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ABSTRACT Bicontinuous cubic phases, composed of bi-
layers arranged in the geometries of periodic minimal sur-
faces, are found in a variety of different lipid/water systems.
It has been suggested recently that these cubic structures ar-
rive as the result of competition between two free-energy
terms: the curvature energy of each monolayer and the
stretching energy of the lipid chains. This scenario, closely
analogous to the one that explains the origin of the hexagonal
phases, is investigated here by means of simple geometrical
calculations. It is first assumed that the lipid bilayer is of con-
stant thickness and the distribution of the (local) mean curva-
ture of the phospholipid-water interfaces is calculated. Then,
assuming the mean curvature of these interfaces is constant,
the distribution of the bilayer's thickness is calculated. Both
calculations quantify the fact that the two energy terms are
frustrated and cannot be satisfied simultaneously. However,
the amount of the frustration can be smaller for the cubic
phase than for the lamellar and hexagonal structures. There-
fore, this phase can appear in the phase diagram between the
other two, as observed in many recent experiments.

1. Introduction

Although cubic phases in amphiphilic systems have been
known and studied for many years (1), their physical origins
are rather poorly understood. This can be traced to the com-
plexity of both the microscopic and mesoscopic structures
encountered in these systems. At a microscopic level, the
amphiphilic molecules exhibit complexity typical of other
macromolecules, such as polymers or liquid crystals. They
have many internal degrees of freedom, resulting in numer-
ous allowed conformations of the hydrocarbon chains and
amphiphilic headgroups. Because of complexity, an attempt
to describe the collective behavior of assemblies of such
molecules must be based on a simplified model that is mainly
phenomenological in nature. It is well known that the Lan-
dau approach has been very successful in the description of
the phase (e.g., the critical) behavior of other similar sys-
tems, and it is, therefore, tempting to adopt it here. Thus,
instead of dealing with microscopic variables one introduces
collective variables, such as the position and the curvature
of interfaces, their mutual separation, etc., and constructs a
phenomenological Hamiltonian, which is a function of these
variables.
Although this standard approach has been quite successful

in many other problems, in cubic phases an extra difficulty
comes from complexity at the mesoscopic level. In many
cases, the lipid-water interfaces are not of simple geometri-
cal shapes or topology. For example, it is now believed that
many lipid-water cubic phases are bicontinuous structures
composed of bilayers arranged in complicated networks to-

pologically equivalent to periodic minimal surfaces (see,
e.g., refs. 2 and 3). Therefore, before building a thermody-
namical or statistical mechanical description of these phases
one must first study their geometrical aspects. The main pur-
pose of this paper is to explore these geometrical aspects as
they relate to phenomenological terms in the free energy of
the bilayers.

H. Phenomenological Model: Origins of Frustration

To build a phenomenological model that accounts for cubic
phases, let us first consider phases that have much simpler
geometry-namely, the fluid lamellar (La) and the inverted
hexagonal (H,,) phases (4, 5). In phase diagrams in which
bicontinuous cubics appear, the cubics are often sandwiched
between lamellar and hexagonal phases. In a lamellar phase,
the phospholipid bilayers alternate with water lamellae so
that only the hydrophilic parts of the molecules are exposed
to water. An H,, phase consists of a hexagonally packed ar-
ray of parallel water-cored tubes (4, 5). Of course, the mole-
cules in La and H,, phases still have many allowed molecular
conformations and possess translational and rotational de-
grees of freedom, making it difficult to build and solve a de-
tailed statistical model of these phases based on the micro-
scopic variables. However, instead of dealing with molecu-
lar degrees of freedom, one can view the lamellar and the
hexagonal phases as ensembles of interacting water-phos-
pholipid interfaces. One can then introduce an effective in-
terface Hamiltonian for these collective variables and base
the statistical description on this phenomenological Hamilto-
nian. This was, in fact, the spirit of the approach used by
Kirk et al. (6). The interface Hamiltonian they used consist-
ed of three terms 9i = 9curv + 9chain + winter, where (i) 9;CUrV
is the curvature energy of the phospholipid monolayers, first
studied in detail by Helfrich (7). It is given by

