
followed by preparative NaDodSO4/PAGE as described
(10). Silver staining of an aliquot of the purified CALLA
protein on NaDodSO4/PAGE indicates the purity of sample
preparations (Fig. 1A, lane c).
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FIG. 1. (A) Analysis ofpurifiedCALLA and V8 protease-derived
fragments. Surface-radioiodinated CALLA was immunoprecipitated
with mAb J5 and analyzed on NaDodSO4/PAGE without (lane a) or
with (lane b) endoglycosidase-F digestion. An aliquot of NaDod-
S04/PAGE-separated CALLA and each purified V8 protease-
derived fragment (I-III) used for protein sequencing are shown after
silver staining in lanes c and d-f, respectively. (B) HPLC profile of
aCALLA tryptic digest. Roman numerals indicate peaks selected for
further purification and NH2-terminal sequencing.

Fifty picomoles of purified CALLA were subjected to
NH2-terminal sequencing. However, only a 5-pmol signal
(XXSESQ) was obtained, suggesting thatCALLA was in large
part NH2-terminally blocked to Edman degradation. There-
fore, CALLA was digested with V8 protease, and the resulting
fragments were separated by reverse-phase HPLC and exam-
ined by NaDodSO4/PAGE. Three pure V8 fragments (Fig. LA,
lanes d-f) were identified and sequenced giving the residues
indicated in Fig. 2C. Of note, V8 peptide III contains sequence
identical to that from intact CALLA protein (XXSESQMDIT-
DINTP), indicating that V8 peptide III is derived from the
partially blocked NH2 terminus. A second preparation of
CALLA was reduced, S-carboxymethylated, and digested to
completion with tosylphenylalanine chloromethyl ketone-
treated (TPCK) trypsin. Reverse-phase HPLC separation of
the resulting tryptic digest yielded at least 80 different peaks
(Fig. 1B); eight of these were selected for further HPLC
purification with an alternative gradient yielding eleven tryptic
peptides with sequences shown in Fig. 2C. Interestingly,
tryptic peptide VIII and protease V8 peptide I contain an
overlapping amino acid sequence LNYKEDEYFENIIQN.
Cleavage at the lysine residue in tryptic peptide VIII probably
did not occur because tryptic digestion at lysine residues
followed by COOH-terminal acidic amino acids is sometimes
ineffective (17).

Isolation and Sequencing of CALLA cDNAs. To isolate
cDNA clones encoding CALLA, redundant oligonucleotide
probes corresponding to amino acid sequences from the
tryptic and V8 peptides were used to screen a Nalm-6 AgtlO
cDNA library. Oligonucleotide 1 (3' TTY-CTY-CTR-CTY-
ATR-AAR-CTY-TT 5', Y = T or C, R = A or G), which
corresponds to eight amino acids in both tryptic peptide VIII
and V8-I (Fig. 2C) was used in initial screening. Positive
clones were rescreened with a second oligonucleotide (3'
TTR-TTR-CTY-ATR-RAN-CT 5', N = A, T, C, or G), which
corresponds to six amino acid residues NH2-terminal to those
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of oligonucleotide 1 (Fig. 2C). cDNA inserts from clones
containing sequences complementary to both probes were

FIG. 2. EcoRI restriction map,
nucleotide sequence, and hydropa-
thicity plot of the CALLA cDNA.

626 (A) Restriction map ofthe CALLA
cDNA clones. Independently iso-
lated overlapping CALLA cDNA
clones 1.1 and 1.2 and clones 2.1,

"2 2.2, 2.3, and 3.1 are represented.
Clones 1.1 and 2.1 begin -100bp 5'
to the initiation methionine ATG.
The open reading frame from

69 clones 1.1, 1.2 and 2.1, 2.2 is indi-
cated (thick bar). EcoRI sites

716 within individual phage inserts are
shown as small vertical bars. The

'> single large vertical bar indicates
the 5' boundary ofnucleotide iden-

' tity between clones 1.1 and 2.1. (C)
Nucleotide and predicted amino
acid sequence of the CALLA
cDNA. The nucleotide sequence
shown is a composite ofclones 1.1,
1.2, and 3.1. Position 1 (11 bp 5' to
the ATG) represents the position at
which clones 1.1 and 2.1 become
identical (see text). The translated
CALLA cDNA sequence predicts
the indicated 750 amino acid (AA)
protein with six potential N-linked
glycosylation sites (Asn-Xaa-Ser/
Thr, marked with *). The eleven
CALLA tryptic peptides (TPI, AA
396-408; TPIIA, AA 85-92;
TPIIB, AA 425-436; TPIIC, AA
159-176; TPIII, AA 68-84;
TPIVA, AA 365-372; TPIVB, AA
437-446; TPV, AA 599-613;
TPVI, AA 673-682; TPVII, AA

