no in-paralogs

at most 8 in-paralogs

more than 8
in- paralogs

1812

Supplementary Figure 1. Division of gene families into three sets,
depending on how many in-paralogs per family was present. Within the “No
in-paralogs” set (yellow) genes were subdivided into “core genes” (red) and
“core genes with an ortholog in the outgroup genome” (orange) subsets. In “At
most 8 in-paralogs” set (green) “core genes” subset (light green) was identified.
“More than 8 in-paralogs” set (blue) was excluded from further analyses.
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Supplementary Figure 2.
Distribution of gene families without
in-paralogs across functional
categories. The four super-categories
are defined by COG database (see
Materials and Methods). Notably,
genes of informational storage and
processing are represented in equal
proportions in genes in conflict with
plurality as compared to all 1812 gene
families, which contradicts complexity
hypothesis (Jain et al. 1999).
Metabolic genes appear to be
overrepresented in the gene family
pool which conflicts with plurality.
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Supplementary Figure 3. NeighborNet reconstruction of MRP matrix constructed from quartets supported by the plurality of
gene families without paralogs (compare to Figure 1A and 1B). 79 quartets that conflict strictly bifurcating tree shown in Figure
1A account for alternative branchings shown on this NeighborNet diagram.
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Supplementary Figure 4. Division of gene families by alignment conservation. Numbers in blue indicate the number of gene
families in each area of the histogram.
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Supplementary Figure 5. Spectrograms for
sets of gene families defined by alignment
conservation (see Supplementary Figure 4).
Order of quartets on X axis is the same as in
the spectrogram for all gene families shown
in Figure 2B. Note that each spectrogram has
its own scale on Y axis.
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Supplementary Figure 6. Agreement of gene families grouped by alignment conservation with plurality tree. Each histogram
corresponds to family set defined in Supplementary Figure 4. For details on agreement score calculation see Materials and Methods.
Compare this figure with Figure 4.
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Supplementary Figure 7. Phylogenetic tree reconstructed from re-arrangement distances.
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Supplementary Figure 8. Correlation between genome size and GC content among
19 analyzed genomes. Trendline y=0.0252x-12.433, r2=0.68 is shown as a dashed line.
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Supplementary Figure 9. Quartet decomposition analysis of 482 gene families with paralogs. Columns are in the order of their appearnce in
Figure 2B. The embedded quartets were evaluated to their agreement with quartet’s plurality topology (Figure 1A). Each quartet corresponding
to in-paralogs was evaluated independently. Note that number of gene families on Y axis is amplified by presence of in-paralogs, as the embed-
ded quartets containing them are counted independently within each gene family. For figure notations see legend to Figure 2B.
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Supplementary Figure 11. Scatterplots for four independently generated random partitions of data.
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Supplementary Figure
13. Phylogeny of
aromatic-ring hydroxy-
lase. In this example,
high-light adapted strains
do not form a monophyl-
etic group and show
conflict to plurality within
the two subgroups. The
tree was reconstructed in
the PhyML program
under JTT+G model with
100 bootstrap replicates.
Bootstrap values below
70% are not shown.
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Supplementary Figure 14.
Phylogeny of Ferredoxin,
PetF-like protein. In this
example, low-light adapted
strains group together. The
tree was reconstructed in
the PhyML program under
JTT+G model with 100
bootstrap replicates. Boot-
strap values below 70% are
not shown.
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Supplementary Figure 16.
Phylogeny of
cyanobacteria-specific
GntR-like HTH domain
containing transcriptional
regulator. In this example,
two low-light adapted strains
group within marine
Synechococcus. The tree
was reconstructed in the
PhyML program under
JTT+G model with 100
bootstrap replicates.
Bootstrap values below 70%
are not shown.
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Supplementary Figure 19. Phylo-
genetic tree of pstS gene. Multiple
homologs from the same genome
are numbered sequentially.
Cyanobacteria outside of
Prochlorococcus/marine Synechococ-
cus group are used as an outgroup.
Numerous relationships within each
subgroup are in conflict with plural-
ity signal and suggest that this gene
is frequently exchanged, possibly
mediated by phages.
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