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Appendix A: Membrane Potential Dependence of the Kinetic Parameters 
The binding of nNa+ and 1Ca2+ to the antiporter and translocation of nNa+ and 1Ca2+ via the an-
tiporter depends on the electrostatic field of the charged membrane. In order to account for this 
dependency, we assume here that the kinetics parameters Keq, KNe, KNx, KCe, KCx, ka  and kb de-
pend on the electrostatic potential difference ∆Ψ across the membrane. Our approach is similar 
to that of Metelkin et al. (1) on the kinetic modeling of mitochondrial adenine nucleotide translo-
case (ANT) and Dash et al. (2) on the kinetic modeling of mitochondrial Ca2+ uniporter (CU). 
This approach is based on biophysical principles as well as laws of thermodynamics, electrostat-
ics, and superposition. In this approach, it is assumed that the total value of the membrane poten-
tial is the sum of local electric potentials, each influencing the corresponding stages of nNa+ and 
1Ca2+ binding and translocation. 

The assumed stages of nNa+ and 1Ca2+ binding to the antiporter and nNa+ and 1Ca2+ 
translocation via the antiporter for a 3Na+:1Ca2+ electrogenic exchange (n = 3) are schematized 
in Figure A1. Every position of Na+ or Ca2+ on the antiporter unit is characterized by an electric 
potential value. We assume here that the difference in potentials between the adjacent positions 
of Na+ or Ca2+ is proportional to the total potential difference across the membrane. The sum of 
potential differences between the consecutive positions of Na+ or Ca2+ is equal to the total poten-
tial difference across the membrane. Thus this approach divides the total drop in potential across 
the membrane into different elementary stages. The scheme described in Figure A1 illustrates the 
influence of such elementary potential drops on the rate of 3Na+:1Ca2+ antiporter operation. Val-
ues of the potential drops are marked for all elementary stages of the scheme.  

Equilibrium Constant: As a cycle of antiporter operation for a nNa+:1Ca2+ exchange involves 
translocation of n elementary positive charges (nNa+) into the matrix and two elementary posi-
tive charges (1Ca2+) out of the matrix, the dependence of the equilibrium constant Keq on the 
membrane potential ΔΨ can be expressed as (Nernst equation)  

eq Na Ca exp[( Z Z ) ],   / ,K n F RT= − ⋅ ΔΦ ΔΦ = ΔΨ            (A1) 

where F, R, and T denote the Faraday’s constant, ideal gas constant, and absolute temperature, 
respectively; ZCa = 2 is the valence of Ca2+ and ZNa = 1 is the valence of Na+; ΔΦ is the non-
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dimensional potential difference across the membrane. In the absence of electric field (ΔΨ = 0), 
or for a 2Na+:1Ca2+ electroneutral exchange, Keq = 1. 
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Figure A1: Free-energy barrier formalism for Na+ influx/Ca2+ efflux via the 3Na+-1Ca2+ 
antiporter. (A:I-III) The consecutive states of 3Na+ (circle) and 1Ca2+ (triangle) bound anti-
porter functional unit in the process of Na+-Ca2+ exchange that is used to derive the dependence 
of the kinetic parameters on the membrane potential ΔΨ ; αNe (αCe) represents the ratio of poten-
tial difference between Na+ (Ca2+) bound at the site of antiporter facing the external side of the 
IMM and Na+ (Ca2+) in the bulk phase to the total ΔΨ ; αNx (αCx) represents the ratio of potential 
difference between Na+ (Ca2+) bound at the site of antiporter facing the internal side of the IMM 
and Na+ (Ca2+) in the bulk phase to the total ΔΨ ; βNe (βCe) is the displacement of external Na+ 
(Ca2+) from the coordinate of maximum potential barrier; βNx (βCx) is the displacement of inter-
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nal Na+ (Ca2+) from the coordinate of maximum potential barrier. (B) The potential energy bar-
rier profile along the reaction coordinate that is used to derive the ΔΨ -dependence of the rate 
constants. The dashed line shows the profile of the potential created by the electric field of the 
charged membrane. The points I, II, and III correspond to the 3Na+ and 1Ca2+ bound antiporter 
states depicted in the upper panel (A). The rate constants ka and kb are related to the changes in 
potential energy (Gibbs free energy) ΔGa and ΔGb. In the absence of electric field ( ΔΨ = 0 mV), 
the heights of free energy barriers in the forward and reverse directions are equal when the disso-
ciation constants for the binding of external and internal Na+ and Ca2+ to the antiporter are equal: 

0 0 0
a bG G GΔ = Δ = Δ  if and only if 0 0 0 0 0 0

Ne Nx N Cx Ce C= =  and  =K K K K K K= .  
 

