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Verhaak et al., Figure S1
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Verhaak et al., Figure S4
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‘erhaak et al,, Figure 55
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Verhaak et al., Figure 57

A B
GBM All Gliomas
[=]
- Hazard Ratios: 2 Hazard Ratios:
B Classical; 1.18 (p=0.2) B Classical; 1.66 (p=0.0002)
W Mesenchymal: 1.08 (p=0.6) B Mesenchymal: 1.53 (p=0.001)
o w0
ey B Meural: 1.13 (p=0.5) o B Meural: 1.33 (p=0.06)
B Preneural: 1 (reference) B Proneural: 1 (referenca)
= o = @ |
5 L g 2
3 =
» I @ a7
o o
= o
o | e
o L] T 1] j < L] T ] ]
0 10 20 30 40 0 10 20 30 40

Months Months



Supplemental Figure Legends

Figure S1. Improved cross validation and training error rates using unified core dataset versus each
individual dataset. Cross validation and training error rates for (A) Entire unified dataset
(n=202), (C) Core unified dataset (n=173), (C) Core Affymetrix U133A, (D) Core Affymetrix-
HuEXx, and (E) Core Agilent 244K Custom.

Figure S2. (A-F) Sample-sample heatmap showing pair-wise correlation between all samples. The
colors of the cells relate to Pearson's correlation coefficient values, with deeper colors indicating
higher positive (red) or negative (blue) correlations. Additional information is shown alongside
the diagonal. (A) Sample subtype; Proneural in blue, Neural in orange, Classical in purple,
Mesenchymal in cyan. (B) Sample providing institute; Henry Ford Hospital in blue, MD
Anderson Cancer Center in orange, University of California San Francisco in purple, Duke
University in cyan. (C) Batch; batch 1 in purple, batch 2 in brown, batch 3 in yellow, batch 4 in
purple, batch 5 in blue, batch 6 in turquoise. (D) The percentage normal tissue in the sample,
scaled to a maximum of 100%. (E)Percentage necrosis, scaled to a maximum of 50%. (F) IQR
NUSE, a metric that indicates the amount of random noise in an expression profile, scaled to a
maximum of 0.10. (G-L) Subtype proportions and association with age stratified by dataset.
Overall, and within the TCGA samples, age was correlated with the Proneural subtype. The
proportions of the subtypes are shown for each dataset and were approximately equal. PN,
Proneural; NL, Neural; CL, Classical; MES, Mesenchymal.

Figure S3. Comparison of TCGA with previously published glioma subtypes. (A) Matrix of subtype
calls for TCGA core samples (n=173) as predicted by TCGA or Phillips et al. centroids (B)
TCGA Core samples clustered with Phillips et al. 35 gene signature. To obtain the best coverage
of the Phillips gene signature, gene expression data for 33 of the 35 gene signatures were
mapped to the Agilent data platform. (C) Matrix of subtype calls for TCGA core samples
(n=173) as predicted by TCGA or Freije et al. gene lists. (D) TCGA Core samples clustered
with Freije et al. 44 gene signature. Gene expression data for 40 of the 44 gene signatures were
mapped to the Unified dataset. Genes were ordered according to Freije et al. and samples were
hierarchically clustered. Samples were color coded based on the ClaNC subtype predictions
(Proneural, purple; Neural, green; Classical, blue; Mesenchymal, red).

Figure S4. Genome wide view of copy number alterations in the four major subtypes of glioblastoma.
Average copy number was determined for positive and negative copy number estimates
separately using 244,000 probes and 150 tumor samples derived from the largest single copy
number dataset collected as part of TCGA project (MSKCC 244K Agilent aCGH platform).
Normalized copy number was the log; ratio to copy number 2. (A) Average copy number
calculated for each the four major subtypes of GBM. Genome regions with alterations seen
significantly more frequent in one of the subtypes are enlarged. (B) PDGFRA, (C) EGFR, (D)
CDKN2A/B, (E) CDK4, (F) NF1. (G) Average copy number calculated for each of the four
major subtypes of GBM as predicted in the Beroukhim et al. dataset (Beroukhim et al., 2007),
one of the four datasets in the Validation dataset.

Figure S5, related to Table 3. Gene structure of PDGFRA indicating missense mutations found in the
TCGA sample set.



