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SUMMARY

A mathematical model, based on a deterministic differential equation framework, has been

developed to predict the impact of community chemotherapy programmes for human

schistosomiasis. Here, this model is validated using data collected from a long-term control

programme for urinary schistosomiasis on the island of Pemba, Zanzibar, United Republic of

Tanzania, initiated in 1986 and still ongoing, in which schoolchildren were offered praziquantel

chemotherapy every 6 months. Prevalence of infection and blood in urine were monitored in

all the schools (total 26000 children from 60 schools) and more detailed data were collected in

selected evaluation schools. Model predictions were run by using the initial prevalence as input.

The predictions were very close to the observed decreases in prevalence and in prevalence of

blood in urine. The correspondence improved further when the data were combined, going

from single school level to district, and when the entire data set was combined. The accuracy

of the predictions suggests that this model could be used as a tool to predict the consequences

of chemotherapy control programmes. It is currently in press as a Windows software package

under the name of ‘EpiSchisto’.

INTRODUCTION

Among human parasitic diseases, schistosomiasis

ranks second behind malaria in terms of socio-

economic and public health importance in tropical

and subtropical areas. Urinary schistosomiasis, caused

by the species Schistosoma haematobium, is common

in Africa and the Middle East. The main sign of

infection is haematuria due to deposition of eggs by

* Author for correspondence.
The model described in this paper is currently in press under the title
‘EpiDynamics : Models of Helminth Epidemiology’ to be published
by the Wellcome Trust Centre for the Epidemiology of Infectious
Disease. This CD-ROM will include the schistosomiasis programme
‘EpiSchisto’, the intestinal helminth programme ‘EpiWorm’ and
the lymphatic filariasis programme ‘EpiFil ’. It has been developed
for Windows 95}NT. Please direct enquiries about this software to
M. S. Chan (man-suen.chan!ceid.ox.ac.uk).

the adult female worms in the wall of the bladder and

urinary tract [1]. The most effective form of treatment

for the infected individual is the use of the drug

praziquantel which kills the worms with high efficacy.

Control programmes at community level often consist

of mass chemotherapy possibly supplemented by snail

(intermediate host) control. Since school-age children

are the most heavily infected age group, suffer the

most morbidity and are the major source of infection

for the community, school targeted chemotherapy can

be a cost effective approach to morbidity control

[2, 3].

At present, the primary tool for planning schisto-

somiasis control programmes is experience of past

programmes. Moreover, there is no quantitative

method to predict the impact of a programme on the
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numbers of cases of schistosomiasis infection or

disease in future years. However, such projections

would be useful, both for the initial planning and

justification for the programme and also subsequently,

for planning drug needs and monitoring the progress

of the programme. Mathematical models have often

been advocated as a means to fulfil this need [4, 5].

Although many models of helminth dynamics exist

[4, 6], and in one case such a model has been used in

the planning of a control programme for oncho-

cerciasis [7], to date, no model has been routinely used

in planning schistosomiasis control. Ideally, a model

which is to be used in a control programme should be

generally applicable, relatively simple to use, and

perhaps most importantly, should offer convincing

demonstration that the model predictions are correct.

It is this validation, or comparing model predictions

with observed data that permits a theoretical frame-

work to become a valuable control tool.

A schistosomiasis model has been built which

predicts the impact of chemotherapy programmes

[8, 9] and will be shortly available as a software

package for planning of control programmes. It is

based on basic epidemiological theory and population

dynamic models [10] and has been successfully

validated against data for a Schistosoma mansoni

control programme in Kenya [8, 11] and is currently

also being tested for S. haematobium in Ghana [12]. A

similar model for intestinal helminths also showed

remarkable correspondence between model predic-

tions and field data for Ascaris lumbricoides and

Trichuris trichiura [13]. These models are predictive

models in that only initial conditions are entered and

a population dynamic model is used to predict the

outcome of a treatment programme with no prior

information as to what happens after the treatment

programme.

In 1986, a control programme for urinary schisto-

somiasis was initiated on the island of Pemba,

Zanzibar, United Republic of Tanzania [14, 15]. All

schoolchildren on the island were targeted and offered

treatment with praziquantel if found to be infected.

