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Methods

In the following we recall the basic Petri net notions and give the formal definitions relevant for this
paper; for more details see [1,2], for a general introduction into Petri net theory see [3,4], for theoretical
issues see the excellent textbook [5], which however is in German.

As usual, we denote the set of non-negative integers including zero by N0, the set of integers by Z,
and the set of non-negative real numbers by R

+

0 . |S| denotes the number of elements in a set S.

Biochemically Interpreted Petri Nets

To allow formal reasoning we represent biochemical networks by Petri nets, which combine executability
and formal semantics amenable to mathematically sound analysis techniques.

Definition 1 (Petri net, Syntax). A Petri net is a quadruple N = (P, T, f, m0), where

• P and T are finite sets with P ∪ T 6= ∅, P ∩ T = ∅,

• f : ((P × T ) ∪ (T × P )) → N0,

• m0 : P → N0. �

The elements of P are called places and the elements of T transitions. The function f specifies the arcs
and their non-negative integer weights, m0 the initial marking (state). m(p) yields the number of tokens
on place p in the marking m. We introduce the following notions and notations for a node x ∈ P ∪ T .

• •x := {y ∈ P ∪ T |f (y, x) 6= 0} is the pre-set of x.

• x • := {y ∈ P ∪ T |f (x, y) 6= 0} is the post-set of x.

• x is called input node if •x = ∅.

• x is called output node if x • = ∅.

• x is called boundary node if it is either input or output node.

We extend the first two notions to a set of nodes X ⊆ P ∪ T and define:

• the set of all pre-nodes by •X :=
⋃

x∈X
•x, and

• the set of all post-nodes by X• :=
⋃

x∈X x •.

Up to now we have specified the static aspects of a Petri net. The behavior of a net is defined by the
firing rule, which consists of two parts: the precondition and the firing itself.

Definition 2 (Petri net, Firing rule). Let N = (P, T, f, m0) be a Petri net.

• A transition t is enabled in a marking m, written as m[t〉, if

∀p ∈ •t : m(p) ≥ f(p, t), else disabled.
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• A transition t, which is enabled in m, may fire.

• When t in m fires, a new marking m′ is reached, written as m[t〉m′, with

∀p ∈ P : m′(p) = m(p) − f(p, t) + f(t, p).

• The firing happens atomically and does not consume time. �

The repeated firing of transitions establishes the behavior of the net. The whole net behavior consists
of all possible partially ordered firing sequences (partial order semantics), or all possible totally ordered
firing sequences (interleaving semantics), respectively.

Every marking m is defined by the given token situation in all places, i.e. m ∈ N
|P |
0 . All markings,

which can be reached from a given marking m by any firing sequence of arbitrary length, constitute the
set of reachable markings [m〉. The set of markings [m0〉 reachable from the initial marking is said to be
the state space of a given Petri net.

Invariant Analysis

Basic notions

The structure of a Petri net can be represented as a matrix, called incidence matrix in the Petri net
community, and stoichiometric matrix in systems biology. The matrix representation opens the door to
analysis techniques based on linear algebra (to be precise – discrete computational geometry). We recall
the basic notions.

Definition 3 (P-invariants, T-invariants). Let N = (P, T, f, m0) be a Petri net.

• The incidence matrix of N is a matrix C : P × T → Z, indexed by P and T , such that C(p, t) =
f(t, p) − f(p, t).

• A place vector (transition vector) is a vector x : P → Z, indexed by P (y : T → Z, indexed by T).

• A place vector (transition vector) is called a P-invariant (T-invariant) if it is a non-trivial non-
negative integer solution of the homogenous linear equation system x · C = 0 (C · y = 0).

• The set of nodes corresponding to an invariant’s non-zero entries are called the support of this
invariant x, written as supp (x).

• An invariant x is called minimal if there is no invariant z with supp (z) ⊂ supp (x), and the greatest
common divisor of all non-zero entries of x is 1.

• A net is covered by P-invariants, shortly CPI, (covered by T-invariants, shortly CTI) if every place
(transition) belongs to a P-invariant (T-invariant). �

Invariants are vectors, which can be read as specifications of multi-sets. Contrary, supports are sets,
which can technically be specified as vectors over Booleans, which allows the access to the ith entry by
indexing.

The set X = {x1, x2, . . . , xq} of all minimal P-invariants (T-invariants) of a given net is unique and
represents a generating system for all P-invariants (T-invariants). All invariants x can be computed as
non-negative linear combinations:

d · x =

q
∑

i=1

(ai · xi), d, ai ∈ N0 . (1)
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We conclude with two observations.

