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ABSTRACT After a review of the diagram method for
continuous-time random walks on graphs with cycles, the
method is extended to discrete-time random walks. The basic
theorems carry over formally from continuous time to discrete
time. Three problems in tennis probabilities are used to illus-
trate random walks on discrete-time diagrams with cycles.
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Properties and applications of diagrams with cycles have
been summarized in a book (1) and have been extended con-
siderably in three recent papers (2-4). All of this work re-
lates to continuous-time random walks on the diagrams of
interest. The purpose of the present paper is to extend the
discussion to corresponding discrete-time problems. How-
ever, I begin with a summary of continuous-time properties
because these are used as the starting point for the discrete-
time discussion. Some of the notation here is a little different
from that used in refs. 2-4.

Steady-State Properties of Continuous-Time Diagrams
(Graphs) with Cycles

For concreteness, this review (1) is related in large part to a
particular example, shown in Fig. 1. Suppose that a protein
complex can exist in any one of n = 5 significant states, rep-
resented simply by the numbers (vertices) in Fig. 1A. Certain
pairs of these states are interconvertible, as indicated by the
lines (edges) in the state diagram (graph). The diagram has
three cycles, a, b, and c, shown in Fig. 1B. The complex can
be viewed as undergoing a continuous-time random walk
from state to state along the lines of the diagram, Fig. 1A.
The transition probabilities or rate constants that govern this
walk are denoted aij (one for each direction along each line,
though some of these may be negligibly small). For example,
al2dt is the probability that a complex in state 1 makes a
transition to state 2 in the infinitesimal time interval dt. The
complex is always in some one state: the transitions them-
selves are instantaneous. The aij are given at the outset as
part of the diagram and are independent of t. We imagine
following the random walk among the states of the diagram
for a very long time. The two questions we consider are (i)
what fraction of time pi is spent by the complex in each state
i? (ii) at what mean rates Ja+, Ja-, etc., are the three cycles
completed in each direction (+ or - in Fig. 1B)? The cycle
completions are of particular interest because they tell what
the complex accomplishes in the course of its long random
walk.
For any arbitrary finite diagram (graph), with all aij given,

the same questions can be asked about its n stationary-state
probabilities pi and its mean rates of cycle completions JK,.
There are two theorems (pages 6-10, 17-22, and 201-205

of ref. 1) that allow one to find the pi and the JK± by a graphi-
cal procedure from the given aij for an arbitrary finite dia-
gram (graph) with cycles. The example in Fig. 1 is used to
illustrate the two procedures or algorithms.
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FIG. 1. (A) Kinetic diagram (or graph) showing the n = 5 signifi-
cant states of a hypothetical protein complex and possible transi-
tions between some pairs of states. (B) Cycles belonging to the dia-
gram. The choice of positive direction is arbitrary.

It should be mentioned first that the stationary Pi can be
found by Cramer's rule from the linear equations (Fig. 1)

Pl + P2 + P3 + P4 + P5 = 1 [1]

and any four kinetic equations such as (see Fig. lA)

dp1d = 0 = (a2lp2 - a12PO) + (a3lp3 - a13p1). [2]
dt

A graphical algorithm (1, 5, 6) provides an alternative solu-
tion for the pi that is more interesting and elegant mathemati-
cally.
The first step is to construct from the diagram the com-

plete set ofpartial diagrams (subgraphs), each of which con-
tains the maximum possible number of lines (n - 1) that can
be included without forming any cycles (these subgraphs are
trees). There are 11 partial diagrams for Fig. 1A. The next
step is to introduce arrows into each line of the partial dia-
grams in five different ways, one way for each state. The
figures thus generated (there are 55) are called directional
diagrams, because of the arrows. For example, for state 2,
all arrows "flow" toward state 2, possibly by convergent
"streams" but never by divergent streams. The same is true
for the directional diagrams belonging to each of the other
states.
Each of the 55 directional diagrams has an algebraic value

that is obtained by forming the product of the transition
probabilities aij indicated by each of its n - 1 arrows. Let X
be the sum of the algebraic values of all 55 directional dia-
grams. Then the final statement of the theorem is

pi = (sum of algebraic values of directional

diagrams belonging to state i)/1. [3]

The generalization of Eq. 3 to an arbitrary diagram is obvi-
ous. If the diagram has many more states than in this exam-
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ple, the graphical method has aesthetic appeal only; for prac-
tical results one would have to solve the linear algebraic
equations, analogues of Eqs. 1 and 2, numerically by com-
puter.