Since diagnosis by parasitology requires skilled per-

sonnel and is time-consuming, other, more convenient

methods of diagnosis were used, namely examination

of urine for visible blood and if this is not present, use

of reagent strips to detect traces of blood (micro-

haematuria). Calibration studies have confirmed that

these indirect methods are extremely reliable [14–16].

In this investigation, the schistosomiasis model is

validated for S. haematobium control programmes

using the Pemba data set. As well as being for a

different species, the current analysis also differs from

the analysis of the S. mansoni data set [8] in that it

involves data from a large-scale control programme

rather than an intervention study in single com-

munities. This has the advantage that data are

available from different geographical areas and from

a relatively large population (26000 children). The

situation in the Pemba data set therefore reflects the

type of data that would be available in a typical

control situation.

METHODS

Model development

The model used in this investigation has been fully

described elsewhere [17] and will only be described in

summary here. The model simulates the mean in-

tensity of infection by age over the time of the

repeated interventions. Chemotherapy is assumed to

kill a proportion of the worms and hence the intensity

of infection will drop instantaneously on treatment in

the treated age groups. Prevalence of infection is

predicted from the mean intensity by assuming a

negative binomial distribution with a linear increase

in the aggregation parameter with mean intensity,

with a correction term to account for predicting egg

prevalence from worm prevalence [8, 18, 19]. For this

analysis, parameters suitable for S. haematobium were

used [20].

The main assumptions are summarized below:

1. Infection intensity (mean worm burden) is

modelled as a continuous function of age and time

using a partial differential equation framework.

2. There is a density dependent reduction in the

rate of infection with increasing worm burden (which

has similar consequences to concomitant immunity).

The rate of infection is modelled as a decreasing

function of current worm burden. No other direct

density dependent mechanisms (such as density de-

pendent fecundity) are included.

3. Acquired protective immunity is modelled as a

function of past experience of infection which decays

with time and is therefore different from concomitant

immunity which reflects only current worm burden.

As acquired immunity is a function of past experience,

it will tend to be higher in adults than children,

resulting in lower infection rates in adults.

4. The rates at which individuals become infected

and contaminate the environment with eggs are
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functions of age that peak in the early teenage years.

Therefore, the lower infection rates in adults are due

to combination of exposure and immunity.

5. The number of individuals in each age class is

modelled with simple mathematical functions (ex-

ponential or normal) and fitted to demographic data.

6. Data are input to and output from the model as

arithmetic mean count (assuming a negative binomial

distribution). The arithmetic mean is used as it is

directly proportional to the mean worm burden which

is the driving variable in the model.

7. Chemotherapy is modelled as an instantaneous

reduction in mean worm burden determined by the

coverage and drug efficacy and can be targeted at

specific ages. It is assumed that acquired immunity is

not directly affected by chemotherapy.

The control programme

In the Pemba Control Programme, treatment was

initially offered to all schoolchildren at 6-monthly

intervals. Control programme teams visited all the

schools in Pemba and examined urine samples of all

the children present at each school. The total number

of children examined at baseline was 24462. The

number of children examined at baseline in each of the

four districts of Pemba were 3607 in Micheweni, 6912

in Wete, 7164 in Chake and 6779 in Mkoani. The

exact numbers participating in subsequent interven-

tions varied slightly. The average number of children

per school was approx. 500 [15, 21].

At each survey}intervention time, children were

classified as either with visual haematuria (blood in

urine), with microhaematuria (by reagent strip) or

negative. All children positive by any method were

treated with a single dose of praziquantel 40 mg}kg

body weight. Treatment occurred at approx. 6-

monthly intervals except that one treatment was

missed in 1989. The model was validated for the

period 1986–91. For the modelling, it was assumed

that children between the ages of 6 and 15 years were

treated with treatment coverage 90% (estimated by

the control team) and drug efficacy 95% (estimated

from the literature). Both these values may be

expected to influence the impact of treatment pre-

dicted by the model. In particular, coverage may vary

between different treatment times.

Previous analyses have shown that the prevalence

of microhaematuria is a very good predictor of

infection both at population level (regression gave a

result of y¯ 1±022x with r#¯ 0±9877) and at in-

dividual level (sensitivity, 80%; specificity, 80%).