Figure S6. Variable histopathological features of each GBM subtype (A) \Proneural. One tumor (1)
contained neoplastic fibrillary and gemistocytic (open arrows) astrocytes, numerous mitoses
(arrowhead), widespread endothelial hyperplasia (white arrows), and pseudopalisading necrosis
(black arrow). A second tumor (ii) contained predominantly neoplastic gemistocytic astrocytes
(open arrows), a lymphocytic infiltrate (black arrows), focal endothelial hyperplasia (not shown),
and geographic, infarct-like necrosis (not shown). A third tumor (iii, iv) contained neoplastic
fibrillary astrocytes that diffusely infiltrated the neocortex (iii) and featured perineuronal
satellitosis (iii, white arrow), focal endothelial hyperplasia (not shown), and no necrosis.
Distinct areas of this tumor contained a myxoid background (iv, black arrow). (B) Neural. One
tumor (i, i1) contained neoplastic fibrillary (i, open arrow) and multinucleated (giant cell)
astrocytes (ii, white arrows), minigemistocytes (i, black arrows), and oligodendroglia (i, white
arrows), the latter of which were characterized by round, regular nuclei with crisp nuclear
membranes and a prominent nucleolus. Scattered mitoses (i, arrowhead), perivascular
lymphocytes (ii, black arrow), focal endothelial hyperplasia (not shown), and no necrosis were
evident in this tumor. A second tumor (iii, iv) contained neoplastic fibrillary (iii) and
gemistocytic (iii, black arrow) astrocytes, a prominent lymphocytic infiltrate (iv, black arrow),
widespread endothelial hyperplasia (iv, white arrow), and focal geographic, infarct-like necrosis
(not shown). A third tumor (v, vi) contained densely (v) and loosely (i) packed neoplastic
fibrillary astrocytes and featured scattered mitoses (v, arrowhead), florid endothelial hyperplasia
(v, black arrows), and focal pseudopalisading necrosis (not shown). (C) Classical. One tumor (i,
i1) contained neoplastic fibrillary astrocytes (i) and oligodendroglia (ii, open arrows), florid
endothelial hyperplasia (i, i1, white arrows), and pseudopalisading necrosis (i, black arrow). A
second tumor (iii, iv) contained densely (iii) and loosely (iv) packed neoplastic fibrillary
astrocytes and featured abundant mitoses (iii, arrowhead) and both geographic and
pseudopalisading necrosis (not shown). A third tumor (v) contained neoplastic fibrillary
astrocytes and florid endothelial hyperplasia (white arrows). (D) Mesenchymal. One tumor (i, i1)
contained predominantly neoplastic gemistocytic astrocytes (i, open arrow) and featured focal
endothelial hyperplasia (ii, white arrow), geographic, infarct-like necrosis (ii, black arrow), and
focal pseudopalisading necrosis (i, white arrow). A second tumor (iii, iv) contained neoplastic
fibrillary astrocytes (iii), a prominent lymphocytic infiltrate (iv, white arrow), widespread
endothelial hyperplasia (iv, black arrow), and focal geographic, infarct-like necrosis (not shown).
A third tumor (v) contained neoplastic fibrillary and gemistocytic astrocytes, scattered mitoses
(v, arrowhead), focal endothelial hyperplasia (not shown), and no necrosis.

Figure S7. Survival analysis according to GBM subtype. Data for the TCGA dataset and the validation
dataset were combined for survival analysis. (A) Glioblastoma samples (B) Glioblastoma and
lower grade gliomas.



Table S1. Frequencies and associated p-values from a Fisher Exact two sided tests of copy number alterations
and GBM subtype and Chi-squared Tests of Independence. (see excel file).



Table S2. Frequencies and associated Fisher Exact two sided test p-values of mutations and GBM subtype. Only
mutations found in at least four samples were tested.

Gene Proneural Neural Classical Mesenchymal Total Chi-square
Test of
Indep.

