Supplemental Data

SUPPLEMENTAL FIGURE LEGENDS

FIGURE S1. Alignment of the amino acid sequence of the S Tail. The predicted S tails from the indicated animal species were aligned with the human S tail using the ClustalW2 program. Amino acids different from those in the human S tail are in red. The length of each S tail is indicated on the right. Note that the predicted rabbit and mouse S tails are 14 and 22 amino acids shorter than the human S tail.

FIGURE S2. Lack of effect of the S tail on Ca²⁺ channel properties. cRNA of No.8 was co-injected into *Xenopus* oocytes with the channel complex cRNAs, and cell-attached patch clamps (*A*-*E*) were performed. β_3 _core, amino acids G16-G366 of full length β_3 , is as potent as β_3 to regulate channel activation and membrane targeting (5,45). *A*, current-voltage relationship. *B*, voltage-dependent activation. *C*, deactivation constant τ_{deact} . *D*, voltage-dependent inactivation. *E*, representative inactivation traces. N=5-6.

FIGURE S3. Co-localization of overexpressed No.8 and β_3 in the nuclei of HEK 293T cells. *A*, No.8 (fused with DsRed) and β_3 (fused with EGFP) were expressed separately. *B*, three individual examples, displayed in three rows, showing the co-localization of No.8 and β_3 in the nuclei when they were co-expressed. Note that the two proteins aggregate on the nuclear membrane. Bar, 10 µm.

Zhang et al., Figure S1

Human	VSAAGGGLHNPGPR-EVRSGSGPADLIGCVCTLESFSHYSDWLDQSSRRQSIPSLLSD-	57
Chimpanzee	VSAAGGGLHNPGPR-EVRSGSGPADLIGCVCTLESFSHYSDWLDQSSRRQSIPSLLSD-	57
Sumatran orangutan	VSAAGGGLHNPGPR-EVRSGSRPVDLIGCVCTLESFLHYSDWFDQSSRRQSIPSLLSD-	57
Olive baboon	VSAAGGGLHNPGPR-EVRSGSGPADLVGCVCTPGSFSHYSDWFDQSSRRQSIPCLLSD-	57
Rhesus monkey	VSAAGGGLHNPGPR-EVRSGSGPADLVGCVCAHGSFSHYSDWFDQSSRRQSIPSLLSD-	57
Rabbit	VSEAASGLLNGGLRGETSNGSG-AAPLGASLPTVIGLTSQVQDS	43
Mouse	VREDGHLLHRARDGFRLADPIHCIYSLGSPSCDSD-	35

Zhang et al., Figure S2

Zhang et al., Figure S3