[1];v = | dS 2m(H-Ho)2.Jur 2

Here H is the local mean curvature of the monolayers, and
Km is its bending rigidity constant. The presence of the spon-
taneous curvature, Ho, in Eq. 1 expresses the fact that each
interface wants to bend because of the mismatch between
the head-head and tail-tail molecular interactions. We have
neglected another elastic contribution, the so-called Gauss-
ian curvature term: f dS Km K, where K is the local Gaussian
curvature of the monolayers. There is no reason to think that
in a generic situation the value of the Gaussian elastic con-
stant Km changes drastically with the temperature or the wa-
ter content so as to induce changes in the topology of the
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system; we thus assume, for simplicity, that its value is zero.
However, more elaborate theories should of course take this
term into account. Note also that this assumption says noth-
ing about the effective Gaussian rigidity of the bilayers; in
fact, the other terms in the Hamiltonian can effectively gen-
erate such a contribution (and, in particular, change its sign).
(ii) 9chain takes into account all chain degrees of freedom
that are not included in i. It can be viewed as a packing ener-
gy for hydrocarbon chains. In particular, the stretched con-
figurations of the molecules cost some entropic contribution
included in 9;chain. From the point of view of collective inter-
face coordinates, this term is an interaction between differ-
ent interfaces. (iii) S9inter includes all other interactions be-
tween the interfaces. Examples include the hydration ener-
gy, long-range van der Waals interactions, and electrostatic
interactions if charged lipids are present (8).
For the sake of simplicity, the interaction term 9;inter will

be neglected and we will assume a simple quadratic form:
9;chain = A(l -10)2 where A and Io are constants and I is one-
half the distance across a bilayer (i.e., the length of a lipid
molecule). More elaborate forms of packing energies should
not change the main conclusions as long as 9;hain increases
monotonically with Il - 'oI. All these assumptions can of
course prove to be quite drastic. In fact, recent theoretical
studies of the phase transitions in lamellar phases of lipid/
water systems (R. Goldstein and S.L., unpublished data)
show that the interaction terms are crucial for understanding
the phase behavior of these systems. Our aim in the present
article is not to claim that our oversimplified description nec-
essarily holds for real systems, but rather to explore the con-
sequences of this simplest model.

Then, it is easy to observe that the remaining two terms of
the phenomenological free energy, the curvature term,

cur, and the packing term, 9;chain, cannot be minimized
simultaneously. Indeed, if Ho + 0, then: (i) in a lamellar
phase in which packing energy can be easily minimized-
e.g., by requiring a constant half-thickness, 10, of the lamel-
lae-the curvature energy contribution is nonzero; and (ii)
if, on the contrary, the interfaces curve themselves in such a
way as to minimize the curvature term-e.g., by forming
cylinders of radius 1/HO, then the variation of half-distances,
1, between them cost a nonzero packing energy. In particu-
lar, the chains of the phospholipid molecules must stretch to
cover the regions in the middle of the neighboring water cyl-
inders (6, 9). One often refers to such a situation as "the
frustration" (10). In fact, it has been shown that one can de-
crease this frustration by adding a small amount of flexible
hydrophobic molecules (9, 11, 12). In an inverted hexagonal
phase these molecules are believed to preferentially partition
into the regions in the middle between the water cylinders,
where the chains of the phospholipid molecules are stretched
and thus decrease the stretching of the chains. The addition,
for instance, of 1.5 mol% of dolichol into a suitable lipid mix-
ture reduced the temperature at which the HI, phase first
appeared by 50 K (9)! In the language of our phenomenologi-
cal model, the inverted hexagonal phase is now very stable
since both the curvature and chain packing terms of the ener-
gy are reduced.

III. Cubic Phases as a Relief to the Frustration

The idea that the frustration between the curvature energy of
monolayers and the packing energy of the hydrocarbon
chains results in the appearance of the cubic phases has re-
cently been explored by Sadoc and Charvolin (13). In this
purely geometrical approach, the frustration is relieved by
embedding the amphiphilic system into the space of constant
positive curvature (S ). Then, one returns back to R3 Euclid-
ean space by introducing curvature defects-i.e., disclina-

tions; this leads (13) to the family of cubic structures ob-
served in experiments. Similarly, it has recently been shown
(H. Karcher, personal communication) that triply periodic
surfaces of constant mean curvature can be obtained by pro-
jecting minimal surfaces in S3 down to R3; conversely, over-
lying every surface of constant mean curvature in R3 is a
minimal surface in S3 (14).
The approach used in this paper is also geometrical but

