Supplemental Materials

Supplemental Materials and Methods

Strain Construction

For construction of the $\Delta mog R \Delta deg U/pHy$ strain, the primer pair #366 and #780 were used with Lm EGDe genomic DNA to amplify ~0.8 kb of the region upstream of mogR. The 0.8 kb PCR product was purified, digested with KpnI and EagI, and ligated to plasmid pHPL3 (Gründling et al., 2004) digested with the same restriction enzymes, and transformed into XL1-Blue to generate strain DH-E1878 carrying plasmid pHPL3-5' $\Delta mog R$. Primer #366 and #707 were used to amplify the 5' $\Delta mog R$ DNA fragment and the p_{Hy} promoter from plasmid pHPL3-5' $\Delta mog R$. The p_{Hy} promoter is located at the 3' end of the 5' $\Delta mogR$ fragment with transcription initiating at nucleotide 36 of mogR proceeding divergently towards the 5' start of mogR and fliN. Primers #706 and #368 were used to amplify ~1 kb of DNA downstream of mogR. The 5' and 3' PCR products were gel purified using the QIAquick gel extraction kit (Qiagen) and used as templates for a splicing by overlap extension (SOE) PCR reaction (Horton et al., 1989). The flanking primers, #366 and #368, were used to amplify an ~1.8 kb PCR product containing an in-frame deletion of sequences encoding amino acids 13 to 295 of MogR and the p_{Hy} promoter sequence inserted between sequences encoding amino acid 12 and 296 oriented to initiate transcription towards amino acid 12 of mogR. The SOE PCR product was gel-purified, digested with KpnI and BamHI and ligated to plasmid pCON1 digested with the same restriction enzymes to generate plasmid pCON1- $\Delta mog R/p_{Hy}$ The resulting plasmid was transformed into XL1-Blue to generate strain DH-E1819. Plasmid isolated from DH-E1819 was used to transform the conjugal mating strain SM10 to generate strain DH-E1821. pCON1- $\Delta mog R/p_{Hy}$ was transformed into the $\Delta deg U$ strain (DH-L1273) through conjugative transfer from strain DH-E182. Allelic exchange was then performed to generate strain $\Delta mogR\Delta degU/p_{Hy}$ (DH-L1818).

To construct an in-frame deletion of lmo1021, primer pair #504 and #506 were used to amplify ~1 kb of the upstream sequence of lmo1021. Primer pair #505 and #507 were used to amplify ~1 kb of the downstream sequence of lmo1021. The resulting PCR products were mixed together with flanking primers #504 and #507 to amplify an ~2 kb DNA product by SOE PCR. The SOE PCR product was digested with *SpeI* and *KpnI*, ligated to pCON1 digested with *XbaI* and *KpnI*, and transformed into XLI-Blue to generate strain DH-E1352. The resulting plasmid, pCON1- $\Delta lmo1021$ was electroporated into EGDe, and allelic exchange was performed to generate strain DH-L1344 in which codons 13 to 334 of lmo1021 have been deleted.

The *Lm*DegU $D_{55}N$ strain was constructed by allelic exchange in wild-type EGDe. Primer pair #464 and #484 were used with *Lm* EGDe genomic DNA to amplify ~1 kb of the region upstream of *Lm*DegU encoding amino acid 55 and primer pair #466 and #483 were used with *Lm* EGDe genomic DNA to amplify ~1 kb of DNA downstream of sequences encoding amino acid 55. Primers #483 and #484 contain the point mutant required for the amino acid change of $D_{55}N$. The 5' and 3' PCR products were gel purified and used as templates for PCR SOE. The flanking primers, #464 and #466, were used to amplify a 2 kb PCR product containing the point mutant required for the amino acid change $D_{55}N$ of *Lm*DegU. The PCR SOE product was gel-purified and digested with *XbaI* and *KpnI*, ligated into plasmid pCON1 digested with the same restriction enzymes and transformed into CLG190 to generate strain DH-E1342. The resulting plasmid, pCON1-*Lm*DegU $D_{55}N$, was transformed into the conjugal

mating strain SM10 and then conjugated into EGDe where allelic exchange was performed to generate the LmDegU D₅₅N strain (DH-L1339).

