Supplemental Data. Liebminger et al. (2009). Class I α -mannosidases are required for N-glycan processing and root development in *Arabidopsis thaliana*.

Α

At Hs Sc	MNS3 ERMNSI MNS1	::	-MSKSLP MYPPPPP	* YSVKDIH- PPHRDFIS	20 SVTLSFGES	* YDNAK-FRHR YDNSKSWRRR	40 SPLKVFSQS - SCWRKWKQLS: MKNS -	* LITLSTK RLQRNMILFLL VG <mark>I</mark> SIA'	60 RNYASCSTGH AFLLFCGLLH TIVAIIAAIY	* FLILILFEG YINLADHWK YVPWYEHFE	80 VACLMLM ALAFRLE RKSPGAG	::	64 80 36
At Hs Sc	MNS3 ERMNSI MNS1	::	SKSP EEQKMRP EMR	* NESGLNEK EIAGLKPA	100 GKVTFVGG NPPVLPAP	* LRLGG QKADTDPENL	120 PEISSQKTQR	* -LLRKPPRLPP HIQRGPPHLQI	140 RLSPDE RPPSQDLKDG	* EGQLRGSSTN TQEEATKRQ	160 GSTIS EAPVDPR	::	119 160 39
At Hs Sc	MNS3 ERMNSI MNS1	:	-NSDPK- PEGDPQR 	* AVISWRGA	180 VIEPEQGT	* ELPPRRAEVP	200 TKPPLPPART	* WAARQ QGTPVHLNYRQ 	220 QSVKEAFDH# KGVIDVFLH# DRIESMFLES	* WSGYRKYAM WKGYRKFAW WRDYSKHGW	240 GYDELMP GHDELKP GYDVYGP	::	155 240 65
At Hs Sc	MNS3 ERMNSI MNS1	::	ISQK VSRS IEHTSHN	* GVDGLGGI FSEWFG-I MPRGNQPI	260 GATVVDAL GLTLIDAL GWIIVDSV	* DTAMIMG DTMWILG DTLMLMYNSS	280 LDNI LRKE TLYKSEFEAE	* VSEAGS <mark>WV</mark> ETH FEEARKWVSKK IQRSEH <mark>WI</mark> NDV	300 LERISQKGQ HFEKDVI LDFDIDAE	* VNLFETTIR VNLFESTIR VNVFETTIR	320 VLGGLLS ILGGLLS MLGGLLS	::	223 305 143
At Hs Sc	MNS3 ERMNSI MNS1	::	AYHLSGG AYHLSGD AYHLSDV	* EQGTVNMI S LEVG	340 THVGPKPVI I	* YLNIAKDLAD FLRKAEDFGN YLNKAIDLGD	360 RLLSAFTSSP RLMPAFR-TP RLALAFLSTQ	* TPVPFCDVILH: SKIPYSDVNIG TGIPYSSINLH:	380 ESTAHPAPG- IGVAHPPRWI SGQ <mark>A</mark> VKNHAL	* GASSTAEV SDSTVAEV)GGASSTAEF	400 ASVQLEF TSIQLEF TTLQMEF	: :	301 369 215
At Hs Sc	MNS3 ERMNSI MNS1	::	NYLSSIS RELSRLT KYLAYLT	* GDPKYSTE GDKKFQEA GNRTYWEI	420 CAM <mark>KV</mark> LAHI AVEKVTQHI LVE <mark>RV</mark> YEPL	* KTP-KT HGISGKK YKNNDLLNTY	440 E <mark>GLVPIY</mark> ISP D <mark>GLVPMF</mark> INT D <mark>GLVPIY</mark> TFP	* Q TGDF VGENIR H <mark>SG</mark> LFTHLGVF D TG KFGASTIR	460 - LGSRGDSYY TLGARADSYY - FG <mark>SR</mark> GDSFY	LEATTKŐATT LEATTKÓMIŐ LEATTKAMTŐ	480 QGAKLNS GGKQE THETL	::	376 444 292
At Hs Sc	MNS3 ERMNSI MNS1	::	NFTYLHD TQLLE YYD	* DYVEAIEC LYRKSMEC	500 VRHLLVQN VRTHLLRH MKKHLLAQ	* SIPKGIVFVG SEPSKLTFVG SKPSSLWYIG	520 ELPYCSKGEF ELAHCRF EREQCLHGQL	* SPKMDHLVCFL SAKMDHLVCFL SPKMDHLVCFM	540 PGTLALGATH PGTLALGVYH GGL <u>LA</u> SGSTE	* GLTKEQALK GLP GLSIHEARR	560 ENLLS RPFFSLS	::	454 506 368
At Hs Sc	MNS3 ERMNSI MNS1	::	FEDLENL ASHM LERKSDW	* ELAEDIAK ELAQEIME DLAKGITE	580 TCFEMYEV TCYQMNRQ TCYQMYKQ	* TA <mark>TGLAPEI</mark> A METGLSPEIV SS <mark>SGLAPEI</mark> V	600 YFHTKDYTED HENLYPOP VENDGNIKOD	* GLDGGNKSSMY. GR GWWRSS	620 ANDIIIKPAI -RDVEVKPAI VGDFFVKPLI	* DRHNLLRPET DRHNLQRPET	640 VESLFVL VESLFYL VESIMFM	::	534 571 443
At Hs Sc	MNS3 ERMNSI MNS1	::	YRITKDT YRVTGDR YHLSHDH	* KYRDQGWQ KYQDWGWE KYREWGAE	660 IFEAFEKY ILQSFSRF IATSFFEN	* TKVKSGG TRVPSGG TCVDCNDPKL	680 YTSL DDVT YSSINNVQ RR <mark>FTSL</mark> SDCI	* EVP-PHRRDKM DPQKPEPRDKM TLP-TKKS <mark>N</mark> NM	700 ETFFLGETLK ESFFLGETLK ESFWLAETLK	* CYLYLLFGDD CYLFLLFSDD CYLYILFLDE	720 -SVIP <mark>L</mark> D PNLLSLD FDLT	::	607 646 519
At Hs	MNS3 ERMNSI	:	KFVFNTE AYVFNTE	* AHPLPIRR AHPLPIWI	740 2NT	* : :	624 663						

