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1 Tables and Figures

Supplementary Figure 1.  The top five  Ingenuity small 
molecular interaction networks constructed using 
Differentially Correlated gene list. Associated networks’ 
functions:  a) “Cell Cycle, Cellular Assembly and 
Organization, Cancer”; b) “DNA Replication, 
Recombination, and Repair, Nucleic Acid Metabolism, 
Small Molecule Biochemistry”; c) “Hematological 
Disease, Organismal Injury and Abnormalities, Genetic 
Disorder”; d) “Cell Morphology, Cellular Assembly and 
Organization, Cancer”; e) “Lipid Metabolism, Small 
Molecule Biochemistry, Carbohydrate Metabolism”. 
Genes present in the list are in gray.
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Supplementary Figure 2.  The top five Ingenuity small 
molecular interaction networks constructed using 
Differentially Expressed gene list. Associated networks’ 
functions:  a) “Cell Cycle, Cancer, Reproductive System 
Disease”; b) “Lipid Metabolism, Small Molecule 
Biochemistry, Cellular Development”; c) “Drug 
Metabolism, Nervous System Development and Function, 
Tissue Morphology”; d) “Cell-mediated Immune 
Response, Cellular Development, Hematological System 
Development and Function”; e) “Cancer, Cell Death, 
Hematological Disease”. Genes present in the list are in 
gray.
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Supplementary Figure 3: Two Ingenuity networks merged together. One network is constructed using differentially expressed
(Cell Cycle, Cancer, Reproductive System Disease) genes (presented on Sup. Fig. 2a). Another network is constructed using
differentially correlated (DNA Replication, Recombination, and Repair, Nucleic Acid Metabolism, Small Molecule Biochem-
istry) genes (presented on Sup. Fig. 1b). Orange lines mark known molecular interactions which become visible only after
networks integration.

4



Supplementary Figure 4: Cell Cycle: G1/S Checkpoint Regulation pathway enriched with differentially correlated genes (indi-
cated in gray).
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Differentially correlated genes Differentially expressed genes
Associated Network 
Functions

Score Associated Network Functions Score

Cell Cycle, Cellular Assembly 
and Organization, Cancer

49 Cell Cycle, Cancer, 
Reproductive System Disease

47

DNA Replication, 
Recombination, and Repair, 
Nucleic Acid Metabolism, 
Small Molecule Biochemistry

39 Lipid Metabolism, Small 
Molecule Biochemistry, 
Cellular Development

33

Hematological Disease, 
Organismal Injury and 
Abnormalities, Genetic 
Disorder

32 Drug Metabolism, Nervous 
System Development and 
Function, Tissue Morphology

21

Cell Morphology, Cellular 
Assembly and Organization, 
Cancer

31 Cell-mediated Immune 
Response, Cellular 
Development, Hematological 
System Development and 
Function

20

Lipid Metabolism, Small 
Molecule Biochemistry, 
Carbohydrate Metabolism

26 Cancer, Cell Death, 
Hematological Disease

19

Supplementary Table 1: Different biological networks, found in DC and DE gene lists.
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2 The Covariance Distance
The covariance distance between two genes xci and xcj is defined as follows (notations are defined in the main text):

dcij = σ̂(xci − xcj)

We claim this statistic is the sample counterpart of an L2 distance defined on a Hilbert space of random variables.
Recall that Xc

i is the random variable of the expression level associated with gene i in phenotype c, i = 1, . . . ,m, and
c = A,B. Let (Ω,F , P ) be the probability space on which Xc

i s are defined and L2(Ω,dP ) be the random variables with finite
variance (which implies finite second order moment). It is well known that the following equivalence classes in L2(Ω,dP )
form a Hilbert spaceH.

1. Two random variables X and Y are said to be equivalent if they differ by a nonrandom constant with probability 1:
∃a ∈ R, s.t. P{X − Y = a} = 1. It is easy to show that this is indeed an equivalence relation on L2(Ω,dP ). Denote
[X] as the equivalent class containing X .

2. The set of all equivalent classes form a linear space with the following addition and scalar multiplication operations:

[X] + [Y ] = [X + Y ], k[X] = [kX].

3. The covariance function can serve as the inner product on this linear space: 〈[X], [Y ]〉 = cov([X], [Y ]).

This inner product induces a norm (length) and a distance function:

‖[X]‖ =
√

cov([X], [X]) = σ([X]), ρ([X], [Y ]) = ‖[X]− [Y ]‖ = σ([X]− [Y ]).