• A minimal P-invariant (T-invariant) defines a connected subnet, consisting of its support, its pre-
and post-transitions (pre- and post-places), and all arcs in between. There are no structural limi-
tations for such subnets induced by minimal invariants (for examples see [1]), but they are always
connected, however not necessarily strongly connected.

• Minimal invariants generally overlap; the combinatorial effect causes an explosion of the number of
minimal invariants. There are exponentially many of them in the worst-case. Therefore we apply a
structured representation of a given set of invariants, which is explained in the Section Structuring
Method.

Applications

The minimal self-contained subnets induced by P-invariants or T-invariants, identify token-conserving or
state-conserving modules, respectively, which should have an enclosed (biological) meaning.

A P-invariant x stands for a set of places over which the weighted sum of tokens is constant and
independent of any firing, i.e. for any markings m1, m2, which are reachable by the firing of transitions,
it holds that x · m1 = x · m2. A place belonging to a P-invariant is obviously bounded, i.e. the number
of tokens on each place is finite in any reachable marking. Thus, CPI causes structural boundedness, i.e.
boundedness for any initial marking.

A T-invariant y has two interpretations in the context of biochemical networks.

• The entries of a T-invariant specify a multi-set of transitions which by their partially ordered firing
reproduce a given marking, i.e. basically occurring one after the other. This partial order sequence
of the T-invariant’s transitions may contribute to a deeper understanding of the net behavior. A
T-invariant is called feasible if such a behavior is actually possible in the given marking situation.

• The entries of a T-invariant may also be read as the relative firing rates of transitions, all of them
occurring permanently and concurrently. This activity level (rate) corresponds to the steady state
behavior.

The two transitions modeling the two directions of a reversible reaction always make a minimal T-
invariant; thus it is called trivial T-invariant. A net which is covered by non-trivial T-invariants is said
to be strongly covered by T-invariants (SCTI). Transitions not covered by non-trivial T-invariants are
candidates for model reduction, e.g. if the model analysis is concerned with steady state analysis only.

Structural deadlock

A notion related to P-invariants is structural deadlock.

Definition 4 (Structural deadlock). Let N = (P, T, f, m0) be a Petri net.

• A non-empty set of places D ⊆ P is called structural deadlock if •D ⊆ D•. �

Every transition which fires tokens onto a place in the structural deadlock set D, also has a pre-place
in this set D. Thus, pre-transitions of a structural deadlock cannot fire if the structural deadlock is clean,
i.e. does not contain a token. Therefore, a structural deadlock cannot get tokens again as soon as it
got clean, and then all its post-transitions t ∈ D• are dead. Consequently, a structural deadlock needs a
non-empty initial marking.

For a P-invariant x it holds •supp(x) = supp(x)•. Thus, the support of a P-invariant is always a
structural deadlock, but not vice versa.
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Structuring Method

The following discussion concentrates on T-invariants. Likewise, the technique can be applied to P-
invariants due to the given symmetry of the two notions.

We define a dependency relation based on a set of minimal T-invariants. It can be equally applied to
the full set of all minimal T-invariants as well as to a subset, e.g. the set of non-trivial T-invariants.

Definition 5 (Dependency relation). Let N = (P, T, f, m0) be a Petri net, and let X denote a
set of minimal T-invariants x of N . Two transitions i, j ∈ T depend on each other, i ⊲⊳ j for short, if

∀x ∈ X : i ∈ supp(x) ⇔ j ∈ supp(x). �

The dependency relation fulfills the following properties:

• reflexivity: i ⊲⊳ i;
a transition depends on its own.

• symmetry: i ⊲⊳ j ⇔ j ⊲⊳ i;
the dependency of i on j implies the dependency of j on i, and vice versa.

• transitivity: i ⊲⊳ j ∧ j ⊲⊳ k ⇒ i ⊲⊳ k;
if i depends on j, and j depends on k, then i depends also on k.

