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Supplementary Figure 1.  Division of gene families into three sets, 
depending on how many in-paralogs per family was present.  Within the “No 
in-paralogs” set (yellow) genes were subdivided into  “core genes” (red) and 
“core genes with an ortholog in the outgroup genome” (orange) subsets.  In “At 
most 8 in-paralogs” set (green)  “core genes” subset (light green) was identified.  
“More than 8 in-paralogs” set (blue) was excluded from further analyses.
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Supplementary Figure 2. 
Distribution of gene families without 
in-paralogs across functional 
categories. The four super-categories 
are de�ned by COG database (see 
Materials and Methods).  Notably, 
genes of informational storage and 
processing are represented in equal 
proportions in genes in con�ict with 
plurality as compared to all 1812 gene 
families, which contradicts complexity 
hypothesis (Jain et al. 1999).  
Metabolic genes appear to be 
overrepresented in the gene family 
pool which con�icts with plurality.
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1A account for alternative branchings shown on this NeighborNet diagram.
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Supplementary Figure 5.  Spectrograms for 
sets of gene families de�ned by alignment 
conservation (see Supplementary Figure 4).  
Order of quartets on X axis is the same as in 
the spectrogram for all gene families shown 
in Figure 2B.  Note that each spectrogram has 
its own scale on Y axis.
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Supplementary Figure 6. Agreement of gene families grouped by alignment conservation with plurality tree. Each histogram 
corresponds to family set de�ned in Supplementary Figure 4.  For details on agreement score calculation see Materials and Methods.  
Compare this �gure with Figure 4.
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Supplementary Figure 7. Phylogenetic tree reconstructed from re-arrangement distances.
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Supplementary Figure 8. Correlation between genome size and GC content among 
19 analyzed genomes. Trendline y=0.0252x-12.433, r2=0.68 is shown as a dashed line.
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Supplementary Figure 9. Quartet decomposition analysis of 482 gene families with paralogs.  Columns are in the order of their appearnce in 
Figure 2B.  The embedded quartets were evaluated to their agreement with quartet’s plurality topology (Figure 1A). Each quartet corresponding 
to in-paralogs was evaluated independently. Note that number of gene families on Y axis is amplified by presence of in-paralogs, as the embed-
ded quartets containing them are counted independently within each gene family. For figure notations see legend to Figure 2B.
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Supplementary Figure 10. 
Outer membrane efflux protein. 
Example of a gene family wih 
in-paralogs. In this particular case 
regardless of in-paralog choice, 
the tree is in conflict with plurality.  
The backbone of the tree was 
reconstructed in RAxML. 
Bootrstrap support values are 
shown from NJ tree recon-
structed from the TREE-PUZZLE 
distances.
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Supplementary Figure 11. Scatterplots for four independently generated random partitions of data.
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Supplementary Figure 12. 
Hydrolase of the metallo-
beta-lactamase superfamily.  
In this example, high-light 
adapted strains do not form a 
monophyletic group and show 
conflict to plurality within the 
two subgroups. The tree was 
claculated in the PhyML 
program under JTT+G model, 
100 bootstrap replicates. 
Bootstrap values below 70% 
are not shown.
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Supplementary Figure 
13. Phylogeny of 
aromatic-ring hydroxy-
lase.  In this example, 
high-light adapted strains 
do not form a monophyl-
etic group and show 
conflict to plurality within 
the two subgroups. The 
tree was reconstructed in 
the PhyML program 
under JTT+G model with 
100 bootstrap replicates. 
Bootstrap values below 
70% are not shown.
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Supplementary Figure 14. 
Phylogeny of Ferredoxin, 
PetF-like protein.  In this 
example, low-light adapted 
strains group together. The 
tree was reconstructed in 
the PhyML program under 
JTT+G model with 100 
bootstrap replicates. Boot-
strap values below 70% are 
not shown.
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Supplementary Figure 
15. SOS function 
regulatory protein, 
LexA repressor.  In this 
example, two low-light 
adapted strains group 
within marine 
Synechococcus. Also, 
there are conflicts within 
high-lighted adapted 
strains. Tree was 
reconstructed in the 
PhyML program under 
JTT+G model with 100 
bootstrap replicates. 
Bootstrap values below 
70% are not shown.
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Supplementary Figure 16. 
Phylogeny of 
cyanobacteria-specific 
GntR-like HTH domain 
containing transcriptional 
regulator.  In this example, 
two low-light adapted strains 
group within marine 
Synechococcus. The tree 
was reconstructed in the 
PhyML program under 
JTT+G model with 100 
bootstrap replicates. 
Bootstrap values below 70% 
are not shown.
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Supplementary Figure 17. 
Phylogeny of a hypotheti-
cal protein.  In this 
example, conflicts within 
high-light adapted strains 
observed. Note that this 
gene also has a homolog in 
Prochlorococcus-infecting 
phage P-SSM2. The tree 
was reconstructed in the 
PhyML program under 
JTT+G model with 100 
bootstrap replicates. Boot-
strap values below 70% are 
not shown.
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Supplementary Figure 18. Phylogeny of 
thymidilate synthase.  In this example of a fast 
evolving gene family, cyanophage homologs group 
with high-light and low-light adapted strains, while 
marine Synechococcus homologs are quite distantly 
related to them. Note that high-light adated strains do 
not form a monophyletic group. The tree was 
reconstructed in the PhyML program under JTT+G 
model with 100 bootstrap replicates. Bootstrap values 
below 70% are not shown.
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Supplementary Figure 19. Phylo-
genetic tree of pstS gene. Multiple 
homologs from the same genome 
are numbered sequentially.  
Cyanobacteria outside of 
Prochlorococcus/marine Synechococ-
cus group are used as an outgroup. 
Numerous relationships within each 
subgroup are in con�ict with plural-
ity signal and suggest that this gene 
is frequently exchanged, possibly 
mediated by phages.
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