
F-test in K-fold Cross-Validation 
 
The analysis and procedure presented below is based upon least-squares approach. Similar 
arguments hold true for the application of PLS as well, although the concept of degrees of 
freedom (DOF) is more complicated in PLS. 
 
Least-squares approach: Let X and Y be the input and output data (single output), respectively. 
Let n be the number of data points and p be the number of input predictors. Let the model be: 
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centered or not. These p constraints further reduce the DOF of ∑
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In the application of K-fold CV, let n be the number of total data points and f be the number of 
folds (f = 10 here) so that each fold contains m = n/f data points for the test set and )1( −× fm  
data points for the training set. Let p be the number of input predictors. Consider one output 
variable at a time. Let ri,j be the residual for the jth sample in ith fold in training set. Then, 
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clear because, out of all the )1()1( −×=−×× fnfmf  samples in all the training sets of 
different folds, only n samples are truly independent.  
 
In our F-test, we are computing the F-statistic as follows: 
 
For the test sets: 
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For the training sets: 
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ffm ×−× )1(  numbers of residual terms are included in trainS  in which fm× independent 
residual terms are repeated )1( −f times (approximately). Hence, the statistic )1/( −fStrain  
contains fm×  independent residual terms and follows chi-square distribution 
with fmfSDOF train ×≈− ))1/(( . Thus, the statistic F  follows, 
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The denominator in the above expression does not include any effect of the number of input 
variables p . The effect of p  can be achieved by considering the statistic 
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So, the equivalent DOF is, )1/()1)1(( −×−−−×= ffpfmDOFtrain . Hence, ),(~ trainDOFnFF  
and, we have tested the hypothesis for the significance level, α: 
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where ),( 21 nnFα denotes inverse cumulative F-distribution value for DOF 1n  and 2n at the 
significance level of α. 
 