Dissociation Constants: To derive the dependence of the dissociation constants of Na+ and Ca2+ 
binding to the antiporter on the membrane potential ΔΨ, let us first consider the binding of ex-
ternal Na+ and Ca2+ to the antiporter. The changes in Gibbs free energies for n binding reactions 
of external Na+ and one binding reaction of external Ca2+ are given by  

     ( )
( )

0 + + +
Ne, Ne, Na Ne e e e

0 2+ 2+
Ce Ce Ca Ce e e

( )ln [E 1 Na ][Na ] / [E Na ] ; 1, 2, ... ,

ln [E][Ca ] / [ECa ] ,
p p Z F RT p p p n

Z F RT

μ μ α

μ μ α

Δ = Δ + ΔΨ + − =

Δ = Δ + ΔΨ +
 (A2) 

where 0
Ne, pμΔ  and 0

CeμΔ  are the changes in standard Gibbs free energies of pth external Na+ and 
one external Ca2+ binding reactions, respectively. The parameter αNe is the ratio of potential dif-
ference between Na+ bound to the site of antiporter facing the cytoplasmic side of the IMM and 
Na+ in the bulk phase to the total membrane potential ΔΨ (ΔΨ = Ψe – Ψx; outside potential mi-
nus inside potential; so ΔΨ is positive). Similarly, αCe is the ratio of potential difference between 
Ca2+ bound to the site of antiporter facing the cytoplasmic side of the IMM and Ca2+ in the bulk 
phase to the total membrane potential ΔΨ. An assumption inherent in this model is that all Na+ 

binding sites on the antiporter are at equal distance from the bulk medium. At equilibrium (ΔμNe,p 
= 0 and ΔμCe = 0), Eq. (A2) gives 

( )
( )

+ + + 0
Ne, e e e Ne, Na Neeq

2+ 2+ 0
Ce e e Ce Ca Ceeq

[E( 1)Na ][Na ] /[E Na ] exp( );  1,2,... ,

[E][Ca ] /[ECa ] exp( ),

α

α

= − = − ΔΦ =

= = − ΔΦ

p pK p p K Z p n

K K Z
       (A3) 

where 0
Ne, pK = Ne, ( 0)pK ΔΨ = = 0

Ne,exp( / )p RTμ−Δ  and 0
CeK = Ce( 0)K ΔΨ = = 0

Ceexp( / )RTμ−Δ . 
This indicates that the dissociation constants associated with the binding of external Na+ as well 
as external Ca2+ to the antiporter are reduced (i.e., making the association easier) when ΔΨ > 0, 
provided αNe and αCe are positive.  

Similarly, for the binding of internal Na+ and Ca2+  to the antiporter, we have 

( )
( )

+ + + 0
Nx, x x x Nx, Na Nxeq

2+ 2+ 0
Cx x x Cx Ca Cxeq

[( 1)Na E][Na ] /[ Na E] exp( );  1,2,... ,

[E][Ca ] /[Ca E] exp( ),

α

α

= − = + ΔΦ =

= = + ΔΦ

p pK p p K Z p n

K K Z
       (A4) 

where 0
Nx,pK = Nx, ( 0)pK ΔΨ = = 0

Nx,exp( / )p RTμ+Δ  and 0
CxK = Cx ( 0)K ΔΨ = = 0

Cxexp( / )RTμ+Δ ; 
0
Nx,pμΔ  and 0

CxμΔ  are the standard changes in Gibbs free energies of n internal Na+ and one inter-
nal Ca2+ binding reactions, respectively. The parameter αNx is the ratio of potential difference 
between Na+ bound at the site of antiporter facing the matrix side of the IMM and Na+ in the bulk 
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phase to the total membrane potential ΔΨ . Similarly, αCx is the ratio of potential difference be-
tween Ca2+ bound at the site of antiporter facing the matrix side of the IMM and Ca2+ in the bulk 
phase to the total membrane potential ΔΨ . In contrast to KNe,p and KCe, the dissociation constants 
KNx,p and KCx for binding of internal Na+ and internal Ca2+ to the antiporter are increased (i.e., 
making the association difficult) when ΔΨ > 0, provided αNx and αCx  are positive. 
 In any of the models derived in the paper (Model 1, Model 2, and Model 3), the dissocia-
tion constants KNe, KNx, KCe, and KCx can be obtained from Eqs. (A3) and (A4) as 