Sc MNS1 : KV<u>VFNTEAHP</u>F<u>PV</u>LDEEILKSQSLTTGWSL : 549

Hs Hs At At	MNSIA MNSIB MNSIC MNS1 MNS2	::	* MPVGGLLPL MTTPALLPL M	FSSPAGGV SGRRIP LMRKVP	20 LGGGLGGG PLNLG 	* GGRKGSGPI PPSFPHHRI -GFVPASPV 	40 AALRLTEKFV ATLRLSEKFJ WGLRLPQKFI	* VLLEVFSAFI ILLLILSAFI MARSRSI MARSRSI MARNKLV	60 TLCFCAIFFL TLCFCAFFFL TLCFGALFLL SG-YGIWKYL SGSHGIWKYF	* PDSSKLLSGV PDSSKHKR-F PHSSRLKRLF NPAYYLRR NPAFYLRR	80 LFHSSPAL DLGLEDVL LAPRTQQP PRRLAL PRRLAL	: 80 : 74 : 61 : 30 : 31
Hs Hs At At	MNSIA MNSIB MNSIC MNS1 MNS2	:::::::::::::::::::::::::::::::::::::::	* QPAADHKPG IPHVDAGKG GLEVVAEIA LFIVFVSVS LIILFVSVS	1 PGARAEDAA AKNP(GHAPAREQ)	00 AEGRARRR GVFLIHGP EPPPNPAP	* EEGAPGDPI DEHRHREEI AAPAPGEDI	120 EAALEDNLAF EERLRNF DPSSWAS	* RIRENHERAL CIRADHEKAL - PRRRKGGL	140 REAKETLQKL EEAKEKLRKS RRTRPTGPRE MLVWD MVVWD	* PEEIQRDILL REEIRAEIQT EATAARGNSI RINLAREHEV RQSLSRDYQF	160 EKKKVAQD EKNKVVQE PASRPGDE EVFKLNEE EVSKLNEE	: 160 : 147 : 137 : 62 : 63
Hs Hs At At	MNSIA MNSIB MNSIC MNS1 MNS2	:::::::::::::::::::::::::::::::::::::::	* QLRDKAPFR MKIKENK GVPFRFDFN VSRLEQMLE VLRLQQMLE	1 GLPPVDFV PLPPVPIPI AFRSRLRHI ELNGGVGNI EIKSVTED	80 PPIGVESR NLVGIRGG PVIGTRAD KPIKTLKD VSVNSLKD	* EPAD AA DPED ND ESQEPQSQV APED PVI VQED PVI	200 IREKRA <mark>KIKE</mark> IREKREKIKE VRAQREKIKE DKQRRQKVKE DAQRMQRVKE	* MMKHAWNNY MMKHAWDNY MMQFAWQSY AMIHAWSSY AMVHAWSSY	220 KGYAWGLNEL RTYGWGHNEL KRYAMGKNEL EKYAWGKDEL EKYAWGQDEL	* RFISKGCHSS RFIARKCHSP: RFLTKDCYCG: QBRTKDCTDS QPQTKDCVDS	240 SL <mark>FG</mark> -NIK NIFGSSQM NMFG-GLS FGGL FGGL	: 237 : 223 : 216 : 136 : 137
Hs Hs At At	MNSIA MNSIB MNSIC MNS1 MNS2	::	* GATIVDALD GATIVDALD GATVIDSLD GATMVDSLD GATMIDALD	2 TLFIMEMKI TLYIMGLHI TLYLMELKI TLYIMGLDI TLYIMGLDI	60 HEFEEAKS DEFLDGQR EEFQEAKA EQFQKARE EQFQKARE	* WVEENLDF1 WVESFHL1 WVASSLDF1 WVASSLDF1	280 NVNAEI <mark>SVF</mark> SVNSEVSVF NVSGEASLF DKDYDA <mark>SMF</mark> DKDYAA <mark>SMF</mark>	* VNIRFVGGL VNIRFIGGL VNIRYIGGL STTIRVVGGL STTIRVVGGL	300 ISAYYLSGEE IAAYYLSGEE ISAFYLTGEE ISAYDLSGDK ISAYDLSGDK	* IFRKKAVELG IFKIKAVQLA VFRIKAIRLG MFLEKAKDIA IFLEKAMDIA	320 VKLLPAFH EKLLPAFN EKLLPAFN DRLLPAWN DRLLPAWD	: 317 : 303 : 296 : 216 : 217