To generate the complementing constructs of DegU (*Lm*DegU, *Bs*DegU and *Lm*DegU Cterm), the pLOV site-specific integration vector was used (Shen *et al.*, 2006). DegU from *Lm* carrying an optimized *ermC* ribosome binding site (RBS) was amplified from EGDe genomic DNA using primers #485 and #486. *Bs*DegU carrying an optimized *ermC* RBS was amplified from *Bs* strain PY79 genomic DNA using primers #708 and #709. The C-terminal DNA binding domain of *Lm*DegU was amplified from *Lm* EGDe genomic DNA using the 5' primer #710 that contains an optimized *ermC* RBS followed by a start codon sequence and the 3' primer #486, together this primer pair amplifies *Lm*DegU sequences encoding from amino acid 133 to the stop codon. The resulting PCR products were gel purified and the *Lm*-derived constructs were digested with *PstI* and *SalI* and the *Bs* construct was digested with *SalI* and *KpnI*. All fragments were ligated into pLOV digested with the same restriction enzymes and transformed into CLG190 to generate strains DH-E1822, DH-E1823, and DH-E1824. The resulting plasmids (pLOV-*Lm*DegU, pLOV-*Bs*DegU, and pLOV-*Lm*DegU-Cterm) were sequenced and transformed into the *E. coli* conjugation strain SM10 to generate strains DH-E1825, DH-E1826, and DH-E1827. The SM10 strains were mated with *Lm AdegU* to integrate the plasmids in single copy into the tRNA^{Arg} locus and generate strains DH-L1798, DH-L1865, and DH-L1799.

To produce the transcriptional reporter fusions, a reporter construct was generated using the pPL3 site integration vector (Gründling et al., 2004). Primers #166 and #713 were used to amplify gusA from pNF470 plasmid DNA (Shetron-Rama et al., 2003). The gusA PCR product was purified using QIAquick PCR purification kit (Qiagen), digested with PstI and Sall restriction enzymes, ligated into pPL3 digested with the same restriction enzymes, and transformed into XL1-Blue to generate strain DH-E1828. The resulting plasmid pPL3-gusA is a reporter construct that can be used to generate transcriptional fusions to β -glucoronidase. To generate the pfliN-gmaR reporter constructs, truncations of the pfliN-gmaR region DNA were amplified from Lm EGDe genomic DNA using 5' primers #715, #717 or #718 and 3' primer #716. The resulting PCR products (-278, -209, or -173 to +274 relative to the transcriptional start site) were gel purified, digested with Eagl and Pstl, ligated into pPL3-gusA digested with the same restriction enzymes and transformed into XL1-Blue to generate strains DH-E1829, DH-E1831, and DH-E1832. The resulting plasmids (pPL3-p_{flin}gusA-278, pPL3-p_{flin}gusA-209, pPL3-p_{flin}gusA-173) were sequenced and transformed into the conjugative mating strain SM10 to generate strains DH-E1833, DH-E1834, and DH-E1835. The Lm wild-type and $\Delta mogR$ strains were transformed by electroporation, and the $\Delta mogR\Delta degU$ strain was transformed through conjugation with SM10 to generate the following strains: p_{flin}gusA-278 (DH-L1866), ΔmogR/p_{flin}gusA-278 (DH-L1867), $\Delta mogR\Delta degU/p_{flin}gusA-278$ (DH-L1868), $p_{flin}gusA-209$ (DH-L1869), $\Delta mogR/p_{flin}gusA-209$ (DH-L1 L1871), $\Delta mogR\Delta degU/p_{flin}gusA-209$ (DH-L1872), $p_{flin}gusA-173$ (DH-L1873), $\Delta mogR/p_{flin}gusA-173$ (DH-L1874), $\Delta mogR\Delta degU/p_{fliN}gusA-173$ (DH-L1811). Additional transcriptional fusions to gusA were generated as described above using genomic DNA from EGDe and primer pair #719 and #720 to produce a PCR product (fliNgmaRgusA-2) spanning ~2 kb from nucleotide 178 of fliN to nucleotide 127 of *flhB*; primer pair #721 and #722 to produced a PCR product (*fliNgmaRgusA*-3) spanning ~3 kb from nucleotide 127 of *flhB* to nucleotide 127 of *flhF*; primer pair #723 and #724 to produce a PCR product (fliNgmaRgusA-4) spanning ~3 kb from nucleotide -26 of flhF to nucleotide 154 of lmo0684; primer pair #725 and #726 to produce a PCR product (fliNgmaRgusA-5) spanning ~2.5 kb from nucleotide 170 of *lmo684* to nucleotide 4 of *gmaR*; and primer pair #729 and #730 to produce a PCR product (p_{cheY}gusA) spanning -175 nucleotides upstream of cheY to nucleotide 48 of cheY. The resulting PCR products were purified, digested with *EagI* and *PstI* restriction enzymes, ligated into pPL3-gusA that was previously digested with the same restriction enzymes, and transformed into XL1-Blue to generate strains DH-