Eq. 3 is intuitively plausible because the flow of arrows
toward a state is associated with transition probabilities that
lead toward the state and increase its chance of occupation.
A similar flow toward cycles appears in the second algorithm
(1, 6), which we now turn to.
We start, in our example, with the set of 11 partial dia-

grams. These subgraphs have two lines (edges) missing and
no cycles. We now add one line, in two ways, to each partial
diagram. These (there are 22) are also subgraphs, but now
each contains one cycle and n lines. Of the 22 subgraphs
generated, only six are different. In each of the six cases we
now add arrows to all lines that are appendages to the cycles:
the arrows are inserted so that they flow toward the cycles;
streams of arrows may converge but not diverge, just as
above for directional diagrams. Thus we are led, in this ex-
ample, to sixflux diagrams, classified according to cycle. 1K
is a property of cycle K and is the sum of a~i products for the
appendages of the flux diagrams that belong to cycle K. This
is illustrated in Fig. 2 for cycles a, b, and c.

Finally, we define IIK+ as the product of the aij around
cycle K in the + direction, and similarly for 1K_. In the ex-
ample,

la+= al2a24a45a53a3l, Hb- = al3a32a2l, [4]

etc. Then the theorem relating to cycle fluxes (mean rates of
cycle completions) is, for any cycle K,

JK+ = H1K+ Y-K/ly JK- = ilK- SK/X. [5]

The net mean rate of K cycle completions in the + direction
is

JK = JK+ - JK-. 0 [6]
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FIG. 2. The six flux diagrams belonging to the diagram in Fig.
LA, classified according to cycle.

Note also that

JK+/JK- = IIKK+I/[K- [7]
As an explicit example, from Fig. 2,

Jc = (a24a45a53a32 - a23a3a54a42)(a12 + al3)/, [8]

where I contains 55 terms (see above).
At this point I digress to add that I gave (1, 6) a correct

proof of Eq. 6 but an incorrect "proof" of Eqs. 5 (page 22 of
ref. 1). The latter deficiency has been removed by Kohler
and Vollmerhaus (7) and by Qian et al. (8, 9).
Each term in the numerators of Eqs. 5 is a product of n

factors aij. The terms in the denominator (Y.) have n - 1 such
factors.

In complicated cases, JK+ and J,. can be calculated exact-
ly by a linear algebraic method (2), as an alternative to Eqs.
5. Ref. 2 also includes a different and simple proof of Eqs. 5.
The transition flux Jij between states i and j is defined as

J = aijpi -ajipj. [9]

In the course of the proof of Eqs. 3 and 6, one finds that Jv is
equal to the algebraic sum of cycle fluxes for those cycles
that include the line ij. A plus sign is used for a term in the
sum if the cycle + direction coincides with the direction i -*
j; otherwise a minus sign is used. For example, in Fig. 1,

J12 = Ja + Jb, J23 = JA Jc. [10]

Let ai be the sum of all transition probabilities out of state
i. For example, in Fig. 1A, a2 = a2l + a23 + a24. If the
system (random walker, complex) is in state i at, say, t = 0,
the probability that any transition out of state i first occurs
between t and t + dt is are-aitdt. The mean time at which this
transition occurs is then F = 1/ai. That is, 1/ai is the mean
lifetime of state i whenever it is reached in the random walk.
When the transition does occur, the probability that the tran-
sition is from state i to a particular statej is aij/ai. The above
comments are needed below.