0 0
Ne Ne Ne Na Nx Nx Nx Na

0 0
Ce Ce Ce Ca Cx Cx Cx Ca

exp( ),    exp( ),

exp( ),     exp( ).

α α

α α

= − ΔΦ = + ΔΦ

= − ΔΦ = + ΔΦ

K K Z K K Z

K K Z K K Z
          (A5) 

For simplicity and reducing the number of unknown biophysical parameters, we assume here that 
αNe = αCe = αe and αNx = αCx = αx, that is, the Na+ and Ca2+ binding sites on the antiporter are lo-
cated at equal distances from the bulk phase on either side of the IMM. Thus, the four dissocia-
tion constants KNe, KNx, KCe and KCx are fully characterized by six unknown parameters 0

NeK , 0
CeK , 

0
NxK , 0

CxK , αe and αx, increasing the total number of unknown parameters by two. For positive 
αe and αx, the dissociation constants of Na+ and Ca2+ binding tend to decrease on the outside and 
increase on the inside of the IMM. Also note here that 0

NeK  and 0
CeK  can be equal to/distinct from 

0
NxK and 0

CxK , respectively (see Case 1 and Case 2 in the paper). 

Rate Constants: The dependence of the rate constants ka and kb on the membrane potential ΔΨ 
during conformational changes of the antiporter complexes 2+ + +

x x eCa H E Nam n and + + 2+
x e eNa E H Can m  

can be accounted for by using Eyring’s free energy barrier theory for absolute reaction rates (3-
5). For simplicity, we assume here that the free energy profile for the translocation of nNa+ and 
1Ca2+ across the membrane (the limiting stage) is a single barrier (Figure A1B), and the translo-
cation is a jump over the barrier from one potential well to another. We define the reaction coor-
dinate for Na+ translocation as the coordinate from Na+ bound at the external side to Na+ bound 
at the internal side of the membrane along the direction of Na+  translocation. Similarly, the reac-
tion coordinate for Ca2+ translocation is defined as the coordinate from Ca2+ bound at the internal 
side to Ca2+ bound at the external side of the membrane along the direction of Ca2+  translocation. 
The local maximum or peak (State II) of the free energy profile corresponds to the barrier that 
impends the nNa+  and 1Ca2+ translocation, while the local minima (States I and III) corresponds 
to the 2+ + +

x x eCa H E Nam n  and + + 2+
x e eNa E H Can m states on either side of the membrane. The nNa+ and 

1Ca2+ exchange rate is determined by the probability of the antiporter to translocate nNa+ for 
1Ca2+ from one binding site to the other in opposite direction, which depends on the height of the 
free energy barrier, which in turn depends on ΔΨ, as shown in Figure A1B. 

 According to Eyring’s free energy barrier theory, the rate (k) at which an ion can jump 
from one binding site to other is given by 

( )( / ) exp / ,   κ= −ΔBk T h G RT               (A6) 

where GΔ  is the height of the free energy barrier; kB is Boltzmann’s constant; h is Planck’s con-
stant; and T is the absolute temperature. In this model, the free energy barrier heights (State II to 
States I and III) can be defined by, 
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0

Na Ne Ca Cx
0

Na Nx Ca Ce

,

,

β β

β β

Δ = Δ − ΔΨ+ ΔΨ   

Δ = Δ + ΔΨ− ΔΨ   
a a

b b

G G nZ F Z F

G G nZ F Z F
            (A7) 

where 
e,j j x,j j

Ne Ne Cx Cx
Na Ca

x,j j e,j j
Nx Nx Ce Ce

Na Ca

, ,   

, .   

β β
β β β β

β β
β β β β

= + = +

= + = +

∑ ∑

∑ ∑

j j

j j

Z Z
nZ Z

Z Z
nZ Z

          (A8) 

In Eq. (A7), 0
aGΔ  and 0

bGΔ  are the free energy barrier heights in the absence of electric field 
(ΔΨ = 0 mV); βNe and βCe are the displacements of external Na+ and Ca2+ (State I and State III) 
from the coordinate of maximum potential barrier (State II); βNx and βCx are the displacements of 
internal Na+ and Ca2+ (State III and State I) from the coordinate of maximum potential barrier 
(State II). Note here that 0 0 0

a bG G GΔ = Δ = Δ subject to conditions 0 0 0
Ne Nx NK K K= =  and 

0 0 0
Ce Cx CK K K= = . For simplicity, the effects of the displacements of other elementary charges that 

constitute the antiporter on the rate of conformational change has been lumped into the biophysi-
cal parameters Neβ , Nxβ , Ceβ  and Cxβ , as shown in Eq. (A8). In Eq. (A8), the parameter Zj is the 
valence of the jth charged species of the antiporter and βe,j and βx,j are the corresponding dis-
placements from the external and internal sides of the antiporter. 

 It is evident from Eq. (A7) that the Na+ ions tend to decrease the height of the barrier in 
the inward direction, but increase the height of the barrier in the outward direction, when ΔΨ > 0 
(see Figure A1B). Similarly, the Ca2+ ions tend to increase the height of the barrier in the inward 
direction, but decrease the height of the barrier in the outward direction, when ΔΨ > 0. In other 
words, it becomes easier for the Na+ (Ca2+) ions to cross the barrier in the inward (outward) di-
rection, but more difficult for the Na+ (Ca2+) ions to exit (enter) the matrix in the presence of a 
positive membrane potential, measured from outside to inside. Now, substituting Eq. (A7) into 
Eq. (A6), we obtain the rate constants of nNa+ and 1Ca2+ exchange as  

[ ]
[ ]

0
Ne Na Cx Ca

0
Nx Na Ce Ca

exp ( ) ,

exp ( ) ,

β β

β β

= + − ΔΦ

= − + ΔΦ
a a

b b

k k n Z Z

k k n Z Z
              (A9) 

where 0 0 0 0( / ) exp( / ) and ( / ) exp( / )a B a b B bk T h G RT k T h G RTκ κ= −Δ = −Δ  are the forward and re-
verse rate constants when ΔΨ = 0 mV. For simplicity and to reducing the number of unknown 
biophysical parameters, we assume here that the displacements of Na+ and Ca2+ ions (State I and 
State III) from the coordinate of maximum potential barrier (State II) are the same on either side 
of the IMM: βNe = βCe = βe and βNx = βCx = βx. Thus, the two rate constants ka and kb are fully 
characterized by four unknown parameters 0

ak , 0
bk , βe and βx, increasing the total number of un-

known parameters by two. 
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Appendix B: Model of Mitochondrial Na+-Ca2+ Antiporter for 2Na+:1Ca2+ Sto-
ichiometry 
This appendix presents three different kinetic models of mitochondrial 2Na+-1Ca2+ antiporter 
based on the proposed kinetic mechanism shown in Figure B1. The parameterization of these 
three kinetic models (Model 1: fully cooperativity, Model 2: partial cooperativity, and Model 3: 
no cooperativity) under two different model assumptions regarding the magnitudes of the bind-
ing constants of Na+ and Ca2+ to the antiporter at the inside and outside of the membrane (Case 1 
and Case 2) is done using the experimental data of Paucek and Jaburek (6). The model equations 
can be easily derived from Eqs. (10-11) with n = 2, and hence are not shown here. The model 
specifications and different model assumptions are the same as mentioned in the paper. The fit-
ting of all three models to the experimental data are shown in Figures B2 and B3. The estimated 
model parameter values are summarized in Table B1.  