448-464; and TPVIII, AA 492-514)
and the three CALLA V8 peptides
(V81, AA 499-514; V811, AA

282-300; and V8III, AA 3-16)
identified by protein microse-
quencing are underlined in the
translated CALLA cDNA se-

quence. The single 24-amino acid

hydrophobic segment (amino acids

27-50) is underlined with a thick
bar. Polyadenylylation signals (AA-
TAAA) are underlined with a dot-
ted line. (B) Hydropathicity plot.
Top line shows charge distribution
for the predicted CALLA protein
sequences (up = positive, down =

negative, flat = no change). Middle
line shows hydrophobicity values
calculated by the PRSTRC algo-
rithm assigned overwindows offive
amino acids (18). Positions above
the baseline are hydrophobic. Bot-
tom line gives amino acid position
numbers (-1 is the cleaved initia-
tion methionine). The transmem-

brane segment is shaded.

further analyzed. Fragments from the clone containing the
longest cDNA insert [3537 base pairs (bp)] were subcloned
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into the m13 vector mpl8 and sequenced by the Sanger
dideoxy chain-termination method. This cDNA [clone 1.2
(Fig. 2A); bp 199-3734 (Fig. 2C)] sequence has an open
reading frame that contains all eleven tryptic peptides but
only two of the three V8 peptides determined by microse-
quencing of CALLA protein (Fig. 2 A and C). The clone
1.2-translated cDNA sequence lacks the NH2-terminal resi-
dues identified from intact CALLA protein and V8 peptide
III (Fig. 2C). An overlapping cDNA (clone 1.1) that contains
the complete NH2 terminus was identified by rescreening the
Nalm-6 cDNA library with an oligonucleotide (3' GTY-TAC-
CTR-TAD-TGN-CTR-TA 5', D = A, G, or T) corresponding
to seven amino acids from V8 peptide III (Fig. 2C). To
confirm the CALLA cDNA sequence obtained from clones
1.1 and 1.2, a second set of overlapping CALLA cDNA
clones (2.1, 2.2, and 2.3, Fig. 2A) was characterized. The
independently derived CALLA cDNA sequences from
clones 1.1 and 1.2 and from 2.1,2.2, and 2.3 are identical from
bp 1 to 3734, including 11 nucleotides of 5' untranslated
sequence. However, each clone contains an additional
unique =100 bp of 5' sequence (data not shown); this
difference could represent alternative 5' splicing. An addi-
tional overlapping clone, 3.1, was identified that corresponds
to the previously characterized clones from its 5' end (bp
2321) through bp 3733; thereafter, clone 3.1 contains an
additional 1775 bp of 3' untranslated sequence that ends in a
poly(A) tail (Fig. 2 A and C).
The complete nucleotide sequence of the CALLA cDNA

as deduced from clones 1.1, 1.2, and 3.1 contains an open
reading frame of 2250 bp (positions 12-2261) beginning with
an ATG methionine, which is preceded by an in-frame TAG
termination codon at bp 6-8. After the open reading frame,
there is a TGA termination codon at positions 2262-2264 and
3244 bp of 3' untranslated sequence ending in a poly(A) tail
at bp 5508. Canonical polyadenylylation signals (AATAAA)
are also found at positions 3088, 3371, 3792, 4406, and 5484
(Fig. 2C). Clones 1.2 and 2.3 have poly(A) sequences of 11
and 18 bp, respectively (starting at bp 3723), but do not
contain a discernible polyadenylylation signal within 50 bp 5'
of the sequence of adenines. As clone 3.1 has a sequence of
10 adenines in the same location, clones 1.2 and 2.3 probably
result from internal priming by oligo(dT) at this poly(A)
sequence in CALLA mRNA.
Primary Structure of the CALLA Protein. The translated

