HEK293T cells

Supplementary Figure 1: A Gd³⁺-resistant NALCN pore mutant (EEKA). a, A schematic showing a NALCN mutant with the EEKE motif sequence in the putative channel pore filter mutated to EEKA. b, c, Representative blockade by 10 μ M Gd³⁺ of the wild-type NALCN (EEKE) (b) and the pore mutant (EEKA) (c) overexpressed in HEK293T cells. Step protocols (300 ms, Vh = 0 mV, from -80 to +80 mV in step of 20 mV) were used. Both the wild-type and the EEKA mutant could be blocked by 1 mM verapamil¹⁰.

Supplementary Figure 2. Alteration of I_{SP} pharmacology by a pore mutation in NALCN.

a-c, Representative hippocampal neuron I_{SP} currents induced by bath application of 1 μ M SP (indicated by bars) from a wild-type (a), $Nalcn^{-/-}$ transfected with NALCN (b) or with the pore mutant (EEKA, c). Currents were recorded in a Tyrode's solution containing 10 mM extracellular K^+ at holding potential of E_K (K^+ Nernst potential, -67 mV) to minimize contribution from K^+ current. Pipette solution was the same as the K.Asp pipette used in current clamp. The current in (c) was insensitive to 10 μ M Gd^{3+} but was blocked by 1 mM verapamil. d, Summary of percentages of inhibition by 10 μ M Gd^{3+} . Some neurons had >100% inhibition of I_{SP} (amplitude calculated as the difference between inward current sizes before and after SP application) presumably because Gd^{3+} also blocked the basal leak current that existed before SP application¹⁰. Error bars, mean \pm s.e.m.

neurotensin-activated currents

Supplementary Figure 3: Requirement of NALCN in the neurotensin -activated cation current (I_{NT}) in ventral tegmental area neurons. I_{NT} amplitudes were obtained at various voltages in the wild-type (+/+), mutant (-/-) and mutant neurons transfected with NALCN (-/-; NALCN) or with an empty vector (-/-; mock). Data were obtained by subtracting currents recorded before from those recorded after NT application. The lines for mutant (-/-) and mutant transfected with empty vector (-/-; mock) overlap and are not distinguished. Currents at potentials positive to -40 mV were not studied because of complications by voltage-activated currents in these neurons. Error bars, mean \pm s.e.m.

Supplementary Figure 4

Supplementary Figure 4: Requirement of NALCN in the potentiaton of neuronal firing frequency by SP and NT. a, b, Bath application of SP (1 μ M, a) or NT (1 μ M, b) increased the firing frequency of VTA neurons from wild-type (*left*) but not the *Nalcn-/-* mutant (*right*). Recordings of 10 s are expanded below each panel. c, Average increases of firing frequency (in %) by SP and NT in wild-type (+/+), mutant (-/-), mutant neurons transfected with NALCN (-/-; NALCN) or with an empty vector (-/-; mock). Error bars, mean \pm s.e.m.