  +
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Figure B1: Proposed kinetic mechanism of Na+-dependent Ca2+ efflux from mitochondria 
via Na+-Ca2+ antiporter with a presumed 2Na+:1Ca2+ stochiometry. The antiporter functional 
unit (E) is assumed to have two binding sites for Na+ and one binding site for Ca2+ facing either 
side of the inner mitochondrial membrane (IMM). In one process, two Na+ ions from the external 
(cytoplasmic) side of the IMM (2 +

eNa ) first cooperatively bind to the unbound antiporter E in 
two consecutive steps forming the antiporter complex +

eE2Na . Then, a Ca2+ ion from the internal 
(matrix) side of the IMM ( 2+

xCa ) binds to the complex +
eE2Na  forming the complex 2+ +

x eCa E2Na . 
In another process, a Ca2+ ion from the matrix side ( 2+

xCa ) first binds to the unbound antiporter E 
to form the antiporter complex 2+

xCa E . Then, two Na+ ions from the cytoplasmic side (2 +
eNa ) 

cooperatively bind to the complex 2+
xCa E  in two consecutive steps to form the complex 

2+ +
x eCa E2Na . The complex 2+ +

x eCa E2Na  that is formed via these two distinct processes then un-
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dergoes conformational changes (or flips upside down) to form the complex + 2+
x e2Na ECa . The 

complex + 2+
x e2Na ECa  undergoes the reverse processes, where it dissociates in two distinct proc-

esses to form two Na+ ions in the matrix side of the IMM (2 +
xNa ) and one Ca2+ ion in the cyto-

plasmic side of the IMM ( 2+
eCa ), in addition to the formation of the unbound antiporter E. K'Ne,1, 

K'Nx,1, K'Ne,2, K'Nx,2, K'Ce and K'Cx are the apparent dissociation constants associated with the 
binding of external and internal Na+ and Ca2+ to the antiporter. The exchange of 2Na+ for 1Ca2+ 
via the interconversion mechanism 2+ + + 2+

x e x eCa E2Na 2Na ECa↔  is limited by the forward and re-
verse rate constants ka and kb which are independent of IMM potential ΔΨ . 

 
       Case 1 0 0 0 0 0 0

Ne Nx Ce Cx( , , )a bK = K K = K k = k         Case 2 ≠ ≠ ≠0 0 0 0 0 0
Ne Nx Ce Cx( , , )a bK K K K k  k  

 
Figure B2: Comparison of mitochondrial 2Na+-1Ca2+ antiporter models (lines) to the ex-
perimental data (points) of Paucek and Jaburek (6) on the kinetics of Na+ and Ca2+ fluxes 
via the antiporter with fixed external pH. Shown are the best fits of three different kinetic 
models (Model 1, Model 2, and Model 3) under two different model assumptions (Case 1, left 
panel: A,C and Case 2, right panel: B,D) to the kinetic data of Paucek and Jaburek in which the 
initial rates of Ca2+ influx (Na+ efflux) with variations in external [Ca2+] (internal [Na+] = 25 mM, 
external [Na+] = 0 mM, internal [Ca2+] = 0 µM, internal pH = 7.3, and external pH = 7.3) (A,B: 

A B 

C D 

[Na+]x = 25 mM [Na+]x = 25 mM 

[Ca2+]x = 10 μM [Ca2+]x = 10 μM



 9

upper panel) and the initial rates of Na+ influx (Ca2+ efflux) with variations in external [Na+] (in-
ternal [Na+] = 0 mM, internal [Ca2+] = 10 µM, external [Ca2+] = 0 µM, internal pH = 7.3, and 
external pH = 7.3) (C,D: lower panel) were measured in proteoliposomes reconstituted with puri-
fied Na+-Ca2+ antiporters of beef heart mitochondria. The models were fitted to the data by set-
ting the membrane potential ΔΨ = 0 mV, in consistent with the experimental protocol. The 
dashed lines are the simulations from Model 1 (K'Ne,1  >> 1 μM, K'Ne,2  << 1 μM and K'Nx,1 >> 1 
μM, K'Nx,2 << 1 μM such that 2

Ne,1 Ne,2 NeK K K′ ′ ′=  and 2
Nx,1 Nx,2 NxK K K′ ′ ′= ; fully cooperativity), the 

solid lines are the simulations from Model 2 (K'Ne,1= K'Ne,2 = K'Ne and K'Nx,1 = K'Nx,2 = K'Nx; par-
tial cooperativity), and the dotted lines are the simulations from Model 3 (K'Ne,1 = 2K'Ne , K'Ne,2 = 
K'Ne/2 and K'Nx,1 = 2K'Nx, K'Nx,2 = K'Nx/2; no cooperativity) for both the conditions (Case 1: 

0 0
Ne Nx=K K , 0 0

Ce Cx=K K  and 0 0=a bk k  and Case 2: 0 0
Ne Nx≠K K , 0 0

Ce Cx≠K K  and 0 0≠a bk k ). The model 
parameter values are as given in Table B1. 
 