E1836, DH-E1837, DH-E1838, DH-E1839, and DH-E1842. The resulting plasmids (pPL3*fliNgmaRgusA*-2, pPL3-*fliNgmaRgusA*-3, pPL3-*fliNgmaRgusA*-4, pPL3-*fliNgmaRgusA*-5, and pPL3*p_{cheY}gusA*) were sequenced, transformed into *Lm* EGDe by electroporation and integrated into the tRNA^{Arg} locus to generate strains DH-L1812, DH-L1813, DH-L1814, DH-L1815, and DH-L1817.

To clone N-terminally His₆-tagged DegU derivatives, primer pair #535 and #486 was used with either EGDe or LmDegU D₅₅N genomic DNA to amplify the degU coding sequence or a degU coding sequence harboring a point mutation in codon 55 (resulting in Asp55 to Asn). The resulting PCR products were digested with NdeI and Sall and ligated to pET28a vector digested with the same enzymes. The ligations were transformed into XLI-Blue, generating strains DH-E1445 and DH-E1449. The resulting plasmids pET28a-LmDegU and pET28a-LmDegU D₅₅N were transformed into JM109 (DE3) pLysS, yielding strains DH-E1446 and DH-E1451, respectively. For purification of BsDegU, primer pair #559 and #560 were used with Bs PY79 genomic DNA to amplify the BsDegU coding sequence. The resulting PCR product was digested with NdeI and SalI and ligated to pET28a digested with the same enzymes. Transformation of the ligation into XLI-Blue yielded strain DH-E1519 harboring pET28a-BsDegU. Transformation of the plasmid into JM109 (DE3) pLysS generated strain DH-E1521, permitting IPTG-inducible expression of an N-terminally His-tagged BsDegU in E. coli. To purify the Bs histidine kinase DegS, primer pair #561 and #562 was used to amplify the DegS coding sequence using Bs PY79 genomic DNA as the template. The resulting PCR product was digested with NdeI and Sall, ligated to pET28a digested with the same enzymes, and transformed into XLI-Blue to generate strain DH-E1522. The resulting plasmid, pET28-BsDegS was transformed into JM109 (DE3) pLysS to generate strain DH-E1523, which permits tightly controlled IPTG-inducible expression of Nterminally His-tagged BsDegS in E. coli.

Gel mobility shift analysis

Gel mobility shift analysis was performed as previously described (Shen & Higgins, 2006). Primer pairs #715, #717, or #718 with primer #711 were used to generate the -278, -209, or -173 to +100 p*fliN-gmaR* DNA probes used for the p*fliN-gmaR* gel shift analysis. Identical DNA probes were used for analysis of p*cheY* and p*flaA* as previously described (Shen & Higgins, 2006).

Supplemental Table 1. *Listeria monocytogenes* strains used in this study.

