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Marcell A. Marosvölgyi and Hans J. van Gorkom

Photosynthetic growth power optimization

Question:
What spectral distribution would optimize PG if the organism could freely tune the
resonance frequency of the electronic transition dipoles that make up its absorption
spectrum and the energy it invests in equipment for chemical storage of the absorbed
power.

Strategy:
1. Express PG in terms of the absorber distribution by dividing the relevant part of

the spectrum into n sufficiently small frequency steps with index i and assigning
a quantity of di proportional to the total dipole-strength at the corresponding
resonance frequency. The optimum for PG is then found by setting its gradient
to zero, i.e. equating the partial derivatives of PG with respect to all di to zero,
and solving the resulting n equations, {∂PG/∂di}i=1..n = 0.

2. Express PG in terms of Psat. The optimal investment in the equipment for chem-
ical storage is then found by solving ∂PG/∂Psat = 0.

By substituting the results of the latter optimization into the former, the condition for
optimal PG is found.

Optimization of investment in light-harvesting equipment
Using PG = Pout · CG we have:

∂PG

∂di
=
∂Pout

∂di
· CG + Pout ·

∂CG

∂di
= 0

⇒
∂Pout

∂di
= −Pout ·

1
CG

∂CG

∂di
(1)
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CG is the relative amount of energy that is not spent on reproduction of the growth
generating equipment. By defining EG as the corresponding absolute amount and Etot

the total amount of energy spent on the organism,

CG =
EG

Etot

Assuming that one term of Etot, the energy spent on light-harvesting ELH, is propor-
tional to D =

∑
d , i.e.

∂ELH

∂di
=
ELH

D

we have:
∂CG

∂di
= −ELH

D
· EG

E2
tot

and therefore:
1
CG

∂CG

∂di
= − 1

D
· ELH

Etot
≡ − 1

D
· CPin

and thus by substituting into (1):

∂Pout

∂di
= Pout ·

CPin

D
(2)

With Pout = 1/ (1/Pin + 1/Psat)

∂Pout

∂di
=
∂Pout

∂Pin
· ∂Pin

∂di

=
(

1 +
Pin

Psat

)−2

· ∂Pin

∂di

and by substituting this into (2):

∂Pin

∂di
=
(

1 +
Pin

Psat

)
· Pin ·

CPin

D
(3)

From the equation for the input power the partial derivative of Pin can be evaluated as
follows:

∂Pin

∂di
=
∂JL

∂di
· µ+ JL ·

∂µ

∂di

=
∂JL

∂di
· µ+ kT · JL ·

(
∂JL/∂di
JL

− ∂JD/∂di
JD

)
=
∂JL

∂di
(µ+ kT )− kT ·

(
JL

JD

∂JD

∂di

)
=
∂JL

∂di
(µ+ kT )− kT ·

(
eµ/kT · ∂JD

∂di

)
(4)

2



which can be evaluated further by expressing JL and JD as functions of di. This is
achieved by relating the absorption cross-section to d:

σi = gi · hνi ·B/c = di · hνi

yielding:

∂JL

∂di
=

∂

∂di

[
n∑
i=1

Isol,i
(
1− e−σi

)]

= Isol,i ·
∂σi
∂di
· e−σi

= Isol,i · hνi · e−σi

and

∂JD

∂di
=

∂

∂di

[
n∑
i=1

σi · Ibb,i

]

=
∂σi
∂di
· Ibb,i

= hνi · Ibb,i

Substituting these in (4) gives:

∂Pin

∂di
= Isol,i · hνi · e−σi (µ+ kT )− kT ·

(
eµ/kT · Ibb,i · hνi

)
Substituting this expression on the left-hand side of (3) yields the n equations that
determine the di that optimize the growth power:

Isol,i · hνi · e−σi (µ+ kT )− kT ·
(
eµ/kT · Ibb,i · hνi

)
=
(

1 +
Pin

Psat

)
· Pin ·

CPin

D

⇒

Isol,i · hνi · e−σi =
1

µ+ kT
·
[
kT · eµ/kT · Ibb,i · hνi +

(
1 +

Pin

Psat

)
· Pin ·

CPin

D

]
(5)

Optimization of investment in the equipment for chemical storage of
the absorbed power
We assume that the amount of energy spent on the chemical storage machinery is a
term in Etot , designated Echem which is proportional to the saturation power Psat:

dEchem

dPsat
=
Echem

Psat

The optimization of PG in terms of the di must be extended to the requirement that

dPG

dPsat
= 0
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as well, i.e.,

dPG

dPsat
=
dPout

dPsat
CG + Pout

dCG

dPsat

= −P
2
out

P 2
sat

CG + Pout ·
EG · dEchem/dPsat

E2
tot

= −P
2
out

P 2
sat

CG + Pout · CG ·
Echem

EtotPsat

= −P
2
out

P 2
sat

CG + Pout · CG ·
CPout

Psat

= 0

from which we have:

P 2
out

P 2
sat

= Pout ·
CPout

Psat
⇒

Pout

Psat
= CPout (6)

With Pout = 1/ (1/Pin + 1/Psat) substituted into (6) we get:

Pin/Psat

1 + Pin/Psat
= CPout

⇒
1

1 + Pin/Psat
= 1− CPout

= CPin + CG

which can be substituted into (5) giving the condition for optimal PG:

Isol,i · hνi · e−σi =
1

µ+ kT
·
[
kT · eµ/kT · Ibb,i · hνi + Pin ·

CPin

(CPin + CG)D

]
(7)

Solving numerically
Treating the indexed quantities as vectors,

~Ti = Isol,i · hνi · e−σi

~Bi = Ibb,i · hνi

and by designating the non-indexed quantities:

f
(
~T
)
≡ kT

µ+ kT
· eµ/kT

g
(
~T ,C

)
≡ 1
µ+ kT

· Pin

D
· CPin

(CPin + CG)
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equation (7) becomes:
~T = f

(
~T
)
~B + g

(
~T ,C

)
~u (8)

where ~u is a vector containing (n) ones. While ~B and ~u are known, the vectors ~Tm

must be found that satisfy (8) in the range 0 ≤ C ≤ 1.
Equation (8) is a fixed point equation and is solved by iterative mapping, starting

with an initial guess for ~T = ~T 0:

~T 1 →f
(
~T 0
)
~B + g

(
~T 0, C

)
~u

~T 2 →f
(
~T 1
)
~B + g

(
~T 1, C

)
~u

...→
...

until the iterations converge to ~T ∗:

~T ∗ = f
(
~T ∗
)
~B + g

(
~T ∗, C

)
~u

If a (smooth) 5800 K black-body curve is used to simulate Isol the iterative map
gives a unique solution irrespective of ~T 0 for all C. With the actual Isol at sea level,
however, local extrema may prevent the iteration from converging to the optimum for
very low and very high C and ~T 0 must be scanned over a suitable range.
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