Supporting Information (SI)

"Quantitative correlation between the protein primary sequences and secondary structures in spider silks" by J.E. Jenkins *et al.*

 ${}^{1}\text{H} \rightarrow {}^{13}\text{C}$ CP and ${}^{13}\text{C}$ DD-MAS spectra with a rapid recycle delay were collected of Ma and Mi silk in their dry and wetted state on a Varian VNMRS 400 MHz wide-bore spectrometer equipped with a 3.2 mm triple resonance probe operating in triple resonance mode $({}^{1}\text{H}/{}^{13}\text{C}/{}^{15}\text{N})$. ${}^{1}\text{H} \rightarrow {}^{13}\text{C}$ CP were collected at 5 kHz MAS matched on the Hartmann-Hahn condition with a 3.4 μ s ${}^{1}\text{H}$ pulse, a CP rf field strength of 75 kHz with a 1 ms contact time, and ~100 kHz TPPM ${}^{1}\text{H}$ decoupling. ${}^{13}\text{C}$ DD-MAS were collected at 20 kHz MAS with a 3 μ s ${}^{13}\text{C}$ pulse, a recycle delay of 1 s, and ~100 kHz TPPM ${}^{1}\text{H}$ decoupling.

Figure S1 | ¹³C DD-MAS of N. clavipes (a) Ma and (c) Mi silk in the water wetted state (blue) and dry (black). ¹³C CP-MAS of (b) Ma and (d) Mi silk in the dry state (black) and wet state (blue). The Ser C_{β} in a helical conformation is enhanced in the ¹³C DD-MAS when silk is wetted due to an increase in mobility however, this increase in mobility cause CP to be inefficient and the helical Ser C_{β} to decrease in intensity in the ¹³C CP-MAS. ¹³C DD-MAS and ¹³C CP-MAS were collected of Ma and Mi in the dry and wetted state to determine that the upfield (lower ppm) side of the broad Ser C_{β} peak is in a mobile helical conformation and the downfield (higher ppm) shoulder is from the Ser C_{β} that adopts a rigid β -sheet secondary structure.