Biophysical Journal, Volume 98

Supporting Material

Autoregulation of ROS via UCP control

William J. Heuett and Vipul Periwal

Supplemental Figure Legends

Figure S1.

Uniporter Ca²⁺-transport rate, computed as \tilde{J}_{uni} (dashed curves) and J_{uni} (solid curves), for physiological (A) concentrations of intracellular Ca²⁺ ($\Delta \Psi = 120$ mV) and (B) $\Delta \Psi$ ($Ca_i = 0.2\mu$ M).

Figure S2.

Na⁺/Ca²⁺-exchanger rate, computed as \tilde{J}_{NaCa} (dashed curves) and J_{NaCa} (solid curves), for physiological (A) concentrations of mitochondrial Ca²⁺ ($\Delta \Psi = 120$ mV) and (B) $\Delta \Psi$ ($Ca_{\text{m}} = 0.2 \mu$ M).

Figure S3.

NADH_m production rate from glucose input, computed as $\tilde{J}_{N,Glu}$ with $ATP_i = 1.8$ mM (dashed curves) and $J_{N,Glu}$ (solid curves), for physiological concentrations of (A) plasma glucose ($Ca_m = 0.2\mu$ M) and (B) mitochondrial Ca²⁺ (Glu = 10mM).

Figure S4.

H₂O production rate from NADH_m oxidation, computed as $\tilde{J}_{O,N}$ (dashed curves) and $J_{O,N}$ (solid curves), for physiological (A) concentrations of NADH_m ($\Delta \Psi = 120$ mV) and (B) $\Delta \Psi$ ($NADH_m = 0.75$ mM).

Figure S5.

ATP production rate from the F_1F_0 -ATP synthase, computed as J_{F1F0} (dashed curves) and J_{F1F0} (solid curves), for physiological (A) ATP/ADP ratios ($\Delta \Psi = 120$ mV) and (B) $\Delta \Psi$ ($ATP_m = 5$ mM).

Figure S6.

ANT exchange rate, computed as \tilde{J}_{ANT} (dashed curves) and J_{ANT} (solid curves), for physiological (A) ATP/ADP ratios ($\Delta \Psi = 120$ mV) and (B) $\Delta \Psi$ ($ATP_m = 5$ mM).

Figure S1:

Figure S2:

Figure S3:

Figure S4:

Figure S5:

Figure S6: