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Supplemental Data. Falque et al. (2009). Two Types of Meiotic Crossovers Coexist in Maize

Supplemental Figure 1. Correspondence between interference strength parameters in the gamma and

BF models.

X-axis: interference strength parameter ν of the gamma model. Y-axis: interference strength parameter

λ of the BF model. Both models are single-pathway (no sprinkling). Case of maize chromosomes 1

(solid line) and 10 (dashed line).
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Supplemental Figure 2. Interference intensity and proportion of non-interfering COs using the BFS

model.

Estimated values of the interference intensity of Pathway 1 (λ) and proportion of Pathway 2 COs (p),

obtained by fitting the BFS model to maize LN data for each chromosome. The PLS score was used to

fit the model. Horizontal and vertical bars indicate 95% confidence intervals (CI) based on 1000

simulated data sets. For chromosome 2, p = 0.22 but no finite estimate of λ could be obtained.
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Supplemental Figure 3. Comparison of the fractions of non-interfering COs obtained with the GS and

the BFS models.

Correlation between estimates obtained using GS and BFS models, for the proportion p of COs

generated through Pathway 2 (non-interfering). Error bars are 95% confidence intervals determined by

re-simulation (see text). Solid line: first diagonal. Dashed line: regression. R² and p-value: correlation

coefficient with its associated p-value.
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Supplemental Figure 4. Interference intensity and proportion of non-interfering COs with the GS

model, using the PLS score for fitting.

Estimated values of the interference intensity (ν) in the Pathway 1 (interfering) and proportion of

Pathway 2 (non-interfering) COs (p), obtained by fitting the GS model to maize LN data using the PLS

score for each  chromosome. Horizontal and vertical bars indicate 95% confidence intervals (CI) based

on 1000 simulated data sets. For chromosome 8 the upper bound of the CI on ν is 15.3.
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Supplemental Figure 5. Comparison of the fitting power obtained when using the PLS score or the

full likelihood.

Power (given by the size of the confidence interval) of the fitting procedure as a function of the number

of SCs in the data set. Left panel: case of the interference strength ν. Right panel: case of the

proportion p of Pathway 2 COs. Solid lines and symbols are for estimates using maximum likelihood in

the GS model. Dashed lines and open symbols are for estimates using the PLS score, also in the GS

model. Confidence intervals were obtained as described in the Methods section of the article, from 103

independent simulated data sets; the value of p and ν used to generate these data sets were those

obtained from the fits of chromosome 1. X-axis: number of simulated SCs in each of the 103 simulated

data sets.
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Supplemental Figure 6. Quality of the fits obtained with single-pathway or two-pathways models

(gamma model).

Density distribution of distances between adjacent LNs in all SCs with at least two LNs for all maize

chromosomes. X-axis: relative genetic distance. Bars: experimental observations. Lines: simulations

with No-Interference (NI), single-pathway gamma model (G), or two-pathways gamma-sprinkling

model (GS). In parentheses: sum of squares of differences between experimental and simulated

densities.
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Supplemental Figure 7. Quality of the fits obtained with single-pathway or two-pathways models

(beam-film model).

Density distribution of distances between adjacent LNs in all SCs with at least two LNs for all maize

chromosomes. X-axis: relative genetic distance. Bars: experimental observations. Lines: simulations

with No Interference (NI), single-pathway beam-film model (BF), or two-pathways beam-film

sprinkling (BFS) model. In parentheses: sum of squares of differences between experimental and

simulated densities.
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Supplemental Figure 8. Interference strength in Pathway 1 and fraction of non-interfering COs, as a

function of SC length.

Correlation between the interference strength of Pathway 1 (ν, left panel), and proportion of Pathway 2

(non-interfering) COs (p, right panel), with the physical length of the SC across the ten maize

chromosomes. Parameters have been estimated within the GS model.
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Supplemental Figure 9. Correlation between genetic and SC length across the 10 maize 

chromosomes.