Hs Hs At At	MNSIA MNSIB MNSIC MNS1 MNS2	:::::::::::::::::::::::::::::::::::::::	* TPSGIPWAL TPTGIPWAM TPTGIPKGV TPTGIPYNI TQSGIPYNI	34 LNMKSGIGJ VNLKSGVGJ VSFKSG INLRNGNAJ INLKHGNAJ	40 RNWPWASG RNWGWASA -NWGWATA HNPSWAAG HNPTWAGG	* GSS-ILAEI GSS-ILAEI GSSSILAEI GDS-ILADS -DS-ILADS	360 FGTLHLEFM FGTLHMEFI FGSLHLEFI SGTEQLEFI SGTEQLEFI	* HLSHLSGNPI HLSYLTGDLT HLTELSGNQV ALSQRTGDPK ALSQRTGDPK	380 FAEKVMNIRT YYKKVMHIRK FAEKVRNIRK YQQKVEKVIT YQQKVEKVIS	* VINKLEKPQG LIQKMDRPNG VIRKIEKPFG EINKNFPADG VINKNFPADG	400 LYENYLNP LYENYLNP LYENFLSP LLEIYINP LLEIYINP	: 396 : 382 : 373 : 295 : 295
Hs Hs At At	MNSIA MNSIB MNSIC MNS1 MNS2	:::::::::::::::::::::::::::::::::::::::	* SSGQWGQHH RTGRWGQYH VSGNWVQHH DNANPSYST DTANPSQST	4: VSVCGLGD: TSVCGLGD: VSVCGLGD: TTFCAMGD: ITFCAMGD:	20 SFYEYLLK SFYEYLLK SFYEYLIK SFYEYLLK SFYEYLLK	* AWLMSDKTI AWLMSDKT SWLMSGKTI VWVQGNKTS VWVFGNKTS	440 DLEA KKMY DHEA RKMY DMEA KNMY SAVKPYRDMV SAVKHYRDMV	* FDAVQAIET DDAIEAIEK YEALEAIET NEKSMKGLLS NEKSMNGLLS	460 HLIRKSSSGL HLIKKSRGGL YLLNVSPGGL LVKKSTPSSF LVKKSTPLSF	* TYIAEWKGGL TFIGEWKNGH TYIAEWRGGI TYICEKNGNN TYICEKSGNS	480 LEHKMGHL LEKKMGHL LDHKMGHL LIDKMDEL LIDKMDEL	: 474 : 460 : 451 : 375 : 375
Hs Hs At At	MNSIA MNSIB MNSIC MNS1 MNS2	::	* TCFAGGMFA ACFAGGMFA ACFSGGMIA ACFAPGMLA ACFAPGMLA	5 LGADAAP-1 LGADGSR-2 LGAEDAK-1 LGASGYG-1 LGASGYSD	00 EGMAQHYL ADKAGHYL EEKRAHYR PDEEKKFL PAEGKKFL	* EI GAETAR EI GAETAR EI AAQITK SI AGELAW TI AEELAW	520 TCHESYNRTH TCHESYDRTZ TCHESYARSI TCYNFYQSTH TCYNFYQSTH	* FMKLGPEAER ALKLGPESEK DTKLGPEAEW PTKLAGENYF PTKLAGENYF	540 FDGGVEAIAT FDGAVEAVAV FNSGREAVAT FTAGQDMSVG FNSGSDMSVG	* RQNEKYYILR RQAEKYYILR QLSESYYILR TSWNILR TSWNILR	560 PEVMETYM PEVIETYW PEVVESYM PETVESLF PETVESLF	: 553 : 539 : 530 : 451 : 452
Hs Hs At At	MNSIA MNSIB MNSIC MNS1 MNS2	: : : : : : : : : : : : : : : : : : : :	* YMWRLTHDP YLWRFTHDP YLWRQTHNP YLWRLTGNK YLWRLTGNK	5 KYRKWAWE/ RYRQWGWE/ IYREWGWE TYQEWGWN TYQEWGWN	80 AVEALENH AALAIEKY VVLALEKY IFQAFEKN IFE <mark>A</mark> FEKN	* CRVNGGYS CRVNGGFS CRTEAGFS SRVESGYV SRIESGYV	600 GLRDVYLLHF GVKDVYSSTF GIQDVYSSTF GLKDVNTC GLKDVNTC	* ESYDDVQQSF PTHDDVQQSF PNHDNKQQSF GAKDNKMQSF GVKDNKMQSF	620 FLAETLKYLY FLAETLKYLY FLAETLKYLY FLAETLKYLY FLAETLKYLY	* LIFSDDDLLP LLFSGDDLLP LLFSEDDLLS LLFSPTSVIS LLFSPTTVIP	640 LEHWIFNS LDHWVFNT LEDWVFNT LDEWVFNT LDEWVFNT	: 633 : 619 : 610 : 529 : 530
Hs Hs At At	MNSIA MNSIB MNSIC MNS1 MNS2	:::::::::::::::::::::::::::::::::::::::	* EAHLLPILP EAHPLPVLH EAHPLPVNH EAHPLKIVA EAHPLKIKS	60 KDK LAN SDS RND RNDQVNLK(60 PR QSNKVLLR	* TTI SGI KPTIALRQI KPAFRIRQI	680 VEIREE LSGNPAVR- RAWGRH RKFGHQINV RHYGRITKK	: 653 : 641 : 630 : 560 : 572				

