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SUPPLEMENTAL MATERIAL

Three-state MTs considering only dynamic
instability

In the absence of interactions, the length distribution
of a population can be modeled using a partial differential
equation [3]. For the two-state model,
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where Ng(l, t) and Ns(l, t) represent the density of grow-
ing and shrinking MTs of length l, respectively, and
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represent transitions between states and advection, re-
spectively. If new MTs are nucleated with zero length
and in the growing state at rate k, the boundary condi-
tions are vgNg(0, t) = k and Ns(l, t)→ 0 as l→∞. This
leads to a unique steady-state Ni = αiexp

(
−l/l̄

)
where

l̄ =
vgvs

fgsvs − fsgvg
(3)

as long as the denominator is positive [3]. The mean
lifetime can be found by assuming the system is in steady-
state, when nucleation must balance a constant death
rate τ−1,
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where τ is the mean lifetime. This gives

τ =
vg + vs

fgsvs − fsgvg
(5)

in agreement with [4]. For the three-state model, the par-
tial differential equations now involve Ni(l, t), i = (g, p, s)
and the matrices become

A =

 −(fgp + fgs) fpg fsg
fgp −(fpg + fps) fsp
fgs fps −(fsg + fsp)

 (6)

and

V =

 −vg 0 0
0 0 0
0 0 +vs

 . (7)

The mean length and mean lifetime can be found as
above,
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D
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where the denominator

D = vs(fgpfps + fgsfpg + fgsfps)
− vg(fpgfsg + fpgfsp + fpsfsg) (10)

is the threshold quantity: if it is negative, the mean
length and lifetime are infinite. In both the two-state and
three-state models, if the minus-end shrinks at a constant
velocity, we make the coordinate transformation

vg = vpg − vms (11)
vs = vps + vms . (12)

Relationship between two-state models and Baulin
et al. [1]

To understand the difference between catastrophe-
inducing collisions and pause-inducing collisions, we con-
sider the two-state model, which has five parameters, vpg ,
vps , fgs and fsg which all pertain to the plus-end, and
vms , which pertains to the minus-end. In addition, the
rate of nucleation, k0, provides an additional time scale.
However, if we rescale time to be measured in units of
T ≡ (vpg)−2/3k

−1/3
0 and length L ≡ (vpg/k0)1/3, then the

two-state model is described by four parameters,

α = vps/v
p
g (13)

β = fgsT (14)
γ = 1/(fsgT ) (15)
δ = vms /v

p
g . (16)

(Note that scaling by l̄ and τ is not appropriate here,
since we are sometimes in the infinite-growth regime.)
To ensure MT nucleation can occur, δ < 1. In this
parametrization, the model of Baulin et al. [1] corre-
sponds to α, β, γ → 0 and it completely described by
one parameter, δ (related to their α, which they set in
[0.17, 1.5]). The two-state parameters reported in [2]
(Table 1) give α = 1.8, β = 0.16, γ = 3.1 and either
δ = 0 (since they did not study minus-end dynamics) or
γ = 0.09 (using vms from [5]).
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Effects of a catastrophe-inducing boundary in the
absence of MT-MT interactions

Even in the absence of any MT-MT interactions, MTs
randomly nucleated on a cylindrical cortex can lead to
a transverse ordering if collisions with the boundaries
induce catastrophe. A MT plus-end a distance y from
the boundary making an angle θ, measured from trans-
verse the axis of the cylinder, can grow to a maxi-
mum length L = (LC − y)/sin θ where LC is the cell
length. In this case, the right boundary condition on
the system of partial differential equations in Eq. 1 is
vsNs(L, t) = vgNg(L, t). The solution is still exponential
with decay length l̄ but is truncated. The average length
of MTs of angle θ at height y is

〈l〉 ∝
(

1− e−y/(l̄ sin θ)
)(

1− e−(LC−y)/(l̄ sin θ)
)
. (17)

From this it is straightforward to compute the order pa-
rameter S. We can also compute a local order parameter
S(y) that takes into account all MTs passing through
a given y value (a given circumference of the cylinder).
Although S(y) has no closed form, it can be computed
numerically. We find that this boundary-induced order-

ing decays away from the boundaries towards midcell,
with a decay length scale of roughly l̄ (data not shown).
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