Modeling RNA loops based on sequence homology and

geometric constraints

Supplementary Material

Christian Schudoma^{a,b,*}, Patrick May^{a,*},

Viktoria Nikiforova^b, and Dirk Walther^{a,*}

 $^{\mathrm{a}}Bioinformatics\ Group\ and$

^bSystem Integration Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany

Abstract

Key words: RNA 3D structure, structure prediction, molecular modeling

RLML – The RLooM Modeling Language

Modeling loops using the RLooM application is performed using a simple XML-like script language – RLML. Three parameters can be adjusted: the template data set that should be used, the maximum distance between the anchors of a loop and a target structure such that the inserted loop gives a valid model, and the threshold distance defining when a clash occurs between the new loop and the target molecule.

A single command is enclosed between tags specifying the loop-type of the query.

<x>...</x>, with x = hairpin|segment|internal|multiloop

Each command has a number of anchors (hairpins/segments:2, internal loops:4, multiloop:6+):

<anchor>ANCHOR_ID</anchor>,

with ANCHOR_ID = RI:C, R=resSeq, I=iCode, C=chainID

October 15, 2009

^{*} Corresponding author.

Email address: schudoma@mpimp-golm.mpg.de (Christian Schudoma). Preprint submitted to Nucleic Acids Research October

The anchor-tag has an optional parameter id, which can be used for specifying the sequence of the anchors. By default, <anchor>-tags are processed in order of appearance.

Finally, each command requires a query:

<query>SEQUENCE</query>,

with SEQUENCE being a nucleotide sequence, wildcards are allowed

The <query>-tag has three optional parameters: k, force, and mcsearch. The parameter k specifies the tolerated number of mismatches, force denotes whether suitable candidate loops with a different sequence than the query shall be artificially mutated to match the query sequence. The parameter mcsearch, if set to true, allows a valid MC-Search script (for details see e.g. http://major.iric.ca) to be submitted instead of the query sequence. By default, k is set to 0, force to false, and mcsearch to true.

The optional <remodel>- tag specifies, whether loop candidates should be mutated into its enclosed sequence.

<remodel>SEQUENCE</remodel>,

where SEQUENCE has to be a non-wildcard nucleotide sequence.

Supplementary Figures and Tables

Figure 1. Structural similarity of highly divergent sequences

blue: 23S rRNA GNRA-tetraloop hairpin (Sequence: GGGA, PDB id: 1FFK), orange: 23S rRNA tetraloop hairpin (Sequence:

AAUC, PDB id: 2GYA) The reduced backbone RMSD of the superposed structures is 0.14Å.