Strain	Genotype and relevant features	Strain Designation	Reference
DH-L478	Wild-type L. monocytogenes strain EGDe	wild-type	M. Loessner
DH-L1156	<i>mogR</i> in-frame deletion in EGDe	$\Delta mog R$	(Gründling et al., 2004)
DH-L1273	degU in-frame deletion in EGDe	$\Delta deg U$	(Shen & Higgins, 2006)
DH-L1274	degU in-frame deletion in DH-L1156	$\Delta mog R \Delta deg U$	(Shen & Higgins, 2006)
DH-L1339	$D_{55}N$ point mutation in <i>degU</i> in DH-L478	$LmDegUD_{55}N$	This study
DH-L1344	<i>lmo1021</i> in-frame deletion in EGDe	$\Delta lmo1021$	This study
DH-L1798	pLOV-LmDegU in DH-L1273	$\Delta degU/Lm$ DegU	This study
DH-L1799	pLOV-Cterm in DH-L1273	$\Delta degU/Cterm$	This study
DH-L1865	pLOV-BsDegU in DH-L1273	$\Delta deg U/Bs$ DegU	This study
DH-L1866	pPL3-p _{flin} gusA-278 in EGDe	p _{fliN} gusA-278	This study
DH-L1867	pPL3- $p_{flin}gusA-278$ in DH-L1156	$\Delta mog R/p_{flin}gus A-278$	This study
DH-L1868	pPL3-p _{flin} gusA-278 in DH-L1274	$\Delta mogR\Delta degU/p_{flin}gusA-278$	This study
DH-L1869	pPL3-p _{flin} gusA-209 in EGDe	p _{fliN} gusA-209	This study
DH-L1871	pPL3-p _{flin} gusA-209 in DH-L1156	$\Delta mog R/p_{flin}gus A-209$	This study
DH-L1872	pPL3-p _{flin} gusA-209 in DH-L1274	$\Delta mogR\Delta degU/p_{flin}gusA-209$	This study
DH-L1873	pPL3-p _{nin} gusA-173 in EGDe	p _{fliN} gusA-173	This study
DH-L1874	pPL3-p _{flin} gusA-173 in DH-L1156	$\Delta mog R/p_{flin}gus A-173$	This study
DH-L1811	pPL3-p _{flin} gusA-173 in DH-L1274	$\Delta mogR\Delta degU/p_{flin}gusA-173$	This study
DH-L1812	pPL3-fliNgmaRgusA-2 in EGDe	fliNgmaRgusA-2	This study
DH-L1813	pPL3-fliNgmaRgusA-3 in EGDe	fliNgmaRgusA-3	This study
DH-L1814	pPL3-fliNgmaRgusA-4 in EGDe	fliNgmaRgusA-4	This study
DH-L1815	pPL3-fliNgmaRgusA-5 in EGDe	fliNgmaRgusA-5	This study
DH-L1817	pPL3-p _{chey} gusA in EGDe	p _{cheY} gusA	This study
DH-L1818	pCON1- $\Delta mog R/p_{Hy}$ allelic exchange in	$\Delta mogR\Delta degU/p_{Hy}$	This study
	DH-L1273	,	-

Supplemental Table 2. Escherichia coli strains used in this study.

Strain	Genotype and relevant features	Reference
DH-E121	pET28a in BL21(DE3)	Novagen
DH-E278	JM109(DE3) pLysS	Novagen
DH-E474	SM10	(Simon et al., 1983)
DH-E123	pCON1 in JM109	(Higgins, 2006)
DH-E182	XL1-Blue {F' proAB lacI ^q Δ(lacZ)M15 Tn10} RecA1 endA1 gyrA96 thi-1 hsdR17 supE relA1 lac	Stratagene
DH-E375	CLG190 (F' lac, pro, lacI ^q) Δ malF3, Δ phoA, phoR, Δ lacX74, Δ ara Δ leu7697, araD139, galE, galK, Str ^R , pcnB, zad::Tn10, recA	D. Boyd
DH-E898	pPL3 in XL1-Blue	(Gründling et al., 2004)
DH-E1225	pLOV in XL1-Blue	(Higgins, 2006)
DH-E1819	pCON1- $\Delta mog R/p_{Hy}$ in XL1-Blue	This study
DH-E1821	pCON1- $\Delta mog R/p_{Hy}$ in SM10	This study
DH-E1352	pCON1- $\Delta mo1021$ in XL1-Blue	This study
DH-E1342	pCON1- DegU-D ₅₅ N in CLG190	This study
DH-E1822	pLOV- <i>Lm</i> DegU in CLG190	This study
DH-E1823	pLOV-BsDegU in CLG190	This study
DH-E1824	pLOV- <i>Lm</i> DegU-Cterm in CLG190	This study
DH-E1825	pLOV- <i>Lm</i> DegU in SM10	This study
DH-E1826	pLOV-BsDegU in SM10	This study
DH-E1827	pLOV- <i>Lm</i> DegU-Cterm in SM10	This study
DH-E1445	pET28a- <i>Lm</i> DegU in XL1-Blue	This study
DH-E1446	pET28a-LmDegU in JM109(DE3) pLysS	This study
DH-E1449	pET28a-LmDegU D ₅₅ N in XL1-Blue	This study
DH-E1451	pET28a-LmDegU D ₅₅ N in JM109(DE3) pLysS	This study
DH-E1519	pET28a- <i>Bs</i> DegU in XL1-Blue	This study
DH-E1521	pET28a-BsDegU in JM109(DE3) pLysS	This study
DH-E1522	pET28a-BsDegS in XL1-Blue	This study
DH-E1523	pET28a-BsDegS in JM109(DE3) pLysS	This study
DH-E1828	pPL3-gusA in XL1-Blue	This study
DH-E1829	pPL3-p _{flin} gusA-278 in XL1-Blue	This study
DH-E1831	pPL3-p _{fliN} gusA-209 in XL1-Blue	This study
DH-E1832	pPL3-p _{flin} gusA-173 in XL1-Blue	This study
DH-E1833	pPL3-p _{flin} gusA-278 in SM10	This study
DH-E1834	pPL3-p _{rlin} gusA-209 in SM10	This study
DH-E1835	pPL3-p _{fliN} gusA-173 in SM10	This study
DH-E1836	pPL3-fliNgmaRgusA-2 in XL1-Blue	This study
DH-E1837	pPL3-fliNgmaRgusA-3 in XL1-Blue	This study
DH-E1838	pPL3-fliNgmaRgusA-4 in XL1-Blue	This study
DH-E1839	pPL3-fliNgmaRgusA-5 in XL1-Blue	This study
DH-E1842	pPL3-p _{chey} gusA in XL1-Blue	This study
DH-E1878	pHPL3-5' $\Delta mogR$ in XL1-Blue	This study