Likewise, visual blood is a very good predictor of

infections over an egg count of 50 eggs per 10 ml

urine, both at a population (regression y¯ 0±909x,

r#¯ 0±93) and at the individual (sensitivity, 40%;

specificity, 95%) level [16]. Therefore, for the purposes

of this analysis we have assumed that prevalence of

microhaematuria is equivalent to the prevalence of

infection and that prevalence of visual blood is

equivalent to prevalence of heavy (" 50 eggs per

10 ml) infection.

In addition to the school surveys, three evaluation

surveys (1986, 1987, 1988) in different schools were

carried out. The number of schools examined differed

in each survey but at least one school from each

district was examined at each survey [15, 21]. These

surveys were more detailed and included direct

measurement of egg counts as recommended by WHO

[22]. The evaluation survey data were used to verify

the assumption of the negative binomial distribution

of infection intensity in the model.

Validation methodology

1. The schools were divided into prevalence classes

according to their initial prevalence before treatment.

Six classes of 20–29, 30–39, 40–49, 50–59, 60–69,

& 70% were used.

2. Using the midpoint prevalence of each preva-

lence class, the mean egg count is estimated using the

distribution assumed in the model. This is assumed to

be the peak intensity by age as the actual age intensity

distribution is unavailable.

3. The mean egg count in other age classes are

estimated using age weights for intensity (if the

intensity at ages 10–15 is given a weight of 1, the other

age groups are given weights of : 0–5 (0±22), 5–10

(0±67), 15–25 (0±45), 25–35 (0±16) and 35–80 yr (0±13))

[10]. Peak shifts are not taken into account.

4. An age-dependent ‘ force of infection’ curve is

estimated from the age intensity curve.

5. The model is run, giving outputs of infection

prevalence and visual prevalence (the prevalence of

visible blood in the urine) in the treated age groups

over time to allow direct comparison between the

model and the data.

6. The above analyses are repeated using aggregate

data for whole districts (four districts in total) and for

the whole of Pemba.

7. The proportion of the variation explained by the

model (the coefficient of determination, R#) was
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calculated for the district level and for the whole of

Pemba using the following equation:

R#¯ 1®3 (p
i
®pW

i
)#

3 (p
i
®pa )#

, (1)

where p
i
is the prevalence observed at time point i, pW

i

is the model prevalence and pa is the average prevalence

between time points (unweighted by sample size).

A χ# test was also carried out using the likelihood of

the data given the model. This was carried out using

the numbers infected assuming a binomial distribution

for being infected}not infected. The χ# statistic can be

calculated as twice the difference in likelihood between

the predicted model and the saturated likelihood

which is the likelihood of the data itself.

RESULTS

Evaluation survey

The results of the evaluation survey were used to

validate the assumptions about distribution of in-

fection intensity in the population. For this purpose,

the results of the three evaluation surveys (one pre-

intervention, two post-intervention) were taken to-

gether. Direct egg counts were taken in these surveys

but the eggs were counted only up to 50 eggs per 10 ml

urine.

The graph of prevalence of infection against

prevalence of heavy infection (Fig. 1) shows good

correspondence between the data and the model. The

model prediction is not obtained by fitting to the data

but calculated using parameters derived from other

sources. Hence this is a test of the model. Two

measures of heavy infection are used, the prevalence

of infections of more than 50 eggs}10 ml, and the

indirect measure of prevalence of visual blood in

urine, which is strongly correlated with prevalence of

heavy infection [16]. The relationship between preva-

lence of heavy infection and prevalence of infection

shows a non-linear relationship, with the prevalence

of heavy infection being disproportionately high at

high infection prevalence. This is due to the severe

aggregation of infection intensity in the population.

Both measures of heavy infection (egg count and

visual blood) show a very close correspondence to the

model. The value of R# was 0±59 and 0±74 respectively

(Table 1) for visual prevalence and for prevalence of

heavy infection, the value for heavy infection being

higher as this is a more direct measure of intensity.

The above results allow the validation of the model

to proceed with some confidence that the assumptions

about the distribution of infection in the population

are reasonable.