Supplementary Figure 5

WWW.W.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G	.
MVKRKSSEGQEQDGGRGIPLPIQTFLWRQTSAFLRPKLGKQYEASCVSFERVLVENKLHG	60
LSPALSEAIQSISRWELVQAALPHVLHCTATLLSNRNKLGHQDKLGVAETKLLHTLHWML	120
LEAPQDCNNDQFGGTDRGSSWGGSSSAFIHQIENQGSPGQPCRSSSHDEEENNRRKTFQN	180
SMATVELFVFLFAPLVHRIKESDLTFRLASGLVIWQPMWEHRQPEVSGFTALVKPIRNII	240
TAKRSSPINSQSQTCESPNQDTRQQGEGLQVVSEALQSDSISPKATISGCHQGNSFDGSL	300
SSQTSQERGPSHSRASLVIPPCQRSRYATYFDVAVLRCLLQPHWSEEGTQWSLMYYLQRL	360
RHMLEEKPEKTPDPDIPLLPRPRSSSMVAAAPSLVNTHKTQDLTMKCNEEEKSLSPEAFS	420
KVSLTNLRRSAVPDLSSDLGMNIFKKFKSRKEDRERKGSIPFHHTGKRRPRRMGVPFLLH	480
EDHLDVSPTRSTFSFGSFSGLGEDRRGIEKGGWOTTILGKLTRRGSSDAATEMESLSARH	540
SHSHHTLVSDLPDHSNSHGENTVKEVRSQISTITVATFNTTLASFNVGYADFFSEHMRKL	600
CSOVPIPEMPHEPLACANLPRSLTDSCINYSYLEDTEHIDGTNNFVHKNGMLDLSVVLKA	660
VYLVLNHDISSRICDVALNIVECLLQLGVVPCVEKNRKKSENKENESVEKRPSEGAFQFK	720
GVSSSSTSGFGAPSASGAGDGGGEEGGGGGGGGGGGGGGGGGGGGGGGGGGGG	780
DDNIPVSNHRLALTMLIKIVKSLGCAYGCGEGHRGLSGDRLRHQVFRENAQNCLTKLYKL	840
DKIQFRQTMRDYVNKDSLNNVVDFLHALLGFCMEPVTDNKAGFGNNFTTVDNKSTAQNVE	900
GIIVGAMFKSLITRCASTTHELHSPENLGLYCDIRQLVQFIKEAHGNVFRRVALSALLDS	960
AEKLAPGKKVEENGQESKPVGSKRSEAGSIADKGQVSSAPEECRSFMSGRPSQTPEHDEP	1020
MQGGNLGRKDFWRKMFKSQSAASDTSSQSEQDTSECTTAHSGNTSDRRARSRSRRISLRK	1080
KLKLPIGNWLKRSSLSGLADGVEDLLDISSVDRLSFIRQSSKVKFTSAVKLSEGGPGSGM	1140
ENGREEEENFFKRLGCHSFDDHLSPNQDGGKSKNVVNLGAIRQGMKRFQFLLNCCEPGTI	1200
PDASILAAALDLEAPVVARAALFLECARFVHRCNRGNWPEWMKGHHVNITKKGLSRGRSP	1260
TVGNKRNQKLQWSAAKLFYQWGDAIGIRLNELCHGESESPANLLGLIYDEETKRRLRKED	1320
EEEDFLDDSTVNPSKCGCPFALKMAACQLLLEITTFLRETFSCLPRPRTEPLVDLESCRL	1380
RLDPELDRHRYERKISFAGVLDENEDSKDSLHSSSHTIKSDAGAEEKKVPSRKIRIGGSR	1440
LLQIKGTRSFQVKKGGSLSSIRRVGSLKSSKLSRQDSESEAEELQLSQSRDTVTDLEGSP	1500
WSASEPSIEPEGLSNAGTEENYHRNMSWLHVMILLCNQQSFICTHVDYCHPHCYLHHSRS	1560
CARLVRAIKLLYGDSVDSLRESNHISNVALRGKKQKECSDKSCLRTPSLKKRVSDVNLEG	1620
KKDSGMLKYIRFQVMSLSPAPLSLLIKAAPILTEEMYGDIQPAAWELLLSMDEHMAGAAA	1680
AMFLLCAVKVPDAVSDMLMSEFHHAETVQRLNAVLKFHTLWRFRYQVWPRMEEGAQQIFK	1740
IPPPSINFTLPSPVLGMPSVPMFDPPWVPQCSGSVQDPINEDQSKSFSARAVSRSHQRAE	1800
HILKNLQQEEEKKRLGREASLITAIPITQEACYEPTCTPNSEPEEEEEVANLTSRRLSVS	1860
PSCTSSTSHRNYSFRRGSVWSVRSAVSAEDEEHATEHTPNHHVPQPPQAVFPACICAAVL	1920
PIVHLMEDGEVREDGVAVSAVAQQVLWNCLIEDPSTVLRHFLEKLTISNRQDELMYMLRK	1980
LLLNIGDFPAQTSHILFNYLVGLIMYFVRTPCEWGMDAISATLTFLWEVVGYVEGLFFKD	2040
LKQTMKKEQCEVKLLVTASMPGTKTLVVHGQNECDIPTQLPVHEDTQFEALLKECLEFFN	2100
IPESQSTHYFLMDKRWNLIHYNKTYVRDIYPFRRSVSPQLNLVHMHPEKGQELIQKQVFT	2160
RKLEEVGRVLFLISLTQKIPTAHKQSHVSMLQEDLLRLPSFPRSAIDAEFSLFSDPQAGK	2220
ELFGLDTLQKSLWIQLLEEMFLGMPSEFPWGDEIMLFLNVFNGALILHPEDSALLRQYAA	2280
TVINTAVHFNHLFSLSGYQWILPTMLQVYSDYESNPQLRRAIEFACHQFYILHRKPFVLQ	2340
LFASVAPLLEFPDAANTGSSKGVSAQCLFDLLQSLEGETTDILDILELVKAEKPLKSLDF	2400
CYGNEDLTFSISEAIKLCVTVVAYAPESFRSLQMLMVLEALVPCYLQKMKRQTSQVETVP	2460
AAREEIAATAALATSLQALLYSVEVLTRPMTAPQMSRSDQGHKGTTTANHTMSSGVNTRY	2520
PEQGAKLHFIRENLHLLEEGQGLPREELDERISREEFRRPRESLLNICTEFYKHCGPRLK	2580
ILQNLAGEPRVTALELLDVKSHMRLAEIAHSLLKLAPYDTQTMESRGLRRYIMEMLPITD	2640
WSAEAVRPALILILKRLDRMFNKIHKMPTLRRQVEWEPASSLIEGVCLTLQRQPIISFLP	2700
HLRSLINVCVNLVMGVVGPSSVADGLPLLHLSPYLSPPLPFSTAVVRLVALQIQALKEDF	2760
PLSHVISPFTNQERREGMLLNLLIPFVLTVGSGSKDSPWLEQPEVQLLLQTVINVLLPPR	2820
IISTSRSKNFMLESSPAHCSTPGDAGKDLRKEGLAESTSQAAYLALKVILVCFERQLGSQ	2880
WYWLSLQVKEMALRKVGGLALWDFLDFIVRTRIPIFVLLRPFIQCKLLAQPAENHEELSA	2940
RQHISDQLERRFIPRPLCKSSLIAEFNSELKILKEAVHSGSAYQGKTSISTVGTSTSAYR	3000
LSLATMSRSNTGTGTVWEQDSEPSQQASQDTLSRTDEEDEENDSVSMPSVVSEQEACLLS	3060
TIGRRRFSSHVSSMSAPQAEVGMLPSQSEPNVLDDSQGLAAEGSLSRVASIQSEPGQQNV	3120
LLQQPLGRKRGLRQLRRPLLSRQKTQTEPRNRHGARLSTTRRSIQPKTKPSVDQKRSVTF	3180
IEAQPEPTAAPTDIFPATGQPQSCSPGRARKPEGTEKPVLTSSPAIIIADLHSLSPKQSE	3240
PLLAEEGEKKEDEEIQGATAHCPLSTQLSDPDDFTGLETSSLLQHGDTVLHISEENGTEN	3300
PLLSSQFTFTP <u>PELGDTDSALDESHV</u> 3326	