Clearly, the covariance distance is the sample counterpart of the distance function induced by the covariance inner product.
Gene expressions can be considered as the vectors in this Hilbert spaceH. Figure 5 shows a graphical rendition of two such

vectors inH. The (population) covariance distance between X and Y is the length of X − Y .
Figure 6 depicts a more realistic situation: 1. six genes are expressed under biological conditions A(black) and B(red);

2. only genes 5 and 6 change their associations (in terms of the covariance distance) with other genes. The relational changes
of genes 5 and 6 are reflected by the changes of the covariance distance between genes.
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Supplementary Figure 5: Correlation distance.
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Supplementary Figure 6: Genes under two different conditions.

3 The N-statistic
We choose a multivariate nonparametric N -distance with Euclidean kernel as a measure of the distance between two random
vectors. Denote the random vectors in groupsA andB by DA and DB , respectively. Given ns realizations of these two vectors
DA
k and DB

k (1 6 k 6 ns), the sample N -distance between these two random vectors is defined as follows:

N =
2
n2
s

ns∑
k=1

ns∑
l=1

L(DA
k ,D

B
l )

− 1
n2
s

ns∑
k=1

ns∑
l=1

L(DA
k ,D

A
l )

− 1
n2
s

ns∑
k=1

ns∑
l=1

L(DB
k ,D

B
l ),

where L(x, y) = ‖x− y‖ =
√∑d

s=1(xs − ys)2 is the kernel defined by Euclidean distance with vector dimension d.
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4 Testing Differential Correlation by Likelihood Ratio Test
Suppose we have two genes x1 and x2. Assume that the joint distribution of them is N

(
(µ1, µ2),

( 1 ρ
ρ 1

))
, where ρ takes two

possible values: H0 : ρ = ρ0 and H1 : ρ = ρ0 + δ. Since we are interested in the small change of ρ, we assume that the
difference δ is relatively small.

For these two genes, denote their expression levels of n subjects by x1j and x2j (1 6 j 6 n), respectively. Their log-
likelihood functions are

`(ρ|x1, x2) = −n log(2π)− n

2
log(1− ρ2)− 1

2

n∑
j=1

(x1j − µ1, x2j − µ2)
(

1 ρ
ρ 1

)−1(
x1j − µ1

x2j − µ2

)
.

The log-likelihood ratio test statistic takes the form

T =
n∑
j=1

(x1j − µ1, x2j − µ2)
(

2ρ0 −ρ2
0 − 1

−ρ2
0 − 1 2ρ0

)(
x1j − µ1

x2j − µ2

)
. (1)

This is because

2(`(ρ0|x1, x2)− `(ρ0 + δ|x1, x2)) = C +
n∑
j=1

(x1j − µ1, x2j − µ2)

((
1 ρ0 + δ

ρ0 + δ 1

)−1

−
(

1 ρ0

ρ0 1

)−1
)(

x1j − µ1

x2j − µ2

)

= C +D

n∑
j=1

(x1j − µ1, x2j − µ2)
(

2ρ0 + δ −ρ2
0 − δρ0 − 1

−ρ2
0 − δρ0 − 1 2ρ0 + δ

)(
x1j − µ1

x2j − µ2

)

≈ C +D

n∑
j=1

(x1j − µ1, x2j − µ2)
(

2ρ0 −ρ2
0 − 1

−ρ2
0 − 1 2ρ0

)(
x1j − µ1

x2j − µ2

)
.

where C and D are constants which do not depend on the observation terms x1· and x2·.
According to (1), when ρ is close to 0, T is approximately ∝

∑n
j=1(x1j −µ1)(x2j −µ2) which is equivalent to the sample

correlation coefficient. In other words, if we assume genes are uncorrelated, the sample correlation coefficient is the most power
test statistic for testing small change (δ term) of the correlation coefficient due to the Neyman-Pearson lemma.

On the other hand, when ρ is close to 1, T is approximately ∝
∑n
j=1(x1j − x2j − µ1 + µ2)2, which is equivalent to the

covariance distance. I.e., when genes are highly positively correlated, the covariance distance, rather than the sample correlation
coefficient, is the most power test statistic for testing small change (δ term) of the correlation coefficient.

Based on the real data analysis, we observe that most pairwise intergene correlation coefficients are much closer to one than
to zero. Therefore it is no surprise that the TCDV method out-performs the CV method.

8