Normalized Transition Probabilities

This section relates to a formal modification of the problem
in the previous section. The modification is to replace every
transition probability au in the diagram of interest by the di-
mensionless quantity au/ai. This is still a continuous-time
two-way random walk. The new outgoing transition proba-
bilities for every state i are normalized to unity. Hence the
mean lifetime in any state before a transition occurs is unity.
The theorems, Eqs. 3 and 5, can now be applied to the new
set of normalized transition probabilities. When this is done,
let us use the new notation Pi for state probabilities, oT in
place of X, and jK, for the cycle fluxes. What is the relation
between Pi and Pi and between J.+ and jK±?

Define the product [I aja2 ... a. The numerators in
Eqs. 5 contain, in each term, a product with one outgoing
rate constant from each of the n states. Hence,

(,'IK+Y-Kl][)
IK+ = ; etc.

CT
[11]

Eqs. 5 and 11 have HK4+K in common, so we find on elimina-
tion of HK4K,

JK± = ( J)K+, etc. [12]
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Note that j,K is dimensionless. Because Y., Hl, and o are all
independent of the choice of cycle K, jK+ and JK+ differ only
by a constant normalization factor. Therefore, the relative
frequency of completions of the different possible cycles is
the same in the two cases (i.e., whether the transition proba-
bilities are aij or aija/i). This is intuitively obvious because
the sequence of states and cycle completions in the two ran-
dom walks would not be altered when aCij aij/ai. This fol-
lows because the sequence in the aij case is actually deter-
mined by the probabilities au/ai.

Let (sum) denote the numerator in Eq. 3. Each term in
(sum) contains an outgoing transition probability from every
state except i. Hence, in the modified problem,

(sum) -* (sum)ai/H.
Thus,

P= (sum)ai/HI
[13]

Then, from Eq. 3, on eliminating (sum),

P (jai. [14]

Aside from the leading normalization factor, this result is
also to be expected intuitively. That is, pi in the actual ran-
dom walk (i.e., in the aij case) is proportional to the product
of the relative frequency Pi that state i is visited in the course
of the long random walk and to the mean time 1/ai spent in
state i on each visit.
Although the connection between E and a is straightfor-

ward, they are not related mathematically in a really simple
way. However, summation of Eq. 14 over i gives

Y.J= (E Pi\-1flH i=\ pla1)
n

= Z (Pi/ai).
i=l

Thus, physically, Y./Hl is the overall mean time between
transitions in the actual random walk.

Discrete-Time Random Walks

Normalized transition probabilities can be used in Eqs. 3 and
5 to find the Pi and jK±, as just described. The mean lifetime
in any state is unity, but there is a distribution in lifetimes,
with probability e-tdt for a lifetime between t and t + dt.
That is, this is a continuous-time problem. Consider now a
modification of this system in which the lifetime distribution
above is replaced by a 8 function at t = 1. This modification
will have no effect on Pi because, in a very long random
walk, the fraction of the total time spent in state i will obvi-
ously be the same whether the lifetime distribution is e-'
(with mean at t = 1) or is a 8 function at t = 1. Similarly, jK+,
etc., will be unchanged by the modification because the
mean rate of completing any cycle depends on the sequence
of states in the long random walk and on the mean time spent
in each state on each visit. In the modification, the sequence
is identical and the mean time is unaltered.

In summary, Eqs. 3 and 5 can still be applied when the
outgoing transition probabilities from any state are normal-
ized to unity and when the time between transitions is al-
ways unity. But this is just a conventional discrete-time ran-
dom walk in which the time is counted simply by counting
transitions or steps. The unconventional part of the problem
is that the random walk occurs on a finite graph with cycles.

