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Supplemental Data 
Figure S1: Modeling the effects of prevalence (related to Figs 2,3, & 4) 
 

 
Brief caption: S1a-c: Data in Fig 2 from Experiment Two [c] are consistent with an 
unequal variance signal detection model [b] not the more common equal-variance 
model [a]. s1d-e: Three efforts to model these data. The top two, based on variations 
of single parameters of a standard diffusion model (Fig 3) perform poorly. The 
bottom row, based on variation of two parameters in the Multiple Decision Model 
(Fig 4), perform better. 
 
S1a: Calculations of sensitivity (d’) and criterion are based on a standard signal detection 
model that assumes that the signal and noise distributions have equal variance as in S1a. 
Under these conditions, ROC curves are symmetrical around an axis connecting the 
upper left and lower right corners of a plot of the Hit rate against the False Alarm rate and 
zROC curves have a slope of 1.0 in a plot of z(Hit) against z(FA). 
 
S1b: Equal variance is merely an assumption and need not be the case. S1b shows a 
hypothetical situation in which the variance of the noise distribution is less than the 
variance of target distribution. This will produce asymmetrical ROCs and zROCs with 
slopes other than 1.0. This example produces a zROC slope less than 1.0.  
 
S1c: If the data from Fig. 2a are replotted in z units on a zROC, the results reveal a zROC 
slope less than 1. In prior work, we have found that the simulated baggage task produces 
zROC slopes of about 0.6. Kundel [1] got a very similar slope in a study of lung cancer 
detection. Slopes less than 1.0 are also seen, for example, in some memory tasks [2, 3]. 
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Moreover, some types of signal detection modeling of search for a target among multiple 
distractors lead to models in which the variance of the internal response to a target-absent 
trial is lower than the variance of the internal response to a trial with distractors and one 
target [4]. 
 
S1d-e: We simulated the effects of prevalence described in the main text (see 
Supplementary Methods). The top two rows of S1d-e shows the effects of variations of 
either the start point or the lower boundary of a standard diffusion model (Fig. 3) [5]. The 
last row shows results of varying criterion and quitting threshold in the Multiple Decision 
model of Fig 4.  
 
Solid lines in Fig. S1d show empirical RTs derived from Fig 2 (Black – target-present, 
gray/pink – target-absent). There is a substantial increase in target-absent RTs with rising 
target prevalence and little or no change in the faster present RTs. Dotted lines show 
simulated RT results for correct present trials  (black) and correct absent trials 
(gray/pink). The multiple decision model performs best.  
 
The patterns of simulated error rates are captured in the zROC graphs of S1e. The desired 
pattern, derived from Fig 2a is a trade-off of misses and false alarm errors producing a 
zROC with a slope near 0.6 as shown in S1c and reproduced as the blue/gray line in S1e. 
The “vary start point” and “vary absent boundary” versions of a simple diffusion model 
[5] do not capture the data. The multiple decision model performs well.  
 
This modeling is intended to provide a qualitative indication of what type of model might 
account for the effects of prevalence. The results do not “disprove” diffusion models.  
They indicate that manipulation of a single parameter (in a diffusion model or elsewhere) 
is unlikely to successfully model the data in this paper. It is quite possible that a standard 
diffusion model could produce the correct pattern of results if two parameters covaried 
with prevalence. However, we believe that it is more plausible to see the search through 
the simulated bag as a series of 2AFC decisions about target presence plus a decision 
about search termination (the architecture shown in Figure 4 of the main paper). We 
allowed prevalence to change the criterion for the 2AFC decision and the threshold for 
the quitting decision.  
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Supplementary Methods 
 
Simulation of a 2AFC diffusion model (see Figure 3 and top 2 rows of Figure S1d-e).  
 
To produce the results shown in the top two rows of Figure S1d-e, a standard diffusion 
model like that shown in Figure 3 was simulated. It had eight parameters (values used are 
given in parentheses but are not critical):  

1) the rate of diffusion on target present trials (1) 
2) the standard deviation of that rate (2) 
3) the rate of diffusion on target absent trials (-0.5) 
4) the standard deviation of that rate (2) 
5) the starting point of the diffuser on each trial (0) 
6) the standard deviation of that starting point (1) 
7) the position of the target present border (6) 
8) the position of the target absent border (-6). 