Supplemental Figure 1. Multiple sequence alignment of (A) At MNS3 with human (HsERMNSI) andyeast (ScMNS1) ER-MNSI proteins and (B) MNS1 and MNS2 with human Golgi-MNSIs (HsMNSIA-C). The sequence alignments were performed with ClustalW(http://www.ebi.ac.uk/Tools/clustalw2/index.html) and were edited manually. Conserved amino acidresidues are shaded black. Dashed lines represent gaps inserted for optimal alignment of the sequences.

В

Supplemental Figure 2. Expression of MNS1, MNS2 and MNS3 in *Arabidopsis* tissues. (A) Reverse transcriptase-(RT)-PCR (two independent repeats) was performed using RNA extracted from flowers (FL), siliques (SI), stems (ST), cauline leaves (CL), rosette leaves (RL) and roots (RO). Specific primers were used for MNS1 (32 cycles), MNS2 (34 cycles), MNS3 (34 cycles) and UBQ (35 cycles) as control. The expression of the three α -mannosidase genes was detectable in all analyzed *Arabidopsis* organs, being consistent with a proposed constitutive expression of these genes. (B) Expression of MNS1_{prom}:GUS and MNS2_{prom}:GUS is almost indistinguishable, with high expression in pollen grains and shoot apical meristems of seedlings. MNS1_{prom}:GUS expression was also detected in hypocotyls and in the upper region of the root in young seedlings. MNS3_{prom}:GUS expression is detectable in

B

stamens and in sepals and in newly emerging rosette leaves. Arrow heads indicate subtle differences in the expression pattern of MNS proteins. Scale bar = 3 mm.