School level dynamics

The comparison between the model and data at the

school level (average sample size approx. 500) is

shown in Figures 2a–c. Only three prevalence classes

are shown for illustrative purposes, similar patterns

are seen in the other prevalence classes. There is some

variability between the different schools in each

prevalence class but the overall decrease in prevalence

is fairly consistent between different schools for each

prevalence class. The trends for the different schools

in each prevalence class are not parallel, which reflects

the fact that the differences amongst schools cannot

be solely explained by differing initial prevalence, but

also involve a combination of demographic stochas-

ticity (random birth and death processes) and other

potentially identifiable factors not taken into account

in the model. The graphs show that for most schools

there is an initial decrease in prevalence over the first

2 years of the programme to a low level which is

maintained but does not necessarily decrease further.

In some schools there is an increase in prevalence

towards the end of the time series shown.

The model simulations (shown as heavy solid lines

in the graphs) reflect the declining prevalence in each

prevalence class and each school. The degree of

correspondence depends upon the initial prevalence

class. In the intermediate prevalence classes (40–50,

50–60, 60–70%, e.g. Fig. 2b) the model and data

correspond well. However, in the lower prevalence

classes (Fig. 2a), the model appears to overestimate

the impact of treatment while in the highest prevalence

class (Fig. 2c) the model tends to underestimate the

impact of treatment, producing a possible systematic

bias.

District level dynamics

The dynamics of prevalence of infection were also

examined with the aggregate data for each district and

compared with the simulations for the appropriate

prevalence class (Fig. 3a–c). Examination of the data

shows that, although the patterns of decrease in

prevalence are similar to those found at the school

level, there is considerably less variability and fluctua-

tions. This is due both to a larger population and
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Fig. 1. Validation of the model with the evaluation surveys. Prevalence of visual blood (squares) and heavy infection (" 50

eggs per 10 ml, triangles) �s. infection prevalence. Each school is represented by one point at each survey. Model prediction

is shown as solid line.

Table 1. The proportion of the �ariation in pre�alence or �isual pre�alence explained by the model (R#) for the

distributions in e�aluation sur�eys and for the predictions of the model o�erall

Model Area Data type

Variation explained

(all data)

Variation explained

(first six surveys)

Distribution Evaluation survey Visual prevalence 0±5911 n.a.

Distribution Evaluation survey Heavy infection 0±7449 n.a.

Model District 1 Infection prevalence 0±6814 0±9905

Visual prevalence District 1 Visual prevalence 0±9565 0±9859

Model – District 2 District 2 Infection prevalence 0±6123 0±9475

Visual prevalence District 2 Visual prevalence 0±9433 0±9687

Model – District 3 District 3 Infection prevalence 0±6196 0±6251

Visual prevalence District 3 Visual prevalence 0±4201 0±3927

Model – District 4 District 4 Infection prevalence 0±8144 0±9805

Visual prevalence District 4 Visual prevalence * *

Model – Pemba Pemba Infection prevalence 0±8249 0±9794

Visual prevalence Pemba Visual prevalence 0±8729 0±8771

* In this case the model explained less of the variation than the mean.

n.a., not applicable.

possibly averaging of local variations. The graphs also

show the decreasing trend in the prevalence and visual

haematuria (at school level, this shows too much

variability to be very informative). Visual haematuria

is seen to decrease very rapidly to very low levels

within the first year of control.

The results for District 1 (Micheweni) are shown in

Figure 3a. There is a close correspondence between

the data and the predicted prevalence of infection

except in the latter stages of the programme where the

prevalence increases in the data. Likewise, the model

correctly predicts the initial prevalence of visual

haematuria (which is not entered as an initial

condition) and the decline of visual haematuria during

the course of the programme.