Supplementary Figure 5: Deduced amino acid sequence of mUNC80. The peptide sequence used for antibody generation is underlined. A putative PDZ domain-binding motif in the carboxyl-terminus is in bold.

Supplementary Figure 6: Tyrosine phosphorylation of mUNC80 and NALCN. Lysates from HEK293T cells co-transfected with NALCN (FLAG-tagged), Src, together with or without (lane 2) mUNC80 were immunoprecipitated using anti-FLAG (lanes 1, 2) or anti-UNC80 (lanes 3, 4) antibodies, and probed with anti-phosphorylated tyrosine antibody. Cells used in lane 4 were treated with SFK inhibitor PP1 (10 μ M for 2h) before being lysed. Lanes 1, 2 and lanes 3, 4 are from two separate gels.

Supplementary Figure 7: Inhibition of I_{SP} by SFK inhibitors. Recordings were done with HEK293T cells transfected with NK1R, NALCN and mUNC80. Phosphotyrosine kinase inhibitor genistein (with daidzein as a control) and SFK inhibitors PP1, PP2 (with an inactive analog, PP3, as a control), and SU6656 were bath-applied at concentrations as indicated. I_{SP} amplitudes at -100 mV were used for analysis. Error bars, mean \pm s.e.m.

Supplementary Figure 8: Inhibition of I_{SP} by an anti-phospho-SFK antibody. a, b, Representative recordings of I_{SP} in HEK293T cells transfected with NK1R, mUNC80, and NALCN with pipette solutions containing anti-phospho-SFK antibody (a, 1 µg/ml, 1:1000 dilution) or heat-inactivated antibody (b). c, Summary of ISP sizes (at -100 mV) recorded with pipette solutions containing anti-phospho-SFK antibody, heat-inactivated anti-phospho-SFK antibody, antibody storage buffer, or control IgG. Recordings were done using ramp protocols (Vh = -20 mV; -100 to +100 mV in 1 s, every 20 s). Error bars, mean \pm s.e.m.

1 min

Supplementary Figure 9: Representative currents recorded from HEK293T cells transfected with NK1R, mUNC80, NALCN, and a constitutively active Src (Y529F) (a) or an empty vector (b). PP1, 20 μM. Open bars indicate perfusion with bath containing NMDG to replace Na⁺ and K⁺.

Supplementary Figure 10: Activation of NALCN by a recombinant active Src protein. a, b, Representative recordings from HEK293T cells transfected with NK1R, mUNC80, and NALCN with pipette solution containing a recombinant active Src (a, ~1.6 units/ml) or heatinactivated protein (b). An inward current developed upon intracellular dialysis with pipette solution containing the recombinant active protein (a). After the current reached a steady state, application of SP (1 μ M) did not induce an additional current (I_{SP} for c). c, Summary of current development (at -100 mV, as recorded in a) by cell dialysis with recombinant protein and additional currents activated by SP bath application after the cellular dialysis. PP1, 20 μ M. Open bars indicate perfusion with bath containing NMDG to replace Na⁺ and K⁺. Recordings were done using ramp protocols (Vh = -20 mV; -100 to +100 mV in 1 s, every 20 s). Error bars, mean \pm s.e.m.

List of Key Genes (Proteins) Appearing in the Manuscript

Nalcn (NALCN)

unc-79 (UNC-79)

unc-80 (UNC-80)

tac1r (NK1R)