Genetic length in centiMorgans is determined as 50 times the mean number of LNs per SC.

Extrapolating the regression to small SC sizes leads to a genetic length of 32.4 cM.
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Supplemental Figure 10. Numbers of Pathway 1 and Pathway 2 COs as a function of SC length.

Estimated mean numbers of COs formed through Pathway 1 (interfering; left panel), and through

Pathway 2 (non-interfering; right panel) as a function of the SC length for the 10 maize chromosomes.

R² is for the linear regression using model y=ax for both  panels. The p-value is for the hypothesis of no

association (constant y).
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Simulated CO density distribution as generated by the BF model in IRD space with λ = 0.2 (solid line),

or by the gamma model in genetic space with any value for ν (dashed line). Chromosome size is that of

maize chromosome 1 (genetic length = 134 cM).
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Supplemental Methods. Specifications of the Models and Detailed Methods.

1. Interference models

In nearly all organisms, it has been found that crossovers (COs) do not arise independently. Typically,

CO positions seem to be subject to a “repulsion” phenomenon whereby the frequency of obtaining two

nearby COs is very small compared to what is expected if the COs were to form as independent events.

For modeling such interference, we focus here on the gamma model (McPeek and Speed, 1995) which

is the most frequently used SRP-based statistical model, and on the beam-film (BF) model (Kleckner et

al., 2004) which is a very mechanistic physical model. We shall also explain how CO distributions

based on these single pathway interference models can be modified by sprinkling (Copenhaver et al.,

2002) additional non interfering COs to construct two-pathways models.

1.1. Single-pathway models

One way to mathematically incorporate the “repulsion” between COs is to force the probability density

of distances separating two successive COs to have a particularly low value at small interval lengths. If

one further takes the different intervals to be independent and identically distributed, one obtains a

“Stationary Renewal Process” (SRP) framework (Zhao and Speed, 1996) for the formation of COs.

Explicitly, one can think of the COs as being laid down from left to right on an axis that represents

genetic position; for each new CO, say number i+1, one choses an interval length ∆ i giving the

distance from the previous CO. The ∆ i are drawn independently from a given law  . All COs

falling within the bivalent region are then kept as they are, the others are thrown away. Note that this

procedure amounts to considering the centromere as just a “cold” region for recombination;

interference then spans through the centromere within such a framework, as has been previously

demonstrated experimentally (Colombo and Jones, 1997). A common choice for ρ is the gamma

distribution


 x=C  , x−1e− x (Equation 1)

where C is the normalization constant 


−1!
, ν is referred to as the shape parameter, and α is the

rate parameter. This specification of ρ corresponds to what is called the gamma model (Broman and

Weber, 2000). Forcing the mean number of COs to be 2 per Morgan and per bivalent leads to α = 2 ν

when x is measured in Morgan, and the mean distance between COs in the SRP (on an infinite bivalent)

Supplemental Data. Falque et al. (2009) Plant Cell 10.1105/tpc.109.071514
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is then necessarily 50 cM. For ν = 1, the intervals are distributed following an exponential law which is

what arises in the absence of interference. For ν > 1 the intervals are distributed so that short distances

between COs are rare compared to the ν = 1 case, i.e. one has positive interference. Interestingly, when

ν is a positive integer, the gamma model is identical to the counting model of parameter m = ν - 1

(McPeek and Speed, 1995). In this latter model, the interval between two successive COs is generated

by adding (m + 1) exponentially distributed variables. Since exponentially distributed distances

correspond to the no interference case (ν = 1), the counting model can also be viewed as first

producing a collection of independent « precursors »  (no interference) followed by a selection process

in which every (m + 1)'th precursor is turned into a CO, and the others are discarded (NCOs) (Foss et

al., 1993).