CALLA cDNA sequence includes 178 of the 182 amino acid
residues identified by microsequencing the intact CALLA
protein, the derived tryptic peptides, and the V8 protease
fragments (Fig. 2C), providing conclusive evidence that the
cDNA represents authentic CALLA. The CALLA cDNA
predicts a 750 amino acid protein with a polypeptide core of
85.5 kDa and six potential N-linked glycosylation sites
(Asn-Xaa-Ser or Thr) located at amino acid positions 144,
284, 310, 324, 334, and 627. The fact that endoglycosidase F
digestion decreases the molecular mass ofCALLA by only 10
kDa (Fig. LA, lane b) suggests that all potential glycosylation
sites are not used in Nalm-6 cells. The molecular mass of
CALLA after removal of N-linked sugars is consistent with
the core-protein size predicted from the CALLA cDNA
(Figs. 1 and 2).
The translated CALLA cDNA sequence has a single

hydrophobic 24 amino acid segment at positions 27-50 with
characteristics of a transmembrane region (Fig. 2B). This
hydrophobic segment is preceded by five basic residues,
suggesting that CALLA is oriented such that the NH2
terminus constitutes the cytoplasmic tail. The translated
CALLA sequence does not contain an initial hydrophobic
NH2-terminal segment that could function as a signal peptide.
In fact, comparison of the translated cDNA sequence with
that derived from the intact protein and NH2-terminal V8
fragment (V8-III) reveals that the only NH2-terminal prote-

olytic processing that occurs during CALLA synthesis re-
moves the initiation methionine (Fig. 2C). In contrast to
studies (16) suggesting that CALLA is a nonintegral mem-
brane protein, our results show CALLA to be a type-II
integral membrane protein (19) with a short (25 amino acid)
NH2-terminal cytoplasmic tail, a single 24 amino acid hydro-
phobic region that functions as an uncleaved internal signal
sequence and a transmembrane segment, and a large (700
amino acid) COOH-terminal extracellular domain. That all
six putative N-linked glycosylation sites are located in the
COOH-terminal segment agrees with this interpretation as
does the fact that CALLA can be radioiodinated on the cell
surface given that no tyrosine residues exist in the NH2-
terminal segment (Figs. 1A and 2C).

Searches of the GenBank data base (release 52.0) and data
base from the Protein Identification Resource (release 12.0)
reveal that CALLA is unrelated to known proteins and has no
significant internal duplications or previously characterized
active sites or consensus binding-site sequences. The NH2-
terminal region immediately preceding and including the
transmembrane segment ofCALLA has partial identity (14 of
31 amino acids with no gaps) with that of another type-II
membrane protein, prosucrase-isomaltase (20), raising the
interesting possibility that the dual-function transmembrane
segments of certain type-II proteins have common features.
Posttranslational cleavage of NH2-terminal methionine resi-
dues has also been described in other type-II membrane
proteins (20, 21).
RNA Analysis of CALLA: Multiple Related CALLA Tran-

scripts. RNAs from a panel of CALLA' and CALLA-
lymphoid cell lines and primary tumors were probed in RNA
analysis with a 1587-bp EcoRI fragment from the 1.2 CALLA
cDNA clone. Cell lines defined as CALLA' (by immuno-
fluorescence using mAb J5) including Nalm-6, the acute
lymphoblastic leukemia cell lines Laz 221 and MOLT-4, and
the Burkitt lymphoma cell line Raji contain two major
CALLA mRNAs, of 3.7 kb and 5.7 kb (Fig. 3A). In contrast,
CALLA - sources including three T-cell tumor lines-
Jurkat, J77 (a second Jurkat clone), and HSB, an Epstein-
Barr virus-transformed lymphoblastoid line-Laz 388, and
resting and mitogen-stimulated peripheral blood lympho-
cytes lack these transcripts (Fig. 3A). Additional low-
abundance CALLA transcripts also occur in J5 + cells. For
example, in poly(A)+ RNA from Nalm-6, low abundance
CALLA-related mRNAs of 4.5, 3.1, and 2.7 kb are also
detected by RNA blotting (Fig. 3A, lane 11). Probably the
5.7-kb transcript results from use of the downstream canon-
ical polyadenylylation site located in clone 3.1 because an
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FIG. 3. RNA blot hybridization analysis. (A) RNA analysis of
lymphoid cells. Twenty micrograms of total RNA from the following
cell types was analyzed: Nalm-6 (lane 1); Raji (lane 2); MOLT-4 (lane
3); HSB, Jurkat, and J77 (lanes 4-6); unstimulated peripheral blood
mononuclear cells (lanes 7); mitogen-triggered PBMC (lane 8); Laz
221 (lane 9); and Laz 388 (lane 10). Ten micrograms of poly(A)+
selected Nalm-6 RNA was also analyzed (lane 11). (B) RNA analysis
of nonlymphoid cells. Twenty micrograms of total RNA from the
following cell types was analyzed: HB-100 (lane 1); G361 (lane 2);
CLL-227 (lane 3); Nalm-6 (for comparison, lane 4); and granulocytes
(lane 5).
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antisense oligonucleotide derived from the 3'-untranslated
region unique to clone 3.1 (bp 4865-4903) identifies only the
larger 5.7-kb transcript. The 3.7-kb transcript probably re-
sults from use of the polyadenylylation signal at bp 3792, and
the minor mRNAs of 4.5, 3.1, and 2.7 kb from use of
polyadenylylation signals located at 4406-4411, 3371-3376,
and 3088-3093, respectively.
Anti-CALLA mAb reactivity has also been seen on normal