The notation we use for Eqs. 3 and 5 in this special case,
with normalized outgoing transition probabilities, is

Pi = (sum of algebraic values of directional

diagrams belonging to state i)/lo

jK+ = TK+AK/a, IK- 7TK=_SK/ aim

[16]

[17]

These relations are formally the same as Eqs. 3 and 5; the
notation change simply reminds one of the discrete-time spe-
cial case. Of course the sum in Eq. 16 is not the same as that
in Eq. 3 because of the use in Eq. 16 of normalized outgoing
transition probabilities.

All of the quantities appearing in Eqs. 16 and 17 are dimen-
sionless. For example, jK+ is the mean number of K+ cycles
completed per transition or step in the walk.

Tennis Problems as Examples of Discrete-Time
Random Walks

In this section I use three tennis problems to illustrate dis-
crete-time random walks on diagrams with cycles. Actually,
each of these problems is originally an absorption problem
on a diagram without cycles but when the original diagram is
closed, as described in ref. 2, one-way cycles are produced.
We work here with the closed diagrams, as examples of dis-
crete-time diagrams with cycles. The method is (presum-
ably) new, not the results. Because these cycles are one-
way, it is possible to calculate cycle fluxes directly from
state probabilities (this is not possible for arbitrary cycles).
Tennis Game That Starts at Deuce. As a very simple exam-

ple, consider a game in which the winner is the first player to
win two or more points with a margin of two points. Player
1(2) has a probability p(q) ofwinning each point, where p + q
= 1. To obtain stationary results, we imagine that the game
is replayed very many times. That is, there is a very long
discrete-time random walk on the closed diagram (graph) in
Fig. 3 A and B: each transition or step is a point and.comple-
tion of a game corresponds to completion of a cycle that re-
turns the walk to state 0. The states (scores) are 0 = deuce;
10 = advantage player 1; and 01 = advantage player 2. The
diagram has two cycles (Fig. 3C), labeled 1 and 2 (for the
winner of the game).
The steady-state equations for the state probabilities are,

from Fig. 3B,

P0 = Pol + Plo, Po, = qPo, Plo = pPo. [18]

The solution (normalized) is

PO = 1/2, P1o = p/2, Po, = q/2. [19]

These are the probabilities of occurrence of the different
possible scores when the game is repeated many times. The
cycle fluxes are

i = Pplo1= p2/2, j2 = qPol = q2/2.

A B 10

p q

q
O..qz 01

q

[20]

C ,-1

FIG. 3. (A) Diagram (graph) for a tennis game that starts at
deuce. (B) Normalized (outgoing) transition probabilities in the dia-
gram. (C) The two cycles of the diagram.
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These are the mean number ofgames won by each of the two
players per point played. The fraction ofgames won by play-
er 1 is p2/(p2 + q2). The mean number of completed games
per point isjl + or (p2 + q2)/2. The mean number of points
per game is 2/(p + q2). It is left as an exercise for the inter-
ested reader to derive Eqs. 19 and 20 from Eqs. 16 and 17.
Two-Out-of-Three Set Match. Player 1(2) has a probability

p(q) of winning each set, with p + q = 1. The closed dia-
gram, including transition probabilities, is given in Fig. 4A.
Unlike, Fig. 3B, these are all one-way transitions. Here a
transition or step in the walk corresponds to a set played.
The state notation indicates the score in sets. State 0 repre-
sents the score 0-0. The match is repeated many times; com-
pletion of a match returns the state (completes a cycle) to 0.
Fig. 4B displays the six cycles. In every casejK- = 0 and'A =
jK+. The number of matches won by each player, per set
played, is

j= ila + ilb + lc, i2 = i2a + i2b +12c [21]

The steady-state equations for the state probabilities

Po = p(Plo + P11) + q(Po, + P11)
P10 = pPo, Po, = qPO, P1u = qP1o + pPo0.

The solution is

Po = 1/or, Plo = P/c, Po, =q-a
P11 = 2pq/ao, cr = 2(1 + pq).