	1evv:a	1evv:b	13vv:c	1L2x	1Q8N	1Q 9 A	1rmn	2cky	2F88
Bases	13-22	30-40	53-61	7-14	14-19	6-22	16-21	26-36	23-27
Best Hits									
RLooM	1eHz*	1mj1	$2\kappa 4c^*$	1L3D*	1M90*	2D30*	3bbn*	3D2x*	1JZX*
$\mathrm{RMSD}_{\mathrm{a}}$	0.14	0.00	0.15	0.90	0.48	0.16	0.20	0.25	0.44
$\mathrm{RMSD}_{\mathrm{b}}$	1.04	0.78	1.11	1.72	4.12	2.76	3.12	0.53	1.58
$\mathrm{RMSD}_{\mathrm{s}}$	0.98	0.69	0.90	0.75	2.05	1.05	1.71	0.38	1.34
iFoldRNA									
$\mathrm{RMSD}_{\mathrm{a}}$	1.08	0.30	1.21	0.50	0.48	2.58	0.60	1.39	1.01
$\mathrm{RMSD}_{\mathrm{b}}$	10.88	3.90	4.72	4.40	1.26	23.19	2.51	9.21	1.45
$\mathrm{RMSD}_{\mathrm{s}}$	6.19	6.42	6.90	5.43	5.31	8.75	5.68	6.31	1.18
All Hits									
RLooM									
#models	14	11	16	3	25	23	58	2	13
$\mathrm{RMSD}_{\mathrm{a}}$									
Range	[0.00,0.96]	[0.00,0.52]	[0.00,0.95]	[0.11,0.99]	[0.00,1.02]	[0.03,1.13]	[0.00,1.23]	[0.22,0.25]	[0.00,2.63]
Mean	0.48 ± 0.27	0.29 ± 0.17	0.48 ± 0.25	0.67 ± 0.48	0.70 ± 0.20	0.44 ± 0.28	0.52 ± 0.23	0.24 ± 0.02	1.16 ± 0.80
Median	0.52	0.31	0.50	0.90	0.70	0.33	0.47	0.24	0.97
$\mathrm{RMSD}_{\mathrm{b}}$									
Range	[0.00,2.98]	[0.78, 1.74]	[0.00,3.81]	[0.25,2.19]	[0.00,2.31]	[0.15,8.66]	[0.00,1.26]	[0.41,0.53]	[0.00,3.51]
Mean	2.73 ± 2.20	1.10 ± 0.45	1.93 ± 1.27	1.39 ± 1.01	1.69 ± 0.86	4.35 ± 2.09	1.18 ± 0.35	0.47 ± 0.08	2.30 ± 0.97
Median	2.26	1.15	1.70	1.72	1.52	3.99	1.10	0.47	2.19
$\rm RMSD_{s}$									
Range	[0.00,2.26]	[0.69,1.1]	[0.00,3.15]	[0.10,0.79]	[0.00,1.67]	[0.14,2.05]	[0.00,1.44]	[0.38,0.49]	[0.00,2.89]
Mean	1.43 ± 0.82	0.73 ± 0.28	1.29 ± 0.91	0.55 ± 0.39	1.24 ± 0.42	1.45 ± 0.45	1.74 ± 0.73	0.44 ± 0.08	1.84 ± 0.75
Median	1.43	0.72	0.93	0.75	1.20	1.40	1.54	0.44	1.76
iFoldRNA									
#models	10	10	10	10	10	10	10	10	10
$\mathrm{RMSD}_{\mathrm{a}}$									
Range	[1.08,4.12]	[0.30,3.04]	[1.21,3.51]	[0.50,1.22]	[0.48,4.78]	[2.58,3.99]	[0.60,3.42]	[1.39,7.28]	[1.01,5.92]
Mean	2.42 ± 0.92	0.85 ± 0.89	2.19 ± 0.79	0.76 ± 0.24	1.36 ± 1.36	3.18 ± 0.52	1.82 ± 0.89	5.04 ± 1.82	2.91 ± 1.46
Median	2.48	0.48	2.15	0.76	0.76	3.01	1.97	5.24	2.93
$\mathrm{RMSD}_{\mathrm{b}}$									
Range	[9.60,21.67]	[2.44,16.45]	[4.56,17.46]	[3.18,7.55]	[1.26,10.98]	[19.05,28.28]	[2.34,9.69]	[9.21,18.62]	[1.45,5.75]
Mean	14.68 ± 4.24	8.18 ± 5.40	10.02 ± 5.08	4.94 ± 1.34	3.48 ± 2.83	24.11 ± 2.86	4.10 ± 2.23	13.57 ± 2.91	3.41 ± 1.39
Median	14.51	6.82	9.39	4.65	2.45	23.95	3.08	13.37	3.27
$\mathrm{RMSD}_{\mathrm{s}}$									
Range	[4.77,6.83]	[6.37,9.77]	[5.53,7.83]	[4.94,5.89]	[5.31,6.25]	[7.61,9.50]	[5.04,8.46]	[6.31,8.86]	[1.18,4.35]
Mean	6.10 ± 0.65	7.23 ± 1.26	6.61 ± 0.63	5.30 ± 0.29	5.72 ± 0.33	8.55 ± 0.53	6.09 ± 1.03	7.55 ± 0.84	2.48 ± 0.91
Median	6.26	6.59	6.50	5.33	5.68	8.62	5.80	7.42	2.34
Table 1									

Loop modeling results Modeled structures are indicated by their PDB-identifier and are located in chain A. $RMSD_a$: RMSD between anchors, $RMSD_b$: RMSD between reduced backbones given anchor superposition, $RMSD_s$: structural similarity – RMSD between reduced backbones given optimal superposition, values are given in Å, *: second best template (cf. text)

Figure 2. Backbone divergence between iFoldRNA model and native structure

blue: iFoldRNA model green: PDB structure 1Q9A, A6-A22. Structures are superposed at their anchors.