conceptually simpler. An estimate of the frustration in a cu-
bic phase is obtained by performing a "geometrical measure-
ment," similar to the one described for the L4t and H,,
phases. The idea is to determine whether a cubic phase can
be a solution to the frustration problem-namely, whether
the curvature of the monolayers in a bicontinuous cubic
phase can be kept constant (at its preferred value of Ho),
while simultaneously satisfying the packing energy of the
chains (which, in this simplified model, means that the thick-
ness of the bilayers remains constant at some preferred val-
ue).
To do this, it is first assumed that the bilayers have a con-

stant half-thickness, 1, everywhere, and then the variations
of the monolayers' local mean curvature, H, are computed.
Next, the opposite case of constant mean curvature mono-
layers is considered, in which the variation of the bilayer
thickness is calculated. Both calculations are performed for
an example of Pn3m cubic structure (15) (see Fig. 1), which
has been observed in various lipid-water systems such as in
monoglycerides, tetraether lipids, and others (1). The results
for the first calculation also hold for the cubic phase struc-
tures based on the Schwarz primitive minimal surface [which
are of space group Im3m, consistent with diffraction ob-
served in experiments (16)], and on the "gyroid" (17) [corre-
sponding to space group Ia3d, also observed in experiments
(18)], because these minimal surfaces have the same distri-
bution of Gaussian curvature as the Schwarz diamond mini-
mal surface.

IV. Geometrical Measurements of the Frustration

Constant-Thickness Case. We begin by considering the tri-
ply periodic minimal surface that corresponds to a Pn3m cu-
bic structure (Fig. 1), the so-called Schwarz diamond or D-
type minimal surface (19, 20). It has a vanishing mean curva-
ture H = 0 at every point, this being the definition of a
minimal surface. This surface divides space into two congru-
ent, periodic, interwoven, but unconnected volumes. Any
patch on a minimal surface represents the area-minimizing
surface patch spanning the boundary curve.#S This surface
can be thought of as being the midsurface traced out by the
terminal methyl groups of lipid chains. Now assume that the
monolayers on both sides of the midsurface are of constant
half-thickness, 1, so that the interfaces pertinent to a curva-
ture energy calculation are parallel to this surface. The two
lipid-water interfaces are likely to be near these parallel sur-
faces (22).

Let H, = HAu, v) denote the (local) mean curvature of one
of the interfaces, where u and v are the conformal coordi-
.iates in the Weierstrass representation of the minimal sur-
face (19). Then the curvature energy of each monolayer is

Ecurve = ((H2)1 - 2HO(H1), + H20)AI, [2]

#The boundary curve represents Plateau boundary conditions (21).
However, Schwarz (19) proved that under orthogonality boundary
conditions expressing Pn3m symmetry and topological equiva-
lence to the D-type minimal surface, the H = 0 surface is not area
minimizing. Recently, a family of H = constant surfaces with
Pn3m symmetry and fixed topological type have been computed in
which the D-type minimal surface actually represents a local maxi-
mum in area (15).
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FIG. 1. (a) Artist's representation of the repeating unit out of
which cubic phases with Pn3m symmetry are constructed. The cen-
ters of the four circular openings of the unit may be imagined as
forming the vertices of an inscribed tetrahedron. The walls consist
of a bilayer (Inset) with water on either side of the wall. The units
stack together as shown in b. The minimal surface is midway be-
tween the lipid head groups-i.e., it is the surface traced out by the
terminal methyl groups of the lipid chains. The head group surfaces
are nearly congruent to the two types of surfaces considered in this
paper: surfaces of constant mean curvature, H, and surfaces that are
a constant distance, 1, off the minimal surface; the near congruence
of these two surface types is fundamentally why this cubic structure
can be a good compromise to the curvature vs. chain stretch compe-
tition. Note that in the interests of visual clarity the bilayer wall has
been drawn as being thin. In real lipid cubic phases, the lipid/water
volume may exceed unity. An artist's rendition of this figure was
used instead of the more exact numerical data used in the calcula-
tions in the text because the computer-generated color figures are
difficult to reproduce by xerography.