granulocytes, a subpopulation of bone-marrow stromal cells,
certain elements in kidney, fetal intestine, breast and some
nonlymphoid tumor cells (22-25). Except for granulocyte
CALLA protein, which peptide mapping shows to be related
to that from lymphoid cells (26), the basis of anti-CALLA
reactivity with these other nonlymphoid sources is unknown.
To determine whether CALLA transcripts from nonlymphoid
sources resemble those in lymphoid cells, total RNA was
isolated from granulocytes, a CALLA+ fibroblast strain
(HB-100) and two additional CALLA+ tumor cell lines, a
melanoma line (G-361), and a colon carcinoma line (CLL-227)
(24) and probed by RNA blot. As in Nalm-6 cells, the 3.7-kb
transcript is the major CALLA mRNA in HB-100 and CCL-
227 cells. In contrast, the 3.7- and 5.7-kb CALLA transcripts
are both abundant in G-361 cells, whereas the 5.7-kb mRNA
is the major CALLA transcript in granulocytes (Fig. 3B). This
tissue-specific differential expression of the 3.7- and 5.7-kb
CALLA transcripts in different CALLA' cell types is pres-
ently unexplained but may result from interaction of 3'-
untranslated-region regulatory elements with tissue-specific
factors (26). Therefore, we note that the CALLA 3'-untrans-
lated region contains several A + T-rich regions containing the
AT'l'A motif recently associated with instability of certain
transiently expressed mRNAs (bp 2984-3028, 3144-3181, and
4344-4362) (27). Whether these sequences mediate the stabil-
ity of CALLA mRNAs in specific cell types remains to be
determined. Nevertheless, the expression of the same major
CALLA messages in these nonlymphoid sources indicates
that mAb J5 recognizes authentic CALLA on these cells and
not another protein with a common J5 epitope. Presumably,
the small differences in sizes of lymphoid and granulocyte
CALLA proteins (95- to 100-kDa versus 95- to 110-kDa) (26)
relate to different patterns of glycosylation.

Implications. Molecular cloning of CALLA and its identifi-
cation as a type-II transmembrane glycoprotein do not allow
inference of its role in lymphoid function or differentiation.
Proteins in this class have diverse functions ranging from
receptors to membrane-bound enzymes and include the trans-
ferrin receptor, the asialoglycoprotein receptor, influenza viral
neuraminidase, y glutamyl transpeptidase, prosucrase-iso-
maltase complex, and the invariant chain of HLA (19).
That CALLA is an integral membrane protein is consistent

with previous studies showing rapid cell-surface redistribu-
tion and internalization and degradation of the CALLA-
antibody complex after specific antibody treatment of
CALLA+ cells at 37°C (22, 24, 28). Antibody-induced mod-
ulation of CALLA resembles that seen with cell-surface
receptors, such as surface immunoglobulin and T3-Ti (29,
30); this modulation also resembles the specific downregu-
lation or loss of cell-surface receptors induced by many
peptide hormones (31, 32). That CALLA has a relatively
short cytoplasmic tail argues against a direct signal-
transduction function for it.
CALLA expression appears on uncommitted TdT+ lym-

phoid progenitors and generally declines as the cells display
evidence of B-cell (cv) or T-cell (T11) commitment (5, 6),
suggesting that the antigen may function in the earliest stages
of lymphoid differentiation. That CALLA is also expressed
by a subpopulation of bone-marrow stromal cells (23) raises
the interesting possibility that CALLA participates in the

hematopoietic microenvironment necessary for early lym-
phoid maturation (possibly by means of adhesion, homing, or
motility). The molecular characterization of CALLA allows
further study of its role in normal and neoplastic lymphoid
differentiation.
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