Support The Constitution of the Constituti Miyoshi et al. 10.1073/pnas.0912407107

Optimization of Retroviral Transduction of Human Cancer Cell Lines

First, we introduced *Slc7a1* (mouse receptor gene) into human cancer cell lines with lentivirus to improve the transduction efficiency (6, 7). Second, we introduced several combinations of retroviruses into human cancer cell lines with $Slc7a1$ (summarized in [Table S1](http://www.pnas.org/cgi/data/0912407107/DCSupplemental/Supplemental_PDF#nameddest=st01)). According to the protocol summarized in Fig. 1A, eight days after transduction, cells were harvested by trypsinization and plated onto a Matrigel-coated plate (BD Biosciences, Bedford, MA) or mitomycin C-treated and provided feeder cells with mouse embryonic fibroblasts (MEF) (6, 7). The next day, the medium (DMEM with 10% FBS) was replaced with the medium suitable for the culture of ES cells, mTeSR1 medium (StemCell Technologies, Vancouver, BC), or MEF-conditioned maintenance medium. We first introduced green fluorescent protein (GFP) into cancer cell lines with amphotropic retrovirus produced in PLAT-A packaging cells. To assess the transfection efficiency, we introduced GFP or DsRed (Clontech, Palo Alto, CA) into cancer cell lines with ecotropic retrovirus produced in PLAT-E packaging cells. We manufactured a specific tool, GFP–NANOG promoter clone11, which contained a specific sequence in the promoter region for pluripotent-associated gene NANOG, and could detect the pluripotent state in a living cell on based on previous studies. GFP expressions of transfectants were visualized with all-in-one-type fluorescence microscopy (BZ-8000; Keyence, Osaka). To determine the differentiation ability of iPC cells, we transferred the embryoid body (EB)-like structures to EB culture condition as gelatin-coated plates maintained in DMEM/F12 containing 20% knockout-certified serum replacement (KSR; Invitrogen, Carlsbad, CA), 2 mM L-glutamine, 100 μM nonessential amino acids, 100 μM 2-mercaptoethanol (Invitrogen), and 0.5% penicillin and streptomycin at 37 °C under a 5% humidified $CO₂$ atmosphere.

Real-Time Reverse Transcription PCR (RT-PCR)

For quantitative assessments of PCR amplification products with various sizes, quantitative real-time RT-PCR using a LightCycler TaqMan Master Kit (Roche Diagnostics, Tokyo) for specific genes and GAPDH [\(Tables S2](http://www.pnas.org/cgi/data/0912407107/DCSupplemental/Supplemental_PDF#nameddest=st02) and [S3](http://www.pnas.org/cgi/data/0912407107/DCSupplemental/Supplemental_PDF#nameddest=st03)). The amplification protocol consisted of 35 cycles of denaturation at 95 °C for 10 s, and annealing and elongation at 60 °C for 30 s. If Universal Probe Library probe (Roche Diagnostics) was not selected with the specific primers of the target gene for PCR analysis of retroviral transgenes, quantitative real-time RT-PCR using a LightCycler FastStart DNA Master SYBR Green I kit was carried out (Roche Diagnostics). The amplification protocol consisted of denaturation at 95 °C for 10 s, annealing at 60 °C for 10 s, and elongation at 72 °C for 10 s. The products were then subjected to a temperature gradient of 55–95 °C with continuous fluorescence monitoring to produce a melting curve of the products. The expressions of mRNA copies were normalized against GAPDH mRNA expression.

Fig. S1. Immature status of gastrointestinal cancer cell lines. (A) Real-time RT-PCR analysis showed NANOG, OCT3/4, SOX2, KLF4, and LIN28 in 20 gastrointestinal cancer cell lines. The expression of NANOG mRNA is low in four cancer cell lines: DLD-1 and HCT116 (colorectal cancer), MIAPaCa-2 (pancreatic cancer), and PLC (hepatocellular carcinoma). (B) Immature status induced by combinations of several defined factors was shown by the morphology of DLD-1. (C) Real-time RT-PCR analysis of NANOG expression in cell line DLD-1 that was transfected by combinations of several defined factors. The expressions of mRNA copies were normalized against GAPDH mRNA expression.

Fig. S2. Evaluation of NANOG promoter activity NANOG promoter activity was evaluated by GFP-NANOG promoter clone11 in DLD-1, which was or was not induced. (A and B) Morphology and fluorography of GFP of DLD1-induced cells. (C and D) Morphology and fluorography of parental cells. (E–H) Morphology and fluorography of GFP of iPC cells (E and F) and those of parental cells (G and H) in HuCCT-1. (I–L) Morphology and fluorography of GFP of transfected HDF (I and J) and those of parental cells (K and L) in HDF. GFP expression of transfectants was visualized with all-in-one-type fluorescence microscopy (BZ-8000; Keyence, Osaka). Scale bars: 200 μm.) (Original magnification, ×200)

Fig. S3. In vivo analyses of proliferation assay. To determine proliferative properties in vivo, we s.c. transplanted differentiated iPC cells at several concentrations into the dorsal flanks of NOD/SCID mice. (A) Four weeks after injection, mice were killed and observed for tumor formation. (B) Significant differences of tumorigenesis between PostiPC and parental cancer cells ($n = 5$, $*$, $P < 0.01$, Wilcoxon rank test).