The results for District 2 (Wete) and District 4

(Mkoani) are shown together in Figure 3b since they

have similar initial prevalence. The trends in preva-

lence and visual haematuria for the districts are close

when comparing the two districts which lends support

to the hypothesis that local differences may be

homogenized when the geographical area from which



492 M.-S. Chan and others

90

80

70

60

50

40

30

20

10

0

pr
ev

al
en

ce

01/01/86 01/01/87 01/01/88 31/12/88 31/12/89 31/12/90 31/12/91

90

80

70

60

50

40

30

20

10

0

pr
ev

al
en

ce

01/01/86 01/01/87 01/01/88 31/12/88 31/12/89 31/12/90 31/12/91

90

80

70

60

50

40

30

20

10

0

pr
ev

al
en

ce

01/01/86 01/01/87 01/01/88 31/12/88 31/12/89 31/12/90 31/12/91

Fig. 2. Validation of school level dynamics. In each graph, the heavy solid line shows the model prediction of infection

prevalence over time. The light lines each show actual data from different schools which started in the same prevalence class

in 1986. The prevalence classes are 2a, 20–30%; 2b, 50–60%; 2c, & 70%.

the data are taken is larger. Again the model predicts

the trends in both prevalence and visual haematuria in

both districts except for the initial visual haematuria

in District 4 which is lower than the model prediction,

and the higher than predicted prevalence towards the

end of the programme.
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Fig. 3. Validation of district level dynamics. The top line shows the model prediction of decline in infection prevalence and

the lower line the decline in visual prevalence. The associated symbols show the actual data. 3a. District 1 Micheweni. 3b.

District 2 Wete and District 4 Mkoani. District 2, prevalence squares, visual asterisks. District 4 prevalence triangles, visual

circles. 3c. District 3 Chake Chake.

District 3 (Chake Chake) is shown in Figure 3c. In

this case, the model prediction underestimates the

observed impact of the interventions. Note that the

initial prevalence is higher than in the other districts,

and that the predictions of the model at school level

also tended to underestimate impact for areas of high

initial prevalence.

Statistical analysis showed that the model explained

most of the variability in the data (Table 1), especially

for the first six surveys where over 90% of the
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Table 2. χ# �alues for the e�aluation sur�eys and for the predictions of the

model o�erall

Data χ# (all data) χ# (first six surveys)

Evaluation – visual prevalence 2481±32 n.a.

Evaluation – heavy infection 2498±34 n.a.

Model – District 1 – prevalence 1936±44 47±16

Visual prevalence 2382±13 809±01

Model – District 2 2386±43 183±23

Visual prevalence 7250±16 143±07

Model – District 3 2542±96 2381±12

Visual prevalence 1984±41 1775±81

Model – District 4 1318±13 141±85

Visual prevalence 2738±74 902±76

Model – Pemba 5053±85 394±16

Visual prevalence 13442±10 674±96

n.a., not applicable.
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Fig. 4. Validation of Pemba level dynamics. The upper heavy solid line shows prediction of infection prevalence and the lower

visual prevalence. The data are shown as squares (prevalence) and crosses (visual prevalence). The light solid line (refer to

the secondary y axis) is the number of children treated at each round.

prevalence was explained by the model in all districts

except District 3. However Table 2 shows high χ#

values which indicate significant variation not ex-

plained by the model.

Total population dynamics

The comparison of the model simulation with the

aggregate data for the whole of Pemba data set is

shown in Figure 4. Close correspondence between the

prevalence of infection predicted by the model and the

observed data is seen during the first six surveys.

Likewise, the prevalence of visual haematuria, before

and also during the programme is predicted. The

sample size for these data is approx. 26000 children.

With this large population, the effects of both

demographic stochasticity and local variability will be

small and a better correspondence than at the lower
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spatial levels would be expected. As observed in

several of the other graphs, there is less correspon-

dence towards the end of the programme, when the

observed prevalence shows a slight increase. This

increase is probably due to a decrease in coverage

during the course of the actual programme, whereas

the model assumes a constant coverage. Although

coverage cannot be estimated directly (the total

numbers of children are unknown), a plot of the

number of children treated in each round of treatment

(obtained from the same data set) does show a

decrease over the course of the programme just before

the prevalence starts to increase (Fig. 4). For all the

surveys taken together 82% of the prevalence and

87% of the visual prevalence is explained by the

model ; when only the first six surveys are taken these

figures increase to 98 and 88%, respectively (Table 1).

Again the χ# values show that there are significant

differences between the model and the data.