The gamma model is based on a statistical framework. Other approaches (King and Mortimer, 1990;

Fujitani et al., 2002; Kleckner et al., 2004) are based on modeling some physical or chemical

phenomena that might be involved in mediating interactions (interference) during CO formation. The

best known of these is the BF model (Kleckner et al., 2004). That model is based on an analogy with an

elastic film fused to a beam that is undergoing stretching. As the beam stretches and becomes longer, it

produces a stress in the film which leads to cracks. A crack will release the film's stress in its

immediate neighborhood. A crack that forms at one position makes it unlikely for another crack to

form nearby, and thus cracks interfere with one another. If the cracks are considered to be CO points on

the bivalent, one obtains a model for CO formation with interference. The implementation of this

model is rather complex as some heterogeneities in the mechanical properties of the film must be

introduced to yield crack precursors of various brittleness (see next paragraph). As the beam stretches,

each precursor has a stress threshold beyond which it “cracks” (i.e. forms a CO). In the limit where the

film is thin, a simple linear partial differential equation describes the state of the stress along the film.

The important features to keep in mind are that (1) the stress at a crack vanishes; (2) the stress in the

vicinity of the crack relaxes to its crack-independent value exponentially with distance; we denote the

associated length scale by λ, so the stress in any interval containing no cracks can be written as

0aex/be− x/ . Furthermore, it is necessary to specify the stress at the end of chromosomes

(Kleckner et al., 2004). For this we apply Neuman boundary conditions (Landau and Lifshitz, 1986) ,

which means that the stress at the ends of the film (bivalent) has zero derivative. The partial differential

equation describing this system can be solved analytically with the general solution being of the form

Supplemental Data. Falque et al. (2009) Plant Cell 10.1105/tpc.109.071514
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 x=01–coshx−x0

 Bsinhx−x0

   for the stress σ (x) at point x on one side of a crack

positioned at x0 (Kleckner et al., 2004). Note that there is a value B for each interval delimited by

cracks or an edge of the chromosome. Each B must be adjusted so the boundary conditions are satisfied

and σ (x)=0 at each crack. From this piecewise solution, one constructs an explicit formula for the

stress at any given point given the set of cracks. In practice it is simpler to work with dimensionless

quantities, so in our study λ is normalized by the SC length. Finally, to have the desired properties, the

model must be adjusted: the maximum beam stretching is set so that one has the correct mean number

of COs (twice the genetic length of the chromosome in Morgans) while λ is chosen so that the

interference is of the desired strength. Note that very thin films correspond to small λ and thus to a very

short interference range.

For the implementation of the BF model, we also follow the specification of Kleckner et al. (2004) for

the precursors. These can be thought to correspond to DNA double strand breaks, some of which

mature to COs. In the simulations of Kleckner et al. (2004), cf. their supplementary materials, they

advocated taking the number of precursors to be 10 to 30 times the number of chiasmata. In practice,

the model is relatively insensitive to this ratio, so we have set it to 20 in this work. Note that studies in

maize (Franklin et al., 1999; Stack and Anderson, 2002) suggest values for this ratio ranging from 4 to

25, while the case of tomato leads to 17 (Stack and Anderson, 1986). These precursors are then

positioned randomly on the bivalent. Furthermore, to each is assigned a random threshold according to

the formula i=1/xi where xi is a random variable uniformly distributed in [0,1]. When the stress

at a precursor exceeds this threshold, it turns into a crack. The model's intrinsic randomness leads to

strong stochasticity in the determination of which precursors mature into COs. If on the contrary the

stress on a precursor never exceeds its threshold, it is considered to lead to conversion and thus is not

considered in this study of COs.

1.2. Connecting coordinates in physical SC and genetic space

The distances measured along the SC in the maize Late recombination Nodule (LN) data set are in

micrometers. It is known that for maize, SC µm distances are roughly proportional to distances

measured in base pairs giving about 6500 kbp per µm SC in euchromatin and ~9200 kbp per µm SC in

heterochromatin, but these SC distances are not proportional to genetic distances (Anderson et al.,

2003, 2006). Since the gamma model is formulated using genetic distances, it is necessary to convert
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between physical SC (µm) and genetic (cM) distance spaces. However in practice, all SC positions and

distances are taken relative to the total SC length, and thus lie between zero and one. To map the

positions xSC to genetic ones, we first build the density ρSC(xSC), using all the COs of the data set for the

chromosome considered. Then if a particular position on the chromosome has the coordinate xSC in SC

space, its coordinate xG in genetic space is given by 2xG=∫0

xSC

SC X dX .