 Δ

Fig. S4. iPC cells from several gastrointestinal cancers. (A) Real-time RT-PCR analysis of NANOG mRNA expressions in eight iPC cells lines (colorectal cancer, DLD-1 and HT-29; esophageal cancer, TE-10; gastric cancer, MKN45; pancreatic cancers, MIAPaCa-2 and PANC-1; hepatocellular carcinoma, PLC; cholangiocellular carcinoma, HuCCT-1. Transfected HDF and NTERA-2 were used as references for NANOG expression. The expressions of NANOG mRNA copies were normalized against GAPDH mRNA expression. (B-I) iPC cells from PLC and HuCCT-1 were analyzed for surface antigens, phase contrast (B and F), Ssea-4 (C and G), Tra-1-60 (D and H), and Tra-1-81 (E and I).

V A V

)
A

Primer	Sequence 5'-3'	UPL No.	Applications
hNANOG-S	ATG CCT CAC ACG GAG ACT GT	66	NANOG RT-PCR
hNANOG-AS	AGG GCT GTC CTG AAT AAG CA		
hREX1-S	TCT GAG TAC ATG ACA GGC AAG AA	65	REX1 RT-PCR
hREX1-AS	TCT GAT AGG TCA ATG CCA GGT		
hOCT3/4-S	AGC AAA ACC CGG AGG AGT	35	OCT3/4 RT-PCR
hOCT3/4-AS	CCA CAT CGG CCT GTG TAT ATC		
hSOX2-S	CTC CGG GAC ATG ATC AGC	70	SOX2 RT-PCR
hSOX2-AS	CTG GGA CAT GTG AAG TCT GC		
hKLF4-S	ATT GGA CCC GGT GTA CATTC	66	KLF4 RT-PCR
hKLF4-AS	AGC ACG AAC TTG CCC ATC		
hc-MYC-S	CAC CAG CAG CGA CTC TGA	34	c-MYC RT-PCR
hc-MYC-AS	GAT CCA GAC TCT GAC CTT TTG C		
hGAPDH-S	AGC CAC ATC GCT CAG ACA C	60	GAPDH RT-PCR
hGAPDH-AS	GCC CAA TAC GAC CAA ATC C		
hLIN28-S	CTG TCC AAA TGC AAG TGA GG	79	LIN28 RT-PCR
hLIN28-AS	GCA GGT TGT AGG GTG ATT CC		
hKRT19-S	GTC ATG GCC GAG CAG AAC	89	KRT19 RT-PCR
hKRT19-AS	CCG GTT CAA TTC TTC AGT CC		
hCDH1-S	CCC GGG ACA ACG TTT ATT A	35	CDH1 RT-PCR
hCDH1-AS	GCT GGC TCA AGT CAA AGT CC		
hVIM-S	AAA GTG TGG CTG CCA AGA AC	16	VIM RT-PCR
hVIM-AS	AGC CTC AGA GAG GTC AGC AA		
hFABP4-S	GGA TGA TAA ACT GGT GGT GGA	85	FABP4 RT-PCR
hFABP4-AS	CAC AGA ATG TTG TAG AGT TCA ATG C		
hMAP2-S	GCT CAA CAT AAA GAC CAG ACT GC	13	MAP2 RT-PCR
hMAP2-AS	TGG AGA AGG AGG CAG ATT AGC		
hPAX6-S	TCA CCA TGG CAA ATA ACC TG	20	PAX6 RT-PCR
hPAX6-AS	CAG CAT GCA GGA GTA TGA GG		
hTP16-S	GTG GAC CTG GCT GAG GAG	34	CDKN2A RT-PCR
hTP16-AS	CTT TCA ATC GGG GAT GTC TG		
hTP53-S	CCC CAG CCA AAG AAG AAA C	58	TP53 RT-PCR
hTP53-AS	AAC ATC TCG AAG CGC TCA C		
hDNMT3A-S	TGG TGC ACT GAA ATG GAA AG	48	DNMT3A RT-PCR
hDNMT3A-AS	GCT CAT GTT GGA GAC GTC AG		
hDNMT3B-S	AGA GGG ACA TCT CAC GGT TC	84	DNMT3B RT-PCR
hDNMT3B-AS	GGT TGC CCC AGA AGT ATC G		

Table S2. Primer sequences corresponding to universal probe libraries (UPL)

Table S3. Primer sequences for specific applications

PNAS PNAS