Supplemental Table 3. Oligonucleotides used in this study.

Numb	ber Sequence	Site ^a
133	CGCAGCAAATGCTGTTACCGCAATCCCAGCTGTAGCCGCG	
166	AAA <u>CTGCAG</u> AGGAGGAAAAATATGTTACGTCCTGTAGAAA	PstI
326	CTTGCGCTTGAGTCATGCCTTCGTTATTTTACGAAG	
366	GG <u>GGTACC</u> GTCCAACAAGCACTTGGTTGGGCGGCAAATTCG	KpnI
368	CG <u>GGATCC</u> GTAGAGTTTAACTAAAATACCTCAATAACATTTTG	BamHl
375	ACTAAAAAATAAGAAATTCCCGCAAGTACTGCCAAAAGTAC	
464	GC <u>TCTAGA</u> ATTCAACAATAGTGGCTAG	XbaI
466	GG <u>GGTACC</u> CTTAATTCAAATGTTACTTCTGG	KpnI
483 ^b	AAACCAGATATTGTTTTAATG <u>A</u> ATATTAATATGCCAACTGTG	
484 ^b	CACAGTTGGCATATTAATAT <u>T</u> CATTAAAACAATATCTGGTTT	
485	AA <u>CTGCAG</u> GATAAGTGAAGGAGGAGTAG	PstI
486	ACGC <u>GTCGAC</u> GAGATTTCTTTAGCGAATG	Sall
504	GG <u>ACTAGT</u> AATCAGATCCAGATGCCATTC	SpeI
505	CTGATGATGGCTGTTTGCTCAAGTGTAGAAATAAAAATCCCA	
506	TGGGATTTTTATTTCTACACTTGAGCAAACAGCCATCATCAG	
507	GG <u>GGTACC</u> CGGTAACGTATTTCACGCCCA	KpnI
535	GGAATTC <u>CATATG</u> GCACTCAAAATCATGAT	NdeI
559	GGAATTC <u>CATATG</u> GTGACTAAAGTAAACATTGTTATTA	NdeI
560	CG <u>GGATCC</u> TTATCTCATTTCTACCCAGCCAT	BamHl
561	GGAATTC <u>CATATG</u> AATAAAAACAAAGATGGATTCC	NdeI
562	CG <u>GGATCC</u> TTATTAAAGAGATAACGGAACCTTA	BamHl
706	GATAAAGTCAACAACTTTTTGGTATTCAAAGAAAATTATAAAC	
707	GTTTATAATTTTCTTTGAATACCAAAAAGTTGTTGACTTTATC	
708	ACGC <u>GTCGAC</u> AGGAGGAAAAATGTGACTAAAGTAAACATTG	Sall
709	GG <u>GGTACC</u> ATTATACTATCTCATTTCTAC	KpnI
710	AAAA <u>CTGCAG</u> AGGAGGAAAAAATATGAAATTAATTCGTGAATACC	PstI
711	CCATTCAAGTAAGGTAAATTCACCTTTCACTCCCTTC	
713	ACGC <u>GTCGAC</u> TCATTGTTTGCCTCCCTGC	Sall
715	AGATAC <u>CGGCCG</u> GCATACAATCACATACCTCTC	EagI
716	AAA <u>CTGCAG</u> CCAGAAGAACTGCACGTAACTGATG	PstI
717	AGATAC <u>CGGCCG</u> GTGTTAGTTGTGTAAAGGGAACGCGAG	EagI
718	AGATAC <u>CGGCCG</u> GGATTGGGTATGAAGAACC	EagI
719	AGATAC <u>CGGCCG</u> CATCAGTTACGTGCAGTTCTTCTGG	EagI
720	AAA <u>CTGCAG</u> GAAGCCCAGCTACAATTAGCAGTG	PstI
721	AGATAC <u>CGGCCG</u> CACTGCTAATTGTAGCTGGGCTTC	EagI
722	AAA <u>CTGCAG</u> CAAGCTTTGTGACACGTTCGTC	PstI
723	AGATAC <u>CGGCCG</u> CTTGATGAGGGAGGGAATCCGTAGCAATG	EagI
724	AAA <u>CTGCAG</u> CTTTATCCCCGATTTCATAGCCAACTG	PstI
725	AGATAC <u>CGGCCG</u> GGACAAACCTGGACTCGCAGAACAAATTC	EagI
726	AAA <u>CTGCAG</u> GCATGAATCTTCCCTCTTTC	PstI
729	AGATAC <u>CGGCCG</u> GTAAATGGGGCACAGAGCCAATG	EagI
730	AAA <u>CTGCAG</u> CATCGTACGCATGAACATCTGCATG	PstI
731	Biotin-CCATTCAAGTAAGGTAAATTCACCTTTCACTCCCTTC	