Considering now the BF model, its motivation is based on physical space; however the model has no

information regarding cold and hot regions of recombination. As a consequence, the CO positions

generated by this model cannot be identified with physical coordinates. Furthermore, they cannot be

identified with genetic coordinates either, as we demonstrate in Supplemental Figure 11. There we

show the density of COs for a chromosome size given by that of maize chromosome 1. (We used the

BF model with λ set to 0.2.) By definition of genetic space, CO density must be uniform, and it is not

in the BF model. Positions generated in the BF model then correspond to a third space which we call

IRD for “Interference Relevant Distance” space (Falque et al., 2007), and again a conversion must be

implemented. Following the previous method for converting to genetic coordinates and letting

ρIRD(xIRD) be the density of COs in IRD space, we have 2 xG=∫0

xIRD

 IRDX dX .

To derive this equation and the previous one, we assumed that the bivalent starts at x = 0 in all

coordinate systems, and we have used the fact that ρG(xG) = 2, corresponding to having on average two

COs per Morgan on a bivalent. Explicitly, we determine ρSC using all the COs present in the data set

and their positions, ordering them, and then assigning CO number j the position in genetic space

xG

LG

=
j

K
 where K is the total number of COs in the data set. If N is the total number of SCs in the

data set, using the relation 2LG=
K
N

, we obtain xG  j =
j

2N
. The same procedure is used for

IRD. Then for an arbitrary position xSC, we use linear interpolation to find its xG. These mappings can

then be inverted, allowing us to translate from any space to any other. (Naturally, to compute a distance

in any of these spaces, one computes the two coordinates in that space and takes their difference.) For

the purpose of analyzing CO data sets, using either the gamma or the BF model, we transform the SC

positions to genetic space and perform our fits there. This choice has the advantage that heterogeneity

in CO rates is explicitly taken care of, and so our histograms (which require binning the data) contain

more information than if one were to work in SC space directly.
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1.3 Two-pathways models

In two-pathways models, pathway 1 (denoted P1) is subject to relatively strong interference, and

pathway 2 (denoted P2) has insignificant or low levels of interference. Following previous work

(Copenhaver et al., 2002), we model the presence of this second pathway by taking it to be independent

of the first and without interference. The COs are thus obtained by taking the sum of the COs produced

in each pathway. Clearly one can superpose in this fashion any two pathways, but in practice the

second pathway has always been taken to be the No-Interference one, corresponding to the gamma

model with ν = 1. Since in nearly all organisms considered to date the second pathway produces fewer

COs than the first, most authors refer to this approach as a « sprinkling » of the second pathway on top

of the first. In our analysis, we used either the gamma model or the BF model for the first pathway. Let

p be the average fraction of COs coming from the non-interfering pathway. To simulate CO formation

in the two-pathways model, one first generates CO positions using P1, of given interference parameter

(ν for the gamma model, λ for the BF model), using a genetic length of (1-p) LG where LG is the genetic

length of the chromosome of interest. Second, one generates CO positions with P2 using a genetic

length of p LG ; then the fusion of the two lists of COs gives the desired result, enforcing the total

genetic length of the chromosome. Hereafter the gamma (respectively BF) model with sprinkling of

non-interfering P2 COs will be referred to as the GS (respectively BFS) model.

2. Inferring the best parameters

2.1. Fitting

In the specification of the models, some parameters must be « set ». For instance one wants to enforce a

known genetic length for the chromosome of interest and one wants a fraction p of the COs to proceed

via P2. A second task is to adjust the model's parameters by fitting to experimental data. For our

purposes, the two-pathways models require fitting simultaneously p and the interference strength (ν for

the gamma model and λ for the BF model). We discuss all these issues here.