where (.. .) = (f . . . dA,)/A, and Al = f dA, denote the
averages obtained by integrating over a unit cell of the paral-
lel surface. In this calculation, and in the constant-curvature
case, we perform the area integrations over the surface rep-
resenting the lipid-water interface, rather than over the min-
imal midsurface, reflecting the fact that the area per head
group is quite constant so that this integration is essentially a
summation over lipid molecules. Moreover, an experimental
study of the energy required to alter the curvature of the lipid
cylinders in HI, phases demonstrated that Eq. 1 held ifH and
HO were measured with respect to the lipid-water interface
(22). Ec,,e is calculated by taking advantage of a simple con-
nection existing between the curvature H, and the area ele-
ment dA, of the parallel surface and the Gaussian curvature
K and the area element dA of the minimal (H = 0) surface, Hi
= (-lK)/(1 + K12), dA, = (1 + K12) dA0. The distribution of
the Gaussian curvature, K, over the unit cell of the periodic
minimal D-type surface is shown in figure 3.4a' of Anderson
(15) in the form of K = constant contour lines. Then, the
area, Al, and the averages (HI), and (H2), can be expressed as
A, = Ao(1 + 12(K)o) = AO + 12(2trX), A,(H,), = -lAo(K)o =
-21rXI, A,(Ht), = Aol2((K2)/(1 + K12))o, where (.. .)0 de-
notes the averages over the minimal surface, AO is the area of
the unit cell of this surface (AO = 1.9188903 . . . when the
Pn3m lattice parameter is equal to unity), and X = -2 for the
D-type minimal surface.

The last integral over the minimal surface can be written in
the form of an expansion:

A (K + Kl2) = NE (l1)N2N+2(KN+2)o

_ (_ l)NP2N+2SN 2,
N=O

and then calculated numerically by the method described in
the Appendix. By truncating this expansion at the sixth term
one makes an error smaller than 1%. Actual values of the
coefficients Si are given in the Appendix.

Putting together the equations of the last two paragraphs,
one can calculate the curvature energy Eq. 2. Instead of this,
we calculate the normalized variance

RH ((H, - Ho)2),
Ho [3]

RH measures deviation from a constant value, HO, of the
mean curvature over the surface, which is at a fixed distance
I off the minimal surface. If this quantity were zero it would
mean that one could build a bilayer of cubic symmetry with a
constant thickness, for which the water-lipid interfaces
would have a constant (imposed) mean curvature. Thus, the
frustration would be released in the cubic phases as suggest-
ed by Sadoc and Charvolin (13).

Fig. 2A shows the plots of RH as the function of the vol-
ume fraction of the water Fw = 1 - (DI, where (FI = volume
fraction of lipid. The water fraction is varied simply by vary-
ing the ratio i/a of the half-thickness to the lattice parameter.
There exists a simple analytical formula for the volume frac-
tion as a function of g = i/a-namely, (DI = 2AOu - 8iqd3/3.
Different plots correspond to different values of (H,),/HO. If
the constraint of constant thickness of the bilayers is im-
posed, the variations ofH are quite dramatic, implying a fi-
nite cost of the curvature energy Eq. 2. Therefore, it is con-
cluded from these plots that in these cubic phases one cannot
simultaneously satisfy both the conditions of the constant
thickness and of the constant curvature of the monolayers.
Note that one should not be surprised that the values of

RH are so large. The curvatures H are the second derivatives
of the positions of the interfaces, so that even if the surfaces
are perturbed rather slightly the curvatures can vary greatly.