(n=37) (n=19) (n=22) (n=38) # Mut
TP53 20 (0.10) 4 (>0.20) 0 (0.04) 12 (>0.20) 36 <0.01
PTEN 6 (>0.20) 4 (>0.20) 5 (>0.20) 12 (>0.20) 27 >0.20
NF1 2 (>0.20) 3 (>0.20) 1 (>0.20) 14 (0.07) 20 0.05

EGFR 6 (>0.20) 5 (>0.20) 7 (>0.20) 2 (>0.20) 20 >0.20
IDH1 11 (<0.01) 1 (>0.20) 0 (>0.20) 0 (>0.20) 12 <0.01
PIK3R1 7 (>0.20) 2 (>0.20) 1(0.28) 0 (>0.20) 10 >0.20
DST 3(>0.20)  0(>0.20) 5 (>0.20) 1(>0.20) 9 >0.20
RB1 1(>0.20) 1(>0.20) 0 (>0.20) 5 (>0.20) 7 >0.20
ERBB2 2 (>0.20) 3 (>0.20) 1 (>0.20) 1(>0.20) 7 >0.20
EGFRuIII 1(>0.20) 0 (>0.20) 5 (>0.20) 1(>0.20) 7 >0.20
PIK3CA  3(>0.20) 1(>0.20) 1 (>0.20) 1 (>0.20) 6 >0.20
FKBP9 3 (>0.20) 1(>0.20) 2 (>0.20) 0 (>0.20) 6 >0.20
SYNE1 3(>0.20)  0(>0.20) 1 (>0.20) 1(>0.20) 5 >0.20
PDGFRA  4(>0.20) 0 (>0.20) 0 (>0.20) 0 (>0.20) 4 >0.20

Shaded rows correspond to regions with significant chi-squared tests after adjusting for multiple testing.
Numbers between parentheses represent adjusted p-values of the probability that the number of events in a
specific subtype is different than that of the remaining samples combined (two sided Fisher’s exact test). Bolded
entries show significant differences.



Table S3. Gene ontology analysis for genes highly expressed in GBM Subtypes from the ClaNC 840 list. (see excel
file)



Table S4. Distribution of co-mutations across GBM subtypes.

Proneural Neural Classical Mesenchymal

Gene n=37 n=19 n=22 n=38
PTEN_TP53 3 (8%) 1 (5%) 0 (0%) 7 (18%)
IDH1_TP53 9 (24%) 1 (5%) 0 (0%) 0 (0%)
EGFR_TP53 4 (11%) 2 (11%) 0 (0%) 1 (3%)
NF1_PTEN 0 (0%) 1 (5%) 0 (0%) 6 (16%)
PIK3R1_TP53 5 (14%) 1 (5%) 0 (0%) 0 (0%)
NF1 _TP53 1 (3%) 0 (0%) 0 (0%) 4 (11%)
PTEN_RB1 1 (3%) 1 (5%) 0 (0%) 3 (8%)
EGFR_PTEN 2 (5%) 0 (0%) 2 (9%) 0 (0%)
RB1_TP53 0 (0%) 1 (5%) 0 (0%) 3 (8%)




Table S5. Clinical Analysis statistical tests and p-values

Variable Test Performed p-value
0.04 (TCGA)
2-way, unbalanced ANOVA (controlling for collection 0.06 (TCGA—no Duke)
center)
0.07 (Validation)
Age* 0.01 (TCGA)

1-way ANOVA

0.05 (Validation)

Multinomial generalized linear model

<0.001 (TCGA)

0.01 (Validation)

Karnofsky Score

2-way, unbalanced ANOVA

0.23 (TCGA)

1-way ANOVA

0.04 (TCGA)

Multinomial generalized linear model

<0.001 (TCGA)

0.13 (TCGA)
Sex Chi-squared test of independence
0.50 (Validation)
0.90 (TCGA)
Survival Mantel-Haenszel test
0.40 (Validation)
MGMT Methylation | Chi-squared test of independence 0.54 (TCGA)
Secondary or Chi-squared test of independence 0.33 (TCGA)
Recurrent
TCGA Batch Chi-squared test of Independence 0.24 (TCGA)
Collection Center* Chi-squared test of Independence 0.01 (TCGA)
% Necrosis* 2-way ANOVA, after logit transformation, controlling for 0.01 (TCGA)
collection center
% Tumor Nuclei 2-way ANOVA, after logit transformation, controlling for 0.68 (TCGA)

collection center




Table S6. Number of bases sequenced per sample per gene. (see excel sheet)



Table S7. Patient Characteristics. (See excel sheet)



Experimental Procedures

Factor Analysis We assume, per gene, a standard factor analysis model for the relationship of the

standardized gene measurement (y) to the true underlying gene expression (X),

Far ™ Bg%y + dgp
Fﬂ = L&?Er + EHF

Fur ™ ﬁ;ﬁ; + G

where i indexes a sample, a, €, and U index the Agilent, Exon and U133 platforms, respectively, and € is

the platform specific noise. The x, are assumed to have a normal distribution with mean zero and
standard deviation one; the vector of error terms &; is assumed to have a multivariate normal distribution

with zero mean and a diagonal covariance matrix, ¥. The parameters p and ¥ are unknown and are
estimated using an EM algorithm within the package factanal. With these estimates and a given
vector Y of observed measurements, estimates of X are a linear combination of the observed y

measurements given by,
fm BTORRT + 9y,

Because the inputs y from each platform are standardized values, the estimates 5 are exactly equivalent

to the correlation across all samples of the input y and the estimate x.