Supplemental Figure 3. MNS3-GFP is located in the Golgi apparatus of *Arabidopsis* cells.

A. thaliana seedlings expressing (A) MNS1-CTS-GFP, (B) MNS3-CTS-GFP and (C) MNS3-GFP were grown on MS medium plus 2% sucrose for four to seven days at 22°C. Seedlings were transferred onto microscope coverslips and were imaged on a Leica TCP SP2 confocal laser scanning microscope. GFP was imaged using a 488-nm argon laser line, and emission was recorded from 500 to 535 nm. A-C: MNS-GFP fusions are located in mobile punctate structures reminiscent of Golgi bodies. No ER labeling was observed. Scale bar = 5 μ m.

Supplemental Figure 4. Recombinant MNS proteins are specifically inhibited by kifunensine and 1-deoxymannojirimycin. Activity assays with methyl-2-O- α -D-mannopyranosyl- α -D-mannopyranoside as substrate were performed as described in Material and Methods. (A) Inhibition of MNS1-3 by kifunensine and (B) inhibition of MNS1-3 by 1-deoxymannojirimycin (dMM) expressed as a percentage of control activity in the absence of inhibitor.

Supplemental Figure 5. EDTA affects α -mannosidase activity of recombinant MNS proteins. After incubation of MNS1-3 with 5 mM EDTA, methyl-2-O- α -D-mannopyranosyl- α -D-mannopyranoside was added. Activity assays were performed as described in Material and Methods. Restoration of enzyme activity was observed after addition of divalent cations.

Supplemental Figure 6. **N-glycan structures relevant for this study.** The elution positions of each oligosaccharide on RP-HPLC are taken from the literature (Tomiya et al., 1991, Neeser et al., 1985).

Supplemental Figure 7. The MNS product Man5-PA co-elutes with Man5.1.

Incubation of the substrates $Man_8GlcNAc_2$ -PA (**A**, **C**) and $Man_9GlcNAc_2$ -PA (**C**, **D**) with high amounts of the recombinant enzymes MNS1-3 yielded $Man_5GlcNAc_2$ -PA (**A**+**B**) when analyzed on NP-HPLC. No further trimming of mannoses to $Man_4GlcNAc_2$ - or Man_3GcNAc_2 -PA occurred. $Man_5GlcNAc_2$ -PA peaks were collected and separated on RP-HPLC (**C**+**D**). All Man5-PA products co-elute with the Man5.1 standard. As other Man5 isomers were shown to have different elution times (Tomiya et al., 1991), this indicates that Man5.1 is the only isomer generated by recombinant MNS proteins.

Supplemental Figure 8. Recombinant MNS proteins are specifically inhibited by kifunensine and 1-deoxymannojirimycin.

Activity assays with PA-labeled substrates (A) $Man_8GlcNAc_2$ and (B) $Man_9GlcNAc_2$ were performed in the presence of class I and class II α 1,2-mannosidase inhibitors. Assays were performed under conditions where at least 30 percent substrate turnover took place. Briefly, after incubation of the enzymes with a certain amount of inhibitors for 15 min on ice, the samples were handled and analyzed as described in Methods. The class II α 1,2-mannosidase inhibitor swainsonine (10 μ M) did not affect the enzyme activity of MNS1-3. In contrast, hardly any substrate turnover was seen when the recombinant enzymes were pre-incubated with 1-deoxymannojirimycin (dMM, 100 μ M) or kifunensine (1 μ M).

Supplemental Figure 9. N-glycan spectra of leaves of single knockout plants. MALDI-TOF-MS spectra of total N-glycans extracted from leaves of *mns1*, *mns2* and *mns3-2* single mutants. The N-glycan profile of *mns3-1* is essentially the same as that of *mns3-2*.

Supplemental Figure 10. The Man₈GlcNAc₂ oligosaccheride isolated from glycoprotein extracts of *mns1 mns2* double knockouts co-elutes with Man8.1.