Thus it is an equivalence relation in the transition set T , leading to a partition of T . We call the
equivalence classes Ai with

Ai ⊆ T ∧ ∪Ai = T ∧ ∀i, j : i 6= j ⇒ Ai ∩ Aj = ∅ , (2)

maximal abstract dependent transition sets (ADT sets). The classification of all transitions is based
on the T-invariants’ supports only, and it holds

∀Ai, ∀x ∈ X : Ai ⊆ supp(x) ∨ Ai ∩ supp(x) = ∅. (3)

Contrary to T-invariants, which generally overlap, ADT sets are disjunctive by definition and induce
subnets which may overlap in interface places only. The set of interface places PIF between two ADT
sets Ai and Aj , with i 6= j, is formally defined by

PIF = (•Ai ∪ Ai
•) ∩ (•Aj ∪ Aj

•) ⊆ P . (4)

The subnets induced by ADT sets represent a possible structural decomposition of networks into
smaller subnets, which however are not necessarily connected. Generally, a further decomposition into
connected ADT sets is needed. Then we get non-maximal ADT sets. The decomposition of the set of
transitions into ADT sets inducing connected subnets guides the coarsening of a given net:

• macro transitions abstract from connected ADT sets, and

• places on the hierarchy’s top level correspond to the interface between the ADT sets.

The coarse structure gives a structured representation of all T-invariants, which may contribute to a
better understanding of the net behavior, see [2] for a more detailed discussion.
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Notably, ADT sets can be directly computed, without having to compute the set of minimal T-
invariants first. This can be done by checking the following system of linear equations for solvability for
all pairs of transitions i, j ∈ T :

C · y = 0, y 6= 0, y ≥ 0, y(i) = 0, y(j) 6= 0 . (5)

Thus the amount of T-invariants, which grows exponentially with the net size in the worst-case, does
not establish a limiting factor for our hierarchical structuring approach.

Continuous Petri Nets

Continuous Petri net, Introduction

Continuous Petri nets [6,7] are a quantified version of the standard notion of qualitative Petri nets. Like
their ancestor, they are weighted, directed, bipartite graphs, however arc weights and the numbers as-
signed to places are now non-negative real numbers.

Definition 6 (Continuous Petri net, Syntax). A biochemically interpreted continuous Petri net
is a quintuple CONBio = (P, T, f, m0, v), where

• P and T are finite sets with P ∪ T 6= ∅, P ∩ T = ∅,

• f : ((P × T ) ∪ (T × P )) → R+

0 ,

• m0 : P → R+

0 .

• v : T → H with

– H :=
{

ht |ht : R|•t| → R , t ∈ T
}

,

– v(t) = ht for all transitions t ∈ T . �

The elements of P are called continuous places and the elements of T continuous transitions. The
function f specifies the arcs and their non-negative real-valued weights, m0 the initial continuous marking

(state). m(p) ∈ R
+

0 yields the token value, which we interpret as the concentration of the species modeled
by the place. Please note, m(p) corresponds to [ p ], a notation more popular in systems biology.

H is the set of all firing rate functions ht, and the function v assigns to each transition t a firing
rate function ht. The domain of ht is restricted to the set of pre-places of t to enforce a close relation
between network structure and firing rate functions. Therefore, the marking-dependent continuous firing
rate ht(m) actually depends only on a sub-marking.

Technically, any mathematical function in compliance with this restriction is allowed for ht. However,
often special kinetic patterns are applied, whereby Michaelis-Menten and mass-action kinetics seem to
be the most popular ones.

A firing rate may also be negative, in which case the reaction takes place in the reverse direction.
This feature is commonly used to model reversible reactions by just one transition, where (per definition)
positive firing rates correspond to the forward direction, and negative ones to the backward direction.

We adopt for continuous nodes all notions and notations, which have been introduced for discrete
nodes (right after Definition 1).
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Continuous Petri net, Semantics

Each continuous marking is a place vector m ∈ (R+

0
)|P |. A continuous transition t is enabled in m, if

∀p ∈ •t : m(p) > 0. Due to the influence of time, a continuous transition is forced to fire as soon as
possible. The instantaneous firing of a transition t is carried out like a continuous flow, whereby the
strength of the flow is determined by its firing rate function v(t).

The semantics of a continuous Petri net is defined by a system of ODEs, whereby one equation
describes the continuous change over time on the token value of a given place by the continuous increase
of its pre-transitions’ flow and the continuous decrease of its post-transitions’ flow, i.e., each place p

subject to changes gets its own equation:

dm (p)

dt
=

∑

t∈•p

f (t, p) v (t) −
∑

t∈p •

f (p, t) v (t) . (6)

Each equation corresponds basically to a line in the incidence matrix, whereby now the matrix elements
consist of the rate functions multiplied by the arc weights, if any.

In other words, the continuous Petri net becomes the structured description of the corresponding
ODEs, see also [1, 7, 8]. The ODEs defined by a continuous Petri net are unique (up to behavior-
preserving mathematical transformations), but not vice versa. Generally, the network structure is not
uniquely defined by a system of ODEs.
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