The fluxes are

hla = PP10 =P2/0"
I2a = qPol = q2/cr,

l = p2(1 + 2q)/cr,

jlb + j1c = PP11 = 2p2q/u

i2b +12c = qPll = 2pq2/c0

j2 = q2(1 + 2p)/a.

are FIG. 5. Diagram for a regular tennis game. The labels la, lb,
etc., refer to game-completion transition fluxes, not to cycle fluxes.

with transition probabilities, is shown in Fig. 5. This is a gen-
[22] eralization of Fig. 3B. Each transition or step in the random

walk corresponds to a point played. The states in the dia-
gram are point scores, with 32 representing any of 32, 43, 54,

22 representing any of 22, 33, 44, . . .; and 23 represent-
ing any of 23, 34, 45,. In tennis language 32 is 40-30
or advantage player 1, 22 is 30-30 or deuce, etc. We imagine

[23] a very long random walk on this diagram, where the game
(same server) is repeated many times. The labels la, 2a, etc.,
refer to game-completion transition fluxes, jha, etc., not to
cycle fluxes. The rates at which the two players win games,
per point played, are

[24]

[25]
1l = .la + jlb + jic = p(P30 + P31 + P32)

j2 = 12a + j2b + j2c = q(Po3 + P13 + P23).

[28]

[29]

Then the mean number of matches per set is

il + j2 = 1/cr = PO [26]

(flow into state 0 = flow out of state 0). The mean number of
sets per match is cr. The fraction of matches won by player 1
is

jh/(jh + j2) = p2(1 + 2q). [27]

The reader may wish to derive Eqs. 23 and 24 from Eqs. 16
and 17.
Regular Tennis Game. As a final example, consider a regu-

lar tennis game: to win requires four or more points with a
margin of at least two. Let p(q) be the probability that player
1(2) wins each point, with p + q = 1. The closed diagram,

B x-la

2a

~7

lb ic

2b D
c.

FIG. 4. (A) Diagram for a two-out-of-three set match. (B) The six
cycles of the diagram.

Corresponding to Eqs. 1 and 2, we have here

Po + * + P32 + P22 + P23 = 1

Plo = pPo, Po1 = qPo
Pul = qPjo + pPo1, etc. [30]

These 15 linear equations in 15 unknowns (P0, Pej) are easy
to solve. The results are

Po = N/D, P1o = pN/D, P20 = p2N/D

P1u = 2pqN/D, P30 = p3N/D, P21 = 3p2qN/D
P31 = 4p3qN/D, P32 = lOp3q2/D
P22 = 2p2q2(3 + 4pq)/D
N = p2+ q2 D = 4 (1 -pq + 6p3q3). [31]

To obtain Pj, from Pij, exchange p and q.

The total mean number of games played per point, as in
Eq. 26, is

=11 +12 = Po = N/D. [32]

Thus the mean number of points per game is DIN. The frac-
tion of games won by player 1 is

ili p4 +4p4q + 10P4q2 [33]

I P+p2 q2

A

1011
Pqlo-..ll--O
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Because of the complexity of Fig. 5, it would not be practi-
cal in this case to use Eqs. 16 and 17.

1. Hill, T. L. (1977) Free Energy Transduction in Biology (Aca-
demic, New York).

2. Hill, T. L. (1988) Proc. Natl. Acad. Sci. USA 85, 2879-2883.
3. Hill, T. L. (1988) Proc. Natl. Acad. Sci. USA 85, 3271-3275.

Proc. NatL Acad Sci USA 85 (1988) 5349

4. Hill, T. L. (1988) Proc. Nati. Acad. Sci. USA 85, 4577-4581.
5. King, E. L. & Altman, C. (1956) J. Phys. Chem. 60, 1375-

1378.
6. Hill, T. L. (1966) J. Theor. Biol. 10, 442-459.
7. Kohler, H.-H. & Vollmerhaus, E. (1980) J. Math. Biol. 9,275-

290.
8. Qian, C., Qian, M. & Qian, M. (1981) Sci. Sin. 24, 1431-1448.
9. Qian, M., Qian, M. & Qian, C. (1984) Sci. Sin. 27, 470-481.