Rescaling of Unified Expression Measures Each expression platform has a different estimate of its

variation between samples. To estimate a single estimate of variation, S, we focus on using information
from only those platforms whose gene measurements were well correlated with our unified estimate .
When possible, we estimated the rescaling factor s as the average MAD value of the platforms that had

f = 0.70 (possibly only a single platform). This gave an estimate of s for all but 631 genes (and all of



the non-filtered genes used in the estimates of clusters). To obtain an estimate for all 11,861 genes with
unified estimates (used in other parts of the analysis) we lowered the cutoff to § = ©.50. This gave an

estimate of S for all but 158 genes. For these remaining genes, we just took the average MAD across all

three platforms.

Gene Filtering. As explained in the main text, three filters were applied to the genes. The first filter kept
only genes in which at least two of the platforms had a high correlation with the unified gene expression
estimates (§ = @.7@ for at least two platforms). 9,255 genes passed this criterion. The goal of this filter
was not to reduce the analysis to a small number of genes, but rather to eliminate poorly-behaving
genes. The second filter eliminated genes that did not have large variability across patients; this was the
main filter that was used to reduce the number of genes to a reasonable size for clustering. We filtered
based on the individual MAD values per platform. Specifically, we required that the MAD of each
platform be greater than 0.5, but only in those platforms that had a high correlation with the unified

expression value (# z ©.5¢) and thus had a reasonably high contribution to the unified gene expression
estimate. We chose a slightly smaller /7 value here because even for genes with j§ % 0,50, the

contribution of the platform to unified gene expression value can be as much as 20% (though for genes
that pass the first filter, this is not generally a problem). This resulted in 2,120 that satisfied this
requirement. Combined with the first filter based on the 2 values this gave 1,903 genes. The last filter
removed genes with extremely variable estimates of standard deviation. Specifically, we excluded genes
if the ratio of the individual MAD and the averaged MAD (or its inverse) was greater than 1.5 (again

restricted to platforms with & = €.5¢). 8,795 genes passed this criteria and in combination with the

previous two filters, this resulted in 1,740 genes.



SAM/ROC

For the SAM statistics table, SAM (package siggenes version 1.12.0) is used to identify genes that are
differentially expressed in bi-classifications of one subtype vs. all the others. The SAM d statistic is

shown in the table for each gene and each subtype.

For the ROC table, the ROC (Receiver Operating Characteristic) curves are drawn as follows. The
expression values for each gene are used to order the samples. If a sample belongs to a particular
subtype, it is considered true, and false otherwise. The AUC (Area Under the Curve) is then calculated

for each gene and each subtype. R package ‘ROC’ version 1.12.0 is used for the calculations.

Comparison of Subtypes with Previous High-Grade Glioma Classifications. Prior profiling studies
have identified subgroups of high grade gliomas (Freije et al., 2004; Phillips et al., 2006). Using the
signatures from Phillips et al and Freije et al, subtypes were predicted on the TCGA core samples
(n=173). For the Phillips et al subtype prediction, we used the Agilent platform as many of the genes
that represented the Proliferation subgroup were not present on the unified data set. We used a single
platform, Agilent, to compare the 33/35 gene signature with our four subgroups. One Proneural gene and
Mesenchymal gene were not mapped to the Agilent platform. For the Frieje et al subtype prediction, 338
genes from the 595 probe sets were identified and used in the unified data set. Subtype predictions on
the TCGA data was performed using single sample predictor (Hu et al., 2006). TCGA core samples
were clustered with Phillips et al. 35 gene signature or Freije et al. reduced 44 gene signature and color
coded according to TCGA four GBM subtypes. High similarity was observed for clusters that identify
the Proneural and Mesenchymal subtypes in both the Phillips and Freije gene signatures (Figure S3).
Freije et al. HC1B gene set was similar to the Neural subtype. However, neither signature contained a

set of genes with high expression limited to the Classical subtype.
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