Leaf material of the double knockout was analyzed for total glycans as described previously (Strasser et al., 2004). The prominent Man₈GlcNAc₂ peak was isolated by normal-phase HPLC, PA-labeled and analyzed by reverse-phase HPLC. To characterize the isolated peak, two Man₈GlcNAc₂ isomers (Man8.1, Man8.2) were used as standards. Man₈GlcNAc₂ isolated from the double mutant co-elutes with the Man8.1-PA standard, the isomer lacking the terminal mannose from the b-branch.

Supplemental Figure 11. The Man₆GlcNAc₂ oligosaccharide isolated from *mns3-1* plants is an acceptor substrate for N-acetylglucosaminyltransferase I (GnTI).

Man₆GlcNAc₂-PA isolated from *mns3-1* plants (presumably Man6.10) was incubated with recombinant rabbit GnTI and UDP-GlcNAc (5 mM) in the presence of 20 mM MnCl₂ in assay buffer (100 mM MES [pH 6.3], 1 mg/ml BSA, 1.25% Triton-100, 1.25 mM DTT, 6.25 μ g/ml E-64, 6.25 μ g/ml Leupeptin, 2.5 mM PMSF and 25 μ M swainsonine) overnight at 37°C. The reaction was stopped by heating at 95°C for 5 min. The product was analyzed by normal-phase HPLC (trace **A**) and the collected Man6Gn peak was incubated with recombinant *Drosophila melanogaster* Golgi α -mannosidase II (GMII) in 50 mM MES buffer (pH 6.0) and 10 μ M 2-acetamido-1,2-deoxynojirimycin for 1 h at 37°C. After heating at 95°C for 5 minutes in the presence of 10 μ M swainsonine, the sample was again analyzed by normal-phase HPLC (trace **B**). Man6Gn was sensitive to Golgi α -mannosidase II. One mannose residue could be slowly removed resulting in an aberrant Man5Gn-product (Man5.4Gn). No further trimming to MGn occurred, as expected. Digestion of Man₅GlcNAc₂-PA (Man5.1) that was treated identically as described above revealed an almost complete removal of two mannose residues resulting in the formation of MGn (trace **C**).

Supplemental Figure 12. N-glycan spectra of leaves of double and triple knockouts (*mns1 mns3-1, mns2 mns3-1, mns1 mns2 mns3-2*)

MALDI-TOF-MS spectra of total N-glycans extracted from leaves of different mutant lines. The N-glycans of *mns1 mns3-1* and *mns2 mns3-1* double mutants are identical to those of the *mns3-1* single mutant (Figure 7A), while *mns1 mns2 mns3-2* shows a predominance of Man₉GlcNAc₂ as found in *mns1 mns2 mns3-1* (Figure 7A).

Supplemental Figure 13. mns mutant seedlings are affected by high amounts of sucrose.

After growth of wild-type (Col-0) and *mns* mutant seedlings on MS agar medium with 2% sucrose for five days at 22° C, seedlings were transferred to MS agar plates with 0% sucrose (A), with 2% sucrose (B) or with 4.5% sucrose (C) and were grown for another six days at 22° C. On plates with 4.5% sucrose, *mns1 mns2* and *mns1 mns2 mns3-1* show a decrease in root length and an increase in radially swollen roots. The *mns3-1* single mutant displays swollen root tips. Scale bar = 5 mm for all images.

Supplemental Figure 14. N-glycan spectra of roots of wild-type (Col-0), *mns3-1*, *mns1 mns2* and *mns1 mns2 mns3-1 plants*.

Total N-glycans extracted from 500 mg roots of wild-type plants and the *mns* mutants were analyzed by MALDI-TOF-MS. N-glycan patterns are similar to those obtained from leaves in *mns1 mns2* and *mns1 mns2 mns3-1*. An increase in Man₉GlcNAc₂ was found in roots of *mns3-1*, which was not present in leaves.

Col-0 and *mns1 mns2 mns3-1* were grown on MS medium plus 2% sucrose and 100 μ M swainsonine for seven days at 22°C. Seedlings do not show any obvious root phenotype when grown on agar plates containing the class II α -mannosidase inhibitor swainsonine. Scale bar = 5 mm.

Supplemental Table 1. Pairwise BLAST alignment of amino acid sequences (seeSupplemental Data Set 1). (http://www.ncbi.nlm.nih.gov/BLAST/bl2seq/wblast2.cgi).

