Near Infrared Fluorescent NanoGUMBOS for Biomedical Imaging

David K. Bwambok¹, Bilal El-Zahab¹, Santhosh K. Challa¹, Min Li¹, Lin Chandler², Gary

A. Baker³ and Isiah M. Warner^{*, 1}

¹Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803

²Horiba Jobin Yvon Inc., Edison, NJ, 08820

³Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

Supporting Information

Contents:

Table S1. Yields, melting points and aqueous solubility of HMT-based GUMBOS and size of corresponding particles.

Table S2. Elemental analysis of HMT-based GUMBOS.

Figure S1-1. ¹H NMR (CDCl₃, 400MHz) of [HMT][AOT].

Figure S1-2a. ¹H NMR (CDCl₃, 400MHz) of [HMT][NTf₂].

Figure S1-2b. ¹⁹F NMR (CDCl₃, 236MHz) of [HMT][NTf₂].

Figure S1-3a. ¹H NMR (CDCl₃, 400MHz) of [HMT][3, 5-CF₃PheB].

Figure S1-3b. ¹⁹F NMR (CDCl₃, 236MHz) of [HMT][3, 5-CF₃PheB].

Figure S1-4a. ¹H NMR (CDCl₃, 400MHz) of [HMT][BF₄].

Figure S1-4b. ¹⁹F NMR (CDCl₃, 236MHz) of [HMT][BF₄].

Figure S2. UV-Vis-NIR absorption spectra (A) and fluorescence emission spectra (B) of HMT nanoGUMBOS suspension in water. Excitation wavelength at 743 nm. Solid line [HMT][AOT], dashed line [HMT][NTf₂], and dotted line [HMT][3, 5-CF₃PheB].

Figure S3. Histogram of size of [HMT][AOT] nanoGUMBOS obtained from TEM image shown in Figure 2A. The particles had an average particle diameter of 71 ± 16 nm.

Figure S4. Fluorescence emission spectum of equimolar mixture of [HMT][I] and [Na][AOT] in ethanol (solid gray line), [HMT][AOT] in ethanol (dotted line), and [HMT][AOT] nanoGUMBOS suspension in water (solid black line). The excitation wavelength is 743 nm for all three samples.

NIR GUMBOS	Yields (%)	Anion structure	MW of anion	mp (°C)	Particle size	Solubility in water
			(g/mol)		(nm)	
[HMT][AOT]	93		421	58	71 ± 16	Ν
[HMT][NTf ₂]	94		283	220	60 ± 11	Ν
[HMT][BF ₄]	84	F−B⊖ F−B− F	86	175	N/A	Y
[HMT][3,5CF ₃ PheB]	91	F ₃ C CF ₃	281	95	130 ± 41	N

Table S1. Yields, melting points and aqueous solubility of HMT-based GUMBOS andsize of corresponding particles.

	С		Н		Ν	
	Theory	Found	Theory	Found	Theory	Found
	(%)	(%)	(%)	(%)	(%)	(%)
[HMT][AOT]	70.82	69.38	8.49	8.63	3.37	3.35
[HMT][NTf ₂]	53.98	53.99	4.82	4.79	6.09	6.19
[HMT][3,5 CF ₃ PheB]	64.31	61.97	5.21	4.92	4.05	3.61
[HMT][BF ₄]	70.10	64.03	6.64	6.35	5.64	5.09

 Table S2. Elemental analysis of HMT-based GUMBOS.

Figure S1-2b. ¹⁹F NMR (CDCl₃, 236MHz) of [HMT][NTf₂].

 BF_4 0.0 10.0 5.0 **Figure S1-4a.** ¹H NMR (CDCl₃, 400MHz) of [HMT][BF₄].

Figure S2. UV-Vis-NIR absorption spectra (A) and fluorescence emission spectra (B) of HMT nanoGUMBOS suspension in water. Excitation wavelength at 743 nm. Solid line [HMT][AOT], dashed line [HMT][NTf₂], and dotted line [HMT][3, 5-CF₃PheB].

Figure S3. Histogram of size of [HMT][AOT] nanoGUMBOS obtained from TEM image shown in Figure 2A. The particles had an average particle diameter of 71 ± 16 nm.

Figure S4. Fluorescence emission spectum of equimolar mixture of [HMT][I] and [Na][AOT] in ethanol (solid gray line), [HMT][AOT] in ethanol (dotted line), and [HMT][AOT] nanoGUMBOS suspension in water (solid black line). The excitation wavelength is 743 nm for all three samples.