Consider first the specification problem of ensuring a given genetic length LG for a given pathway. In

our implementation, we have chosen the convention for units whereby the coordinate x in IRD space

spans the unit interval [0,1]. First, suppose that the P1 COs are produced within  the gamma model.

Since Equation 1 leads to a density of COs equal to α / ν, we see that one must set α = 2 ν LG for a

chromosome of genetic length LG for that pathway. This rule applies in particular to the non-interfering
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pathway: indeed the No-Interference model corresponds to ν = 1 in the gamma model family. Thus if p

is the fraction allocated to pathway P2 and Ltot is the total genetic length with both pathways

contributing, we set αP1 = (1 – p) 2 ν Ltot and αP2 = p 2 Ltot; we also see that for the specification

problem, p is simply set to its desired value. All this follows from the fact that IRD coordinates are just

Ltot times smaller that genetic ones. Second, consider the case where the pathway P1 is described by the

BF model. In this situation, no analytical calculation a priori ensures a given mean number of COs and

we must resort to simulation. In this approach, we use the fact that we can determine quite accurately

the mean number of COs produced for any given value of the maximum beam stress, using, for

instance, 106 simulated meioses. (This sample size provides approximately a relative precision on the

genetic length of 0.1% which is sufficient for our purposes.) Then the value of the maximum beam

stress can be adjusted using a dichotomy search so that the correct genetic length (or half the mean

number of COs per meiosis) is obtained. Since simulating CO formation is computationally very

expensive in the BF model, we have introduced an efficient numerical procedure to search for the

optimum value of the maximum stress parameter. Essentially, we exploit the monotonic behavior of the

number of COs as a function of the value of the maximum beam stress. For each bivalent we determine

how its number of COs increases with the stress parameter, and then we do a dichotomy search without

having to perform new simulations for each value of the maximum beam stress.

Next, it is necessary to explain how we fit each model to the data, from which we shall extract the

fraction p and the interference strength parameter that best adjusts the model to the data. In the single-

pathway models, there is a single parameter to infer, while in the two-pathways models we must adjust

both the interference parameter in P1 and the fraction p of COs from the non-interfering P2 pathway. In

the case where P1 is described by the gamma model, the situation is rather ideal because one can

compute the likelihood of the data given the model parameters. This then allows one to estimate the

values of the parameters by maximizing this likelihood. Consider first the case p = 0. The CO positions

of an experimental bivalent are converted into genetic positions in cM (genetic space), and then the

bivalent's likelihood is computed as follows. Each inter-CO interval contributes the term of Equation 1

to the likelihood, and the product of these terms must be multiplied by two “end” contributions: one to

go from the left end of the chromosome to the first CO, and one for going from the last CO to the right

end of the chromosome. The formulas for these different terms have been given by Broman and Weber

(2000); they even generalize the calculation to gametes instead of bivalents, but this generalization is

not necessary here. Second, suppose now p≠0 ; the calculation begins by decomposing the
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bivalent's COs into all possible ways of assigning COs to either pathway. If there are k COs , one has to

produce 2k assignments. For each assignment, one has a first list of COs coming from P1 and a second

list for those coming from P2. For each list, one computes the likelihood as before for the COs to have

formed in each pathway separately. The likelihood for one of these assignments is then the product of

the two likelihoods, one coming from each pathway. Finally, the likelihood of the bivalent is obtained

by summing the likelihoods obtained from the 2k assignments. These formulas have been derived by

Copenhaver et al. (2002).

