Supporting Information

Tresguerres et al. 10.1073/pnas.0911790107

Fig. S1. Dogfish gill and VHA translocation in response to blood alkalosis. (A) Dogfish have four branchial arches (plus one hemibranch, not drawn) at each side. (*B*) Each gill has several filaments with finger-like protrusions (lamellae). Blood and seawater flow in a countercurrent fashion. (C) Subset of cells in the gill epithelium is VHA-rich, H⁺-absorbing, and HCO₃⁻-secreting. (1) During increased blood HCO₃⁻ and pH, HCO₃⁻ in blood is dehydrated into CO₂ by extracellular CA (CA_{IV}) (1). (2) CO₂ enters the VHA-rich cells. (3) Once inside, CO₂ is hydrated back into H⁺ and HCO₃⁻ by intracellular CA (CA_{cV}) (2, 3). (4) HCO₃⁻ is secreted to seawater in exchange for chloride, probably via a Pendrin-like anion exchanger (4). (5) Elevated intracellular HCO₃⁻ activates sAC to generate cAMP, which triggers the microtubule-dependent translocation of VHA (blue icon) containing cytoplasmic vesicles to the basolateral membrane. (6) Basolateral VHA reabsorbs H⁺ into the blood to counteract the original alkalosis (5–7). The positive current is probably neutralized by a transepithelial chloride conductance (CC).

- 1. Gilmour KM, Bayaa M, Kenney L, McNeill B, Perry SF (2007) Type IV carbonic anhydrase is present in the gills of spiny dogfish (Squalus acanthias). Am J Physiol 292:R556–R567.
- Tresguerres M, Parks SK, Wood CM, Goss GG (2007) V-H⁺-ATPase translocation during blood alkalosis in dogfish gills: Interaction with carbonic anhydrase and involvement in the article and subscription of the translocation of the article and the subscription of the subscri
- the postfeeding alkaline tide. *Am J Physiol* 292:R2012–R2019. 3. Perry SF, Gilmour KM (2006) Acid-base balance and CO₂ excretion in fish: unanswered austrians and american models. *Baseia Physiol* Muserial Muserial 16:100–215.
- questions and emerging models. *Respir Physiol Neurobiol* 154:199–215. 4. Piermarini PM, Verlander JW, Royaux IE, Evans DH (2002) Pendrin immunoreactivity in
- the gill epithelium of a euryhaline elasmobranch. Am J Physiol 283:R983–R992.

 Tresguerres M, Katoh F, Fenton H, Jasinska E, Goss GG (2005) Regulation of branchial V-H(+)-ATPase, Na(+)/K(+)-ATPase and NHE2 in response to acid and base infusions in the Pacific spiny dogfish (Squalus acanthias). J Exp Biol 208:345–354.

 Tresguerres M, Parks SK, Katoh F, Goss GG (2006) Microtubule-dependent relocation of branchial V-H⁺-ATPase to the basolateral membrane in the Pacific spiny dogfish (Squalus acanthias): A role in base secretion. J Exp Biol 209:599–609.

 Tresguerres M, Parks SK, Wood CM, Goss GG (2007) V-H⁺-ATPase translocation during blood alkalosis in dogfish gills: Interaction with carbonic anhydrase and involvement in the postfeeding alkaline tide. *Am J Physiol* 292:R2012–R2019.

Variable	Treatment effect	Time effect	Interaction effect	Additional test
рН	S	S	NS	Tukey–Kramer planned test
[HCO ₃ [−]]	S	S	S	Bonferroni's posttest
PCO ₂	NS	S	NS	None

All variables were initially analyzed using repeated-measures two-way ANOVA. NS, no statistical significant differences found ($P \ge 0.05$); S, statistical significant differences found (P < 0.05).