	At MNS1	At MNS2	At MNS3	At MNS4	At MNS5
At MNS1	-	82	43	30	30
At MNS2		-	43	30	29
At MNS3			-	30	29
At MNS4				-	48
At MNS5					-
Gm MNSI	75	73	42	34	32
Hs ERMNSI	45	44	44	30	31
Hs MNSIA	42	42	35	30	33
Hs MNSIB	44	41	35	30	30
Hs MNSIC	44	42	35	30	29
Hs EDEM1	30	29	30	47	44
Hs EDEM2	32	33	35	46	42
Hs EDEM3	31	31	28	43	43
Sc MNS1	38	36	40	27	28
Sc HTM1	27	27	26	37	34

Identity values (%) are shown.

Supplemental Table 2. Predictions of subcellular localization, number of transmembrane domains (TMDs), signal anchor or peptide probability and calculation of molecular masses (MW) and isoelectric points (PI).

	Gene ID	Putative subcellular localization ab,c	TMD prediction ^{d,e}	Signal anchor Probability ^f	Signal peptide Probability ^f	MW ^g	PI^{h}
At MNS1	At1g51590	SP	1	0.989	0.010	63533.0	6.4
At MNS2	At3g21160	SP	1	0.976	0.023	65137.0	6.4
At MNS3	At1g30000	SP	1	0.993	0.000	69070.0	7.1
At MNS4	At5g43710	SP	1	0.062	0.936	70096.0	4.6
At MNS5	At1g27520	SP	0	0.421	0.578	65708.0	6.4

The predictions and calculations were performed using the following programs: a) http://www.cbs.dtu.dk/services/TargetP/; (SP secretory pathway); b) = http://urgi.versailles.inra.fr/predotar/predotar.html; c) http://hc.ims.u-tokyo.ac.jp/iPSORT/; d) http://www.enzim.hu/hmmtop/; http://www.cbs.dtu.dk/services/TMHMM-2.0/; e) http://www.cbs.dtu.dk/services/SignalP/; f) http://www.arabidopsis.org/; g +h) http://www.arabidopsis.org/, calculated MW (g) and (h) PI.

Supplemental Table 3. Primer sequences cited in Methods. Underlined regions represent restriction sites.

Name	Sequence (5' - 3')
At1g51590_1F	TGGGTGCAAGGGAACAAAACATC
At1g51590_2R	TTGAAAACCCACTCGTCTAATGAAATAAC
At1g51590_3F	CTGTTTTGTTGAGTGGGTTGAGAAGAGA
At1g51590_7R	CAAATTCCATTTGAGCAGAAACTGTCT
At1g51590_8R	A <u>GGATCC</u> GGCATCCTTCAGAGTCTTCAAAG
At1g51590_9F	TT <u>CTAGA</u> GATGGCGAGAAGTAGATCGATTA
At1g51590_10R	TATA <u>GGTAC</u> CTACCTAAACGTTAATCTGATGACCAA
At1g51590_11F	TATA <u>GCGGCCGC</u> CCGAGAACATGAGGTTGAAGTTT
At1g51590_15R	T <u>CCATGG</u> CTCTTCTCAACCCACTCAACAAA
At1g51590_16F	TGTCGACGTTGCTTTTCATCAATCTACCTAATGA
At3g21160_1F	GAGCGTCACTGAGGATGTGTCTGTCAA
At3g21160_2R	GTCTCAAACATACTGGCAGCATAATCCTT
At3g21160_3F	GGTTTCAATTTCTTCTTCTTCTCCTTTTTC
At3g21160_4R	AGCCCCTCCTACGAATCACACTG
At3g21160_7R	T <u>GGATCC</u> AACATCCTTCAAACTATTGACAG
At3g21160_8F	T <u>TCTAGA</u> GATGGCGAGGAATAAACTTGTAA
At3g21160_9F	TATA <u>GCGGCCGCC</u> CGAGACTACCAGTTTGAAGTTTC
At3g21160_10R	TATA <u>GGTACC</u> TTACTTCTTTGTTATCCGACCATAA
At3g21160_12F	TATA <u>TCTAGA</u> ATGTCGAAATCTCTACCATATTCAG
At3g21160_13R	TATA <u>GGATCC</u> TTACTTCTTTGTTATCCGACCAT
At3g21160_14F	T <u>GTCGAC</u> AATTTTCAAAGAATCAAGATGGAGAGA
At3g21160_15R	T <u>ACATGT</u> CAATTCCGACGATCAGATCTGATCTCG
At1g30000_2R	TAACTCCCCTACAAAGACCAGACCT
At1g30000_3F	GGCTTCCACCTCGTTTATCACCT
At1g30000_5F	T <u>TCTAGA</u> ATGTCGAAATCTCTACCATATTCAG
At1g30000_6R	T <u>GGATCC</u> TCTTAATTGTCCTTCGTCAGGTGA
At1g30000_8F	TATA <u>GCGGCCGC</u> CGGTCTTAATGAGAAAGGAAAGG
At1g30000_9R	TATA <u>GGTACC</u> TCAGGTGTTTCTTCTTATTGGT
At1g30000_10R	T <u>GGATCC</u> GGTGTTTCTTCTTATTGGTAA
At1g30000_11R	TATA <u>GGATCC</u> TCAGGTGTTTCTTCTTATTGGT
At1g30000_12F	TATA <u>TCTAGA</u> ATGTCGAAATCTCTACCATATTCAG
At1g30000_14F	TATA <u>GTCGAC</u> TCTCTTACATTGGACGAGTACAAGGAGGA
At1g30000_15R	TATA <u>CCATGG</u> TCAGATCCCCCCGTTCTAATTGAAG
LBa1	TGGTTCACGTAGTGGGCCATCG
UBQ_5D	AACCCTTGAGGTTGAATCATC
UBQ_5U	CTCCTTCTTTCTGGTAAACGT