Constant Curvature Case. Now consider the case of con-
stant curvature interfaces. The ideal hexagonal structure is
an example of such a case, as is the lamellar; the question
that thus arises is whether the cubic phase in which one im-
poses the constant curvature interfaces will have smaller
packing energy than the HI, phase. To answer this question,
at least from a purely geometrical point of view, start again
with the midsurface of a bilayer and assume that it is a mini-
mal surface. The first problem encountered is to determine
what happens to this surface if one tries to impose on it a
nonzero constant mean curvature HO. Can the surface still
remain periodic with the given symmetry and, more impor-
tantly, can it remain non-self-intersecting? Although the
problem of periodic minimal (HO = 0) surfaces has been stud-
ied for many years (17, 19, 21), it is only recently that the
case of constant H surfaces of given three-dimensional sym-
metry has attracted attention. In particular, Anderson (15)
has explicitly computed such surfaces by numerical tech-
niques, whereas H. Karcher (personal communication) has
demonstrated their existence in a rigorous sense. The an-
swer for the above question is therefore "yes," at least in the
case that H* = Hoa (where a is the size of the unit cell) is
smaller than a maximum value H* 2.8, which represents
the limit for the branch of solutions examined by Anderson
(15).
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FIG. 2. (A) The normalized variance RH is a measure of the deviation from a constant value, Ho, of the mean curvature over the surface,
which is at a fixed distance, 1, off the minimal surface. RH is shown vs. the lipid volume fraction for different values of the ratio of (H,),/Ho,
where (HI), is the average curvature of the surface, which is a constant distance off the minimal (H = 0) surface. If RH were zero, then this
parallel surface would have a mean curvature equal to HO at every point. (B) RI measures the deviation from a constant value Io of the distance
between the minimal surface and the surface off constant mean curvature H. It is shown vs. the lipid volume fraction for different values of
()H/lo, where ()H is the average distance of the constant H surfaces from the minimal surface. The fact that RI is so small means that if the lipid
head groups conform to the proper constant curvature surfaces, then the thickness of the bilayer is nearly constant.

One can now superimpose two such surfaces, each of

them corresponding to one lipid-water interface. The space
that is formed between the two surfaces corresponds to the
interior of the bilayer and its exterior corresponds to the wa-

ter region (Fig. 1). We want to measure the distribution of
the half-thickness, 1, of the lipid interior region. In particular,
the variance of this distribution

(I2)H (P)2
2

Thus, one can express the variance of the thickness distri-
bution in the form of an expansion in (I:

[7]

where c 3.5 10-4. The expansion (Eq. 7) agrees with the

numerical results over the whole range of (D values. Finally,
Fig. 2B shows the dependence of a more general quantity

[4]
RI = ((( - l0)2)H)/l1,

where (. . .)H = f . . dS/f dS (the integration is performed
over the lipid-water interface surface, as in the previous
case), should give us a measure of the frustration in the sys-
tem, since the energy of the chains is

Echain = A(l2)H 2A(0H + Al2 AIkR (if 10 (l)H). [5]

R is estimated numerically via a method developed by An-
derson (15) (see Appendix). One may calculate the local
thickness of the region included between two H constant
surfaces by extending the normals to these surfaces at one

point of each of the triangular elements (see Appendix) and
then determining the points where these normals intersect
with the minimal (H = 0) midsurface. Triangulation of the
surface with 19,200 triangles per unit cell of the D-surface
was used, so the measurement is quite accurate. Calling
cI(H*) the volume fraction of the unit cell corresponding to
the lipids, and A(H*) the area per unit cell of the surfaces
(the area of lipid-water interfaces), we obtain the following
expansion for these quantities:

(DI = cjH* - c3H*3 + c6H*6 + . . [6a]

A/a2 = co cl H*2 + 3C3 H*4 - 6 H*7 + . ., [6b]

where c0 1.91889, cl 0.55928, C3 - 0.07748, c6

0.00348.

[8]

on the volume fraction 'FI. RI measures the deviation from a

constant value, 10, of the distance between the minimal sur-

face and the surface of constant mean curvature H. As we

can see, the behavior of RI is remarkably constant and its
values are small over the entire range of the lipid concentra-
tions considered. (Notice that (D is bounded by D' - 0.739,
which corresponds to the maximum value attainable in this
family.) Thus, if (l)H = 10, for example, then the value of RI
does not exceed 1%.

The cubic-phase RI values are smaller than may be expect-
ed for hexagonal phases in which the central water cylinder
radius is large compared to the mean lipid thickness. Consid-
er, for example, the lipid 1,2-dioleoyl-sn-glycero-3-phospho-
N-methylethanolamine, which has been shown to form
Pn3m/Pn3 cubic phases at 250C, but which will form H,,
phases if the chain frustration is artificially relieved by the
addition of several percent of a light oil, such as dodecane
(23). Tate (24) derives an expression for ((1 - l0)2)H for an H,,
geometry with cylindrical cores from which one may obtain
RI. Although 1l is not known for 1,2-dioleoyl-sn-glycero-3-
phospho-N-methylethanolamine, it is reasonable to assume

that lo is roughly equal to the thickness of the H,, monolay-
ers-i.e., d - 2(RW + lo). Using 15-20 A as a liberal range of

lo values (23, 24), we get RI = 3.8%.