Model 2, Case 1            
0 0 0 0 0 0
Ne Nx Ce Cx( , , )a bK = K K = K k = k  

Model 2, Case 1 
0 0 0 0 0 0
Ne Nx Ce Cx( , , )a bK = K K = K k = k  

 

Figure B3: Comparison of mitochondrial 2Na+-1Ca2+ antiporter models (lines) to the ex-
perimental data (points) of Paucek and Jaburek (6) on the kinetics of Na+ and Ca2+ fluxes 
via the antiporter with varying external pH. Shown are the best fits of the best kinetic model 
(Model 2, Case 1) to the kinetic data of Paucek and Jaburek in which the initial rates of Ca2+ in-
flux (Na+ efflux) with (A) variations in external [Ca2+] at four different levels of external pH (in-
ternal [Na+] = 50 mM, external [Na+] = 0 mM, internal [Ca2+] = 0 µM, internal pH = 7.3, and ex-
ternal pH = 7.0, 7.3, 6.5 and 7.8), and (B) variations in external pH and fixed external [Ca2+] (in-
ternal [Na+] = 50 mM, external [Na+] = 0 mM, internal [Ca2+] = 0 µM, external [Ca2+] = 2 µM, 
and internal pH = 7.3) were measured in proteoliposomes reconstituted with purified Na+-Ca2+ 
antiporters of beef heart mitochondria. Also shown in plot B are the model simulations of the 
initial rates of Ca2+ influx (Na+ efflux) with variations in external pH at four different levels of 
external [Ca2+] (1, 2, 5 and 10 µM) with other experimental conditions remaining the same. The 
model specifications for Model 2 and model assumptions for Case 1 are the same as in Figure B2. 
The model was fitted to the data by setting the membrane potential ΔΨ = 0 mV, in consistent 
with the experimental protocol. The model parameter values are given in Table B1. 

 

A B 

[Na+]x = 50 mM 
pHx = 7.3 

[Na+]x = 50 mM 
pHx = 7.3 
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Table B1: The estimated parameter values in the kinetic models of mitochondrial 2Na+-1Ca2+ 
antiporter from the experimental data of Paucek and Jaburek (6). The kinetic parameters satisfy 
the constraint: 0 0 0 0 0 0 2

Ce Cx Nx Ne( / )( / )( / ) 1=a bk k K K K K . The biophysical parameters are chosen as αe 
= αx = α = 0 and βe = βx = β = 0.5. The rate constants are in the units of µmol/mg/min and the 
dissociation constants are in the units of molar (M). Reference ‘r1’ corresponds to Figure B2 
(A,B) and reference ‘r2’ corresponds to Figure B2 (C,D). 
 

Values for Model 1 Values for Model 2 Values for Model 3 Parameter 
Case 1 
0 0
Ne Nx

0 0
Ce Cx

( ,

)

K K

K K

=

=
 

Case 2 
0 0
Ne Nx

0 0
Ce Cx

( ,

)

K K

K K

≠

≠

Case 1 
0 0
Ne Nx

0 0
Ce Cx

( ,

)

K K

K K

=

=

Case 2 
0 0
Ne Nx

0 0
Ce Cx

( ,

)

K K

K K

≠

≠
 

Case 1 
0 0
Ne Nx

0 0
Ce Cx

( ,

)

K K

K K

=

=
 

Case 2 
0 0
Ne Nx

0 0
Ce Cx

( ,

)