Unfortunately, for complex models such as the BF, it is not possible to compute the likelihood of

having a given list of CO positions on a bivalent. We have thus resorted to « projected likelihood »

methods. Instead of finding the actual likelihood of a list of CO positions, we consider a low

dimensional projection of the data and work with the likelihood of the projection. This is done as

follows. From the full list of CO positions, we first construct a derived (projected) quantity (hereafter

referred to as an observable). In general this observable is a real number. We then use simulations to

determine the distribution of this observable as predicted by the model, with one distribution for each

setting of the model's different parameter values. From the distribution, we can compute the likelihood

of the projected experimental data for all desired parameter values. Maximizing this (projected)

likelihood gives the inference of the parameter values.

A simple example of such a projection is obtained if one ignores the positions of the COs and considers

only the number of COs in a bivalent. This observable has been used in the past but it is not very

discriminating for the strength of interference (Broman and Weber, 2000). More powerful for

interference analysis is the distribution of distances between successive COs for bivalents having 2

COs. This can be exploited in a projected likelihood approach as follows: let P(0), P(1), P(2), ... be the

probability in the model of obtaining 0, 1, 2, ... COs and let ρ2 be the probability density of inter-CO

distances for bivalents with exactly 2 COs. The projected likelihood of a bivalent with k COs will then

be P(k) if k≠2  and P22  if k=2, where Δ is the distance between the two COs. We find

that this approach improves the power of the inference method compared to using only P(0), P(1), P(2),

..., but not sufficiently compared to the full likelihood when it is available (as in the GS model). Thus to

do better and obtain an inference procedure that is not much less powerful than a full likelihood

approach, we have implemented a fitting procedure based on assigning a score that takes into account

CO intervals for all bivalents. The score should be designed so that data having statistical properties

similar to the model will have high scores. Since inter-CO distances are particularly relevant for
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interference, we have defined our Projected Likelihood Score (PLS) as follows:

PLS=P0 respectivelyP1 for bivalents with 0 (respectively 1) CO

PLS=Pk ∑
i=1

k−1

k i  for bivalents with k > 1 COs  

where Δi is the i 'th interval length (between CO i and CO i+1) and ρk is the density of these lengths for

bivalents with k COs. For all these values of k, one has simply to determine the different ρk given the

model and its parameter settings.

One can use simulations to measure the reliability of any of these fitting procedures. Using simulated

data produced within a model, it is easy to determine to what extent one recovers the parameters by the

different fitting approaches, and also quantify the uncertainty in these parameters.

The actual fitting to infer the “best” parameter values can proceed by performing a scan of parameter

space. When there is a single parameter to infer (single-pathway models), this is relatively efficient.

However for the two-pathways models (p≠0 ), we find this to be too costly in computation time, so

instead we perform “hill climbing” on the likelihood or score function. The hill climbing stops when no

further improvement in the score is found. The associated parameters giving this peak score are then

quoted as giving the best fit. An illustration of the “shape” of the hill to climb for the PLS score is

given in Figure 4 of the article. We see it is relatively smooth, and importantly, has a single peak,

justifying a posteriori the hill climbing for reaching the maximum score.

2.2. Confidence intervals on inferred parameters based on re-simulation

The inferred parameters are obtained from fitting procedures which go from maximum likelihood to

using a score for quantifying the goodness of fit (as described in the previous section). Denote these

inferred values by p* and I* (corresponding to ν* for gamma, λ* for BF). To derive their 95%

confidence intervals, we follow Viswanath and Housworth (2005) and proceed as follows. First we

produce by simulation 1000 artificial data sets. Each such data set consists of N meiotic SCs obtained

by simulating the model of interest (e.g., BFS) using p* and I*. N here is the number of SCs in the

actual experimental data set of interest, and thus N changes slightly from chromosome to chromosome.

Second, for each such artificial data set, we run our fitting procedure which produces one pair of

inferred parameters (p, I). (In the single-pathway models, p is of course set to 0.) The list of these 1000

re-simulated parameter values gives us an approximation to the distribution of each inferred parameter.

For both p and I, extracting the associated 95% confidence interval is then straightforward, one just has
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to find the tails containing 2.5% of the distribution. Note that because this approach requires  repeating

the fitting procedures many times, it dominates the computation time required by our analyses.
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