- 732 GCGAGTTTGCTGATTACTTATTG
- 733 CCTTGTTTGGTCACTTCGTC
- 734 GCAGAAGTGAAAACGGAAGC
- 735 CTGTTTGTTGTTGCGTTGCT

736 AGATAC<u>CGGCCG</u>CCATTCAAGTAAGGTAAATTCACCTTTCACTCCCTTC

- 780 AGATAC<u>CGGCCG</u>AAGTAATTTTCTTATTTCTGATTTAGGCAT
- a. The indicated restriction endonuclease site is underlined within the oligonucleotide sequence.
- b. Deviations from the wild-type sequence are in bold and underlined within the oligonucleotide sequence.

Supplemental References

- Gründling, A., L. S. Burrack, H. G. Bouwer & D. E. Higgins, (2004) *Listeria monocytogenes* regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. *Proc. Natl. Acad. Sci. USA* **101**: 12318-12323.
- Higgins, D. E., Buchrieser, C., Freitag, N.E., (2006) Genetic tools for use with *Listeria* monocytogenes. In: Gram-positive pathogens. V. A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy & J. I. Rood (eds). Washington, D.C.: ASM Press, pp. 620-633.
- Horton, R. M., H. D. Hunt, S. N. Ho, J. K. Pullen & L. R. Pease, (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. *Gene* 77: 61-68.
- Shen, A. & D. E. Higgins, (2006) The MogR transcriptional repressor regulates non-hierarchal expression of flagellar motility genes and virulence in *Listeria monocytogenes*. *PLoS Pathog*. 2: e30.
- Shen, A., H. D. Kamp, A. Grundling & D. E. Higgins, (2006) A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. *Genes Dev* 20: 3283-3295.
- Shetron-Rama, L. M., K. Mueller, J. M. Bravo, H. G. Bouwer, S. S. Way & N. E. Freitag, (2003) Isolation of *Listeria monocytogenes* mutants with high-level *in vitro* expression of host cytosol-induced gene products. *Mol. Microbiol.* 48: 1537-1551.
- Simon, R., U. Priefer & A. Pühler, (1983) A broad host range mobilization system for *in vivo* genetic engineering: transposon mutagenesis in Gram-negative bacteria. *Bio/Technology* 1: 784-791.

EagI EagI

pcheY

pfliN-gmaR

Figure S1. Gel shift analysis of MogR and DegU binding to *fliN-gmaR*, *cheY*, and *flaA* promoter region DNA. Radiolabeled promoter region DNA fragments spanning -278 to +100 for *fliN-gmaR*, -108 to +74 for *cheY*, and -162 to +8 for *flaA* (relative to the transcriptional start sites) were incubated at room temperature (RT, 18-25°C) with 20 nM MogR-His₆ for 30 min. Increasing amounts of purified His₆-tagged DegU were added for an additional 30 min at RT for a total incubation of 1 h. Binding reactions were separated by non-denaturing PAGE and detected by autoradiography. Shifted (S) and Super-shifted (SS) complexes of MogR::DNA were detected for *pfliN-gmaR*, *pcheY*, and *pflaA*. A DegU::DNA band and a DegU::DNA::MogR band were only detected for *pfliN-gmaR*.