K K

K K

≠

≠

Refer-
ence 

0
ak  
0
bk  
0
NeK  
0
NxK  
0
CeK  
0
CxK  

0
Ce′K (pH=7.0) 

0
Ce′K (pH=7.3) 

0
Ce′K (pH=6.5) 

0
Ce′K (pH=7.8) 

0
Cx′K (pH=7.3) 

KH1 
KH2 

5.2, 5.75 
5.2, 5.75 
8.86×10-3 

8.86×10-3 

2.29×10-9 
2.29×10-9 

1.37×10-7 
1.70×10-6 

3.92×10-5 

1.22×10-3 
1.70×10-6 

6.47×10-8 

1.40×10-7 

5.1, 5.71 
5.2, 5.82 
8.20×10-3

7.93×10-3 

2.29×10-9

2.10×10-9

1.38×10-7

1.70×10-6 

4.00×10-5

1.22×10-3

1.56×10-6

6.45×10-8 

1.40×10-7

5.9, 5.9 
5.9, 5.9 

5.61×10-3

5.61×10-3

2.27×10-9

2.27×10-9 

1.30×10-7

1.56×10-6

3.76×10-5

1.18×10-3

1.56×10-6

6.51×10-8

1.38×10-7

5.81, 6.0 
5.90, 6.1 
5.89×10-3 
5.60×10-3 
2.26×10-9 
2.01×10-9 
1.45×10-7 
1.88×10-6 
4.16×10-5 
1.37×10-3 
1.67×10-6 
6.39×10-8 
1.43×10-7 

5.8, 5.9 
5.8, 5.9 

7.10×10-3 
7.10×10-3 
2.10×10-9 
2.10×10-9 
1.34×10-7 
1.68×10-6 
3.94×10-5 
1.22×10-3 
1.68×10-6 
6.37×10-8 
1.42×10-7 

5.3, 5.83 
5.4, 5.94 
5.76×10-3 
5.56×10-3 
2.30×10-9 
2.10×10-9 
1.42×10-7 
1.71×10-6 
4.23×10-5 
1.23×10-3 
1.56×10-6 
6.39×10-8 
1.40×10-7 

r1, r2 
r1, r2 
r1, r2 
r1, r2 
r1, r2 
r1, r2 
r1, r2 
r1, r2 
r1, r2 
r1, r2 
r1, r2 
r1, r2 
r1, r2 
r1, r2 
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Appendix C: Integrated Modeling of Mitochondrial Bioenergetics and Ca2+ 
Handling  
In spite of large number of kinetic studies (6-10), the stoichiometry of mitochondrial Na+-Ca2+ 
antiporter is not well established. Furthermore, the antiporter function under pathophysiological 
conditions (e.g., myocardial ischemia) is not well known. In a step towards understanding these 
aspects, the proposed model of mitochondrial Na+-Ca2+ antiporter and our recently developed 
model of mitochondrial Ca2+ uniporter (2) is integrated to our existing model of mitochondrial 
bioenergetics and Ca2+ handling (11). The integrated model is then applied to characterize the 
stoichiometry of the antiporter as well as to predict the antiporter function with varying levels of 
external (cytosolic) pH that occur during pathophysiological conditions. 
 

Characterization of the Stoichiometry of the nNa+-1Ca2+Antiporter: 
This section presents the application of the proposed kinetic model of mitochondrial nNa+-1Ca2+ 
antiporter to characterize the stoichiometry of the antiporter. For doing this, the best model of the 
antiporter (Model 2, Case 1; n = 2 or 3) is integrated into our recently developed computational 
model of mitochondrial bioenergetics and Ca2+ handling (11). The resulting integrated model is 
further modified by incorporating our recently developed biophysical model of mitochondrial 
Ca2+ uniporter (2), while keeping the other model components and equations the same, as re-
ported in the previous Supplementary Material (11). The integrated model (with n = 2 and 3) is 
then applied to simulate the experimental data of Cox and Matlib (12) in which the time course 
of matrix free [Ca2+] in purified respiring mitochondria from rabbit hearts with addition of vary-
ing levels of Na+ to the extra-matrix buffer medium with the activity of mitochondrial Ca2+ uni-
porter blocked by ruthenium red. The result of this analysis is summarized in Figure C1. The in-
tegrated model with 3Na+-1Ca2+ antiporter successfully describes the data, while the integrated 
model with 2Na+-1Ca2+ antiporter deviates significantly from the data. This further validates our 
previous hypothesis that the stoichiometry of mitochondrial Na+-Ca2+ antiporter is 3:1 (i.e., an 
electrogenic exchange of 3Na+ for 1Ca2+ via the antiporter). 