 
The rule for the diffusion on a target-present trial was  
 

d(t)=d(t-1)+N(1,2)    (1) 
 
On each time step of a target present trial, the value of the diffuser was updated by adding 
a random variable with a mean of 1 and s.d. of  2. This continued until the diffuser hit one 
of the borders. If it hit the upper bound, this was a correct target present response. If it hit 
the lower bound, this was a miss error. On target absent trials, the rule was  
 

d(t)=d(t-1)+N(-0.5,2)    (2) 
 
and response was correct if the diffusion hit the lower bound and a false alarm error if it 
hit the upper bound.  The RTs were converted from time steps to msec. 
 

RTmsec = (TimeSteps * 120)  (3) 
 
The different rates of diffusion on present and absent trials capture the longer RTs on 
absent trials. This outcome could be accomplished in other ways (e.g. asymmetrical 
upper and lower bounds). 
 
The point of the simulation is to examine model behavior as target prevalence changed. 
The critical aspects of the data to capture are 1) the change in criterion with prevalence, 
the lack of change in sensitivity, the change in correct absent RTs, and 2) the relative lack 
of change in correct present RTs. In the “vary start point” condition (top row of S1d-e) 
criterion change was simulated by a change in the starting position of the diffuser. This 
was a linear function of prevalence, varying from -4.4 to 4.4 as prevalence varied from 
0.1 to 0.9.  In the “vary absent boundary” condition  (second row of S1d-e), change in 
correct absent RTs was simulated by a linear change in the position of the lower bound (-
2.5 to -10.5). Again, the exact parameters are not critical. Changing the starting point 
shifts criterion in a reasonably correct manner. However, this produces the wrong pattern 
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of RTs. Changing absent boundary alters the separation between upper and lower bounds. 
This changes sensitivity, contrary to the data.  
 
Simulation of the multiple-decision model (see Figures 4 and last row of Fig S1d-e).  
 
To produce the results shown in the last rows of Figure S1d-e, a multiple-decision model 
like that shown in Figure 4 was simulated. It had eight parameters (values used are given 
in parentheses):  
 

1) the sensitivity (d’) of the internal 2AFC decision process (3.4) 
2) the criterion (c) of the internal 2AFC decision process (varies from 1.22 to -0.22 

as prevalence varied from 0.1 to 0.9) 
3) the rate of diffusion of the quitting process (1) 
4) the standard deviation of that rate (.5) 
5) the starting point of the diffuser on each trial (0) 
6) the standard deviation of that starting point (.5) 
7) the position of the quitting threshold (varies from 8 to 20 as prevalence varied 

from 0.1 to 0.9) 
8) the position of a quitting threshold that would produce a target present response 

(set to -100 so that this event never occurs). 
 
At each time step, an item is “selected”. This generates a random variable, distributed  
N(0,1) if it is a distractor and distributed N(3.4, 1) if it is a target. If that value is above 
criterion, the search is terminated with a “present” response. If not, search continues. The 
simulation assumed a fixed set size of 10. On each cycle, an item was sampled at random 
from the display with replacement [without memory for rejected items, [6] though this is 
not critical for the qualitative pattern of results in this case]. The rule for the quitting 
diffusion process was  
 

q(t)=q(t-1)+N(1,0.5)    (4) 
 
The trial is terminated with an “absent” response if that cumulative value reaches the 
quitting threshold. 
 
The criterion shift in the data is captured by a criterion shift in the decision made about 
each selected item in the course of the search. The large separation between target and 
distractor responses (d’ =  3.4) is needed in order to keep the percentage of false alarms 
within bounds. In effect, the large sensitivity of the 2AFC decision means that, once an 
item is attended, the observer is quite sure if it is or is not at gun or a knife. Criterion 
varies linearly from 1.22 to -0.22 as prevalence rises from 0.1 to 0.9. The change in 
absent RTs is captured by a linear change in quitting threshold from 8 to 20 as prevalence 
rises from 0.1 to 0.9. 
 
We do not want to make excessive claims for the multiple decision model with its serial 
selection of item after item. We think that complex search tasks that are extend over time 
are best understood as a series of 2AFC decisions. However, as noted, some version of a 
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wholly parallel diffusion model can probably fit the data, too. Models that vary only one 
parameter seem unlikely to fit the data. For a diffusion model, moving just the start point 
or the “no” threshold does not produce good fits to the data. In results not shown here, we 
find that shifting only the 2AFC decision criterion or the quitting criterion in the multiple 
decision model does not work any better. Prevalence appears to have an impact on both 
the evaluation of candidate targets and the assessment of the appropriate time to quit. 
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