Supplemental Methods

Promoter-GUS Fusions

To generate the promoter GUS expression vector pPZP230-GUS the hygromycin expression cassette was amplified from pGreen0129 (Hellens et al., 2000) using primers nos-1/-2 and cloned into the KpnI and BamHI sites of the binary vector pPZP200 (Hajdukiewicz et al., 1994). Subsequently an Ncol linker was inserted into the Sall and HindIII sites of pPZP230 and the 2 kb uidA-gene fragment containing the CaMV terminator was removed from pSH4 (Holtorf et al., 1995, kindly provided by Holger Bohlmann) and ligated into NcoI and HindIII sites. For promoter GUS fusions, genomic fragments comprising 1042 bp of 5' flanking DNA of MNS1, 1621 bp of MNS2 or 873 bp of MNS3 were amplified from wild-type genomic DNA using primers At1g51590-16F/-15R, At3g21160-14F/-15R and At1g30000-14F/-15R and cloned into the Sall and Ncol sites of pPZP230-GUS. Col-0 plants were transformed by Agrobacterium tumefaciens (strain: UIA143) carrying the GUS expression constructs by the floral dip procedure. Transgenic plants were selected on MS medium containing 20 mg/l hygromycin. Plant material was stained for GUS activity in 0.5 mg/ml X-Gluc in 50 mM NaHPO₄ (pH 7.0), 10 mM EDTA, 0.1% Triton X-100 for 18 h at 37°C. After clearing in three changes of 70% ethanol, the plant material was mounted in water. Imaging was done using a Leica MZ FLIII stereomicroscope (Leica, Wetzlar, Germany), equipped with a Leica DC 500 digital camera.

References:

- Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25: 989-994.
- Hellens R, Edwards E, Leyland N, Bean S, Mullineaux P (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42: 819-832.
- Holtorf S, Apel K, Bohlmann H (1995) Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol Biol 29: 637-646.
- Neeser, J.-R., Del Vedov, S., Mutsaers, J.H.G.M., and Vliegenthart, J.F.G. (1985). Structural Analysis of the carbohydrate chains of legume storage proteins by 500-MHz 1H-NMR spectroscopy. Glycoconj. J. 2: 355-364.
- Tomiya, N., Lee, Y., Yoshida, T., Wada, Y., Awaya, J., Kurono, M., and Takahashi, N. (1991). Calculated two-dimensional sugar map of pyridylaminated oligosaccharides: elucidation of the jack bean alphamannosidase digestion pathway of Man₉GlcNAc₂. Anal. Biochem. **193**: 90-100.
- Strasser, R., Altmann, F., Mach, L., Glössl, J., and Steinkellner, H. (2004). Generation of Arabidopsis thaliana plants with complex N-glycans lacking beta1,2-linked xylose and core alpha1,3-linked fucose. FEBS Lett. 561: 132-136.