The fact that the value of R1 can be so small in the cubic
phase shows that the frustration in the cubic phase can be
small compared to the hexagonal phase. Therefore, under a

change of control parameters of the system (such as the tem-

perature or the hydration), which favors a moderate curving
of monolayers, one may expect to transform the lamellar

I, , I A 1I I

(ni-
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phase into a cubic phase and not into the inverted hexagonal,
at least for certain values of Kim A, and 10. In fact, experimen-
tally, inverted cubic phases are found between the lamellar
and hexagonal phases (3, 23, 25).

V. Conclusions

The simple geometrical calculation presented in this paper
should be thought of as a first step of the phenomenological
model of Section Il. Many improvements are necessary be-
fore the results of such a model could be applied to the de-
scription of real systems. From the geometrical point of
view, it could be useful to extend the space of possible struc-
tures beyond constant l or constant H surfaces. More impor-
tantly, the interactions between the interfaces must be intro-
duced into the calculation. Recent results from a similar phe-
nomenological model (R. Goldstein and S.L., unpublished
data) for lamellar phases show that the "interacting-inter-
faces" picture can give a good description of the thermody-
namic behavior of amphiphilic systems, provided that the
molecular interactions such as hydration or van der Waals
forces are taken into account. A good description of the
chain packing entropy that enters the phenomenological
Hamiltonian is also needed.

It seems to us that, despite the various simplifications, the
geometrical calculation described above shows that the ap-
pearance of the cubic phases in the lipid-water mixtures
(and similarly in other macromolecular systems) can, in
some cases, be due to the frustration between the curvature
and the chain packing energies.

Appendix

We first describe the calculation of the coefficients SN de-
fined by SN = f f KNdA, where K and dA are defined on the
minimal surface. Begin by splitting KNdA into KNv- and
KdA, because the latter can be very easily written in terms of
the surface coordinates (u, v) in the Weierstrass representa-
tion of the minimal surface: KdA = -4/(1 + U2 + v2)2dudv.
The expression for K involves the complex norm of an 8-
order polynomial:

K = -(8/K)Il1 - 14(u + iV)4 + (U + iV)81/
(1 + U2 + VI)4, [9]

where K = 0.8389222985.... The integral that must be per-
formed is thus:

SN = -96 [-(8/K2)I1 14(u + iv)4 + (u + iv)81IN1/
(1 + U2 + V2)4N-2 dUdv. [10]

The patch D of the Riemann surface over which this integral
must be performed is a portion of the "Kreisbogenverecht"
described by Schwarz: D: {(u + iv)10 u,v; (u + V2-/2)2 + (V
+ \/ 1/2)22 2}. This was done by Gaussian quadrature over

a 10,000 x 10,000 square mesh.
The values for the first eight N are Si = -4r; S2 =

100.294; S3 = -865.936; S4 = 7.82252 x 103; S5 = -7.28926
X 104; S6 = 6.95520 x 105; S7 = -6.76358 x 106; S8 =

6.68197 x 107. By evaluating an upper bound for the remain-
der in the series expansion, one can show that for I/a c 0.21
the error is <1%; this value of I corresponds to 4e = 0.73.
The calculation of the (12), and (i), for a set of constant

mean curvature surfaces begins with the calculation of the
equation, in Cartesian coordinates, of each triangular patch

Tj, j = 1, 800 in the finite element representation of a funda-
mental portion of the minimal surface. Then for each Gauss
point pi on the corresponding fundamental portion of the
constant H surface, the surface normal and differential area
element are calculated. The intersection rij of this normal
with each Tj is calculated, converted to the (u, v, w) coordi-
nates in the finite element representation of the surface. If
the (u, v) coordinates in the computational domain (which is
a square) lie in the mesh triangle underlying Tj, then rij is the
intersection of the normal with the minimal surface. The dis-
tance l = ii - r1ig and 12 are calculated and multiplied by the
differential area element and summed over the Gauss points.
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