 

n = 2 

A B 

n = 3 
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Figure C1: Characterization of the stoichiometry of mitochondrial nNa+-1Ca2+ antiporter. 
Shown are the comparisons of the integrated model predictions (lines) to the experimental data 
(points) of Cox and Matlib (12) with both (A,C,D) 2Na+-1Ca2+ and (B,C,D) 3Na+-1Ca2+ anti-
porter models. The total buffer [Ca2+] was fixed at 20 μM, corresponding to a free buffer [Ca2+] 
of 0.15 μM with 50 μM of EGTA in the external buffer medium (external pH = 7.2). The anti-
porter model uses the same parameter values for KCe, KCx, KH1, KH2, α and β as estimated before 
(Tables 1 and B1), while the rate constants ka and kb and the dissociation constants KNe and KNx 
are varied to obtain the best fit of the model to the data on the dynamic of matrix free [Ca2+] 
(Plots: A,B). The parameters KNe and KNx are found to be 1.6 mM for 3Na+-1Ca2+ antiporter 
model and 4.4 mM for 2Na+-1Ca2+ antiporter model. The rate constants ka and kb are found to be 
7.8 nmol of Ca2+/L/sec for 3Na+-1Ca2+ antiporter model and 650 nmol of Ca2+/L/sec for 2Na+-
1Ca2+ antiporter model. Plot C shows the comparisons of integrated model simulations to the ini-
tial rates of decrease of matrix free [Ca2+] following addition of different levels of Na+ to the ex-
ternal buffer medium, using both 2Na+-1Ca2+ and 3Na+-1Ca2+ antiporter models. Plot D shows 
the corresponding comparisons on the levels of matrix free [Ca2+] after 3 min of Na+ addition to 
the buffer medium.  

 
Mitochondrial Ca2+ Dynamics during Pathophysiological Conditions: 
In order to predict the effect of 3Na+-1Ca2+ antiporter on mitochondrial Ca2+ regulation during 
pathophysiological states (high and low pH), the integrated model of mitochondrial bioenergetics 
and Ca2+ handling is used to simulate the dynamics of matrix free [Ca2+] based on the experi-
mental protocol of Cox and Matlib (12) with fixed external [Na+] of 3 mM and different external 
pH (Ca2+ uniporter blocked) which is shown in Figure C2 (A). The corresponding dynamics of 
Na+ influx (Ca2+ efflux) via the antiporter is shown in Figure C2 (B). The simulations with dif-
ferent external [Na+] and fixed external pH of 7.2 is shown above in Figure C1 (B). These simu-
lations show that the model is able to adequately predict the experimental data with external pH 
= 7.2, and the antiporter function is optimal at pH ≈ 7.0. However, at high and low pH (i.e., for 
pH < 6.5 and pH > 7.5), the model significantly deviates from the data. At these levels of pH, the 
Na+-Ca2+ antiporter flux is significantly reduced due to the inhibition of the antiporter function 
by protons, resulting in significantly higher matrix free [Ca2+] compared to pH around 7.0. 

 

C D
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Figure C2: Effect of extra-matrix buffer pH variations on the dynamics of matrix free 
[Ca2+] and Ca2+ efflux (Na+ influx) via the 3Na+:1Ca2+ antiporter. (Plot A) Shown are the in-
tegrated model simulations (lines) of the dynamics of matrix free [Ca2+] at different levels of ex-
ternal pH (6.5, 7.0, 7.2, 7.3, 7.8) based on the experimental protocol of Cox and Matlib (12) in 
which the time course of matrix free [Ca2+] were measured (points) following addition of varying 
levels of [Na+] to the external buffer medium (external EGTA = 50 µM, external total [Ca2+] = 
20 µM, internal free [Ca2+] = 1.27 µM, external pH = 7.2) in purified respiring mitochondria 
from rabbit hearts with the activity of Ca2+ uniporter blocked by ruthenium red (also see Figure 
C1). The data and corresponding model simulations are shown only for external [Na+] = 3 mM. 
(Plot B) Shown are the integrated model simulations of the dynamics of Na+-Ca2+ fluxes via the 
antiporter at different levels of external pH with the simulation protocol the same as in Plot A. 
The simulations are conducted by exclusively integrating the best 3Na+:1Ca2+ antiporter model 
(Model 2, Case 1) to our previous model of mitochondrial bioenergetics and Ca2+ handling (11). 
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