DISCUSSION

The results of this investigation generally show a good

correspondence between the model predictions and

the historical data collected during 6 years of control

activities. The model predicts the decrease in infection

prevalence adequately for most practical purposes ; in

the majority of simulations more than 90% of the

variation was explained by the model. Where there are

discrepancies, the absolute error is less than 10%

prevalence. The existence of a small systematic bias in

the discrepancies with respect to initial prevalence

suggests that the aggregation parameters (k¯mean#}
(variance®mean)) of the parasite distributions may

differ slightly in this data set from that estimated

previously from global data [20]. The model also gives

a good prediction of initial visual haematuria from the

infection prevalence, both with the school survey and

evaluation survey results. Furthermore the decreasing

trend in visual haematuria was well predicted by the

model at district and island-wide levels in spite of very

low prevalences (of visual haematuria).

Before discussing the implications of the results, it

is important to discuss areas where the model

performed less well. Firstly, the statistical analysis

does show highly significant differences between the

model and the data. This would be expected in data

sets of the size used here. We feel that the utility of the

model should be assessed by whether the proportion

of the variation explained is of practical significance.

Clearly, a model which explains 90% of the

variation would be useful, even if there are significant

differences between the model and the data. Due to

the bias in the results observed, the model may be less

useful at high prevalence. However, it should be noted

that at high prevalence the model gives a conservative

estimate of the impact of the chemotherapy pro-

gramme, which would be less problematic than an

optimistic estimate.

There are several important implications from the

observation that the model performs well. Firstly, it

lends support to the utility of deterministic frame-

works of intermediate complexity for modelling

macroparasite population dynamics. If a sufficiently

large population is considered (probably district level

in this study), the effects of host demographic

stochasticity and local heterogeneities, as well as

individual host infection exposure patterns, need not

be considered explicitly and can instead be approxi-

mated by a homogeneous mass action model, which

only considers the dynamics at a population level.

Although this is commonly accepted for microparasite

models, particularly models of childhood infections

[23], the utility of deterministic models for control of

helminth infections has only rarely been demonstrated

[13]. This is very encouraging for the future use of

such models in the planning of helminth control

programmes.

Secondly, a central assumption of the modelling

framework is that after intervention, the distribution

of intensity of infection can still be modelled as a

negative binomial distribution [4, 8]. This has been

demonstrated to work in the current data both

through the analysis of the evaluation survey (Fig. 1)

and, implicitly, because the prevalence of visual

haematuria was well predicted. Although it is likely

that intervention will change the distribution of worms

in the community, the results suggest that this does

not greatly affect the population level attributes of

infection prevalence and prevalence of heavy in-

fection. The implication that it is not therefore

necessary to simulate heterogeneity at the individual

level in order to predict population level charac-

teristics is of practical importance since the population

model used here is computationallymuch less demand-

ing and requires less data collection than more

complex models that seek to capture individual

characteristics [7].

The third important implication of the results

is that the model works with aggregate data at

the district or even island-wide level. Conventional



496 M.-S. Chan and others

wisdom in helminth epidemiology might suggest that

the appropriate geographical unit to model would be

rather small, such as one village, since this would be a

single transmission system. However, the results of

the present analysis suggest that the dynamics on a

much larger scale are closer to the deterministic

model. This does not necessarily imply that the whole

of Pemba is a homogeneous transmission system, but

suggests that the deterministic model is a good

caricature of the system if it is used to predict the

dynamics of population attributes such as infection

prevalence. The prediction of reduction in prevalence

in an island-wide control programme has also been

convincingly demonstrated using a deterministic

model for Trichuris trichiura in Montserrat [13].

On the practical front, the results of this investi-

gation give a very positive outlook for the use of

models for predicting the impact of schistosomiasis

programmes during the intervention phase and in the

first few years of reinfection. In particular, there are

some points which would recommend this approach.

Firstly the model is very simple in concept and does

not require the measurement of many local para-

meters. Secondly, the possibility to use aggregate data

over a large geographical scale (e.g. district) makes

this model very convenient for programme managers.

Last, and by no means least, this investigation has

clearly shown that the model can reliably predict the

impact of control programmes.
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