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1. Expected Impact of Targeted Interventions
1.1. Objective. In the following section, we present our approach to
calculating the expected impact of targeted interventions.
Throughout, we assume that the number of new infections per
group is observed and that at-risk contacts are reciprocal. We do
not require information on the precise contact pattern within and
between groups. We relate the magnitude of a targeted inter-
vention measure to the expected change in the effective repro-
duction number of the infection. We will rely on a more
mathematical derivation of our results as compared to the main
text, and relegate the detailed derivations to section 3. Table S1
provides a key to the mathematical notation.

1.2. Epidemic Growth in a Structured Host Population. The host
population is partitioned into m groups. We use kij to denote the
mean number of individuals in group i that are infected by a
single individual in group j during its entire infection period. We
will refer to the matrix K with elements kij as the reproduction
matrix. The reproduction matrix provides a fundamental char-
acterization of transmission dynamics in a structured host pop-
ulation. For deterministic models it is known as the “next
generation matrix” (1), for stochastic models it is known as the
“mean offspring matrix” (2). For individual-based simulation
models that exhibit periods of sustained exponential epidemic
growth, such as in ref. 3, such a matrix exists implicitly.
We require that an infection, when introduced in an arbitrary

group, can spread to every other group in the population within a
finite number of generations of infection. For most infections in
humans this requirement will be met. This requirement ensures
that the reproduction matrix K is primitive, and primitivity of the
matrix guarantees the existence of a unique and real positive
value of the top eigenvalue R and the existence of a unique real
positive value for the elements of the associated right ei-
genvector w1 and left eigenvector v1 via the so-called “Perron-
Frobenius Theorem,” see refs 1,4.
For a large class of transmission models, including the standard

“Susceptible– Infectious–Recovered” (SIR) model, which will be
presented later in section 2.2, Eq. 9, the reproduction matrix K
can be written as

K ¼ SABC:

The matrices S, A, B, and C have the following epidemiological
interpretation.
The matrix S refers to the immunological naiveté of the con-

tacted individuals: it is a matrix with the group-specific number
of susceptible individuals at time t as elements s1, s2, . . ., sm on
the diagonal, and zeros elsewhere. These numbers of susceptible
individuals will change over time during an epidemic, and
therefore the matrices S and K will vary over time. When the
dependency on time is obvious from the context, we simplify our
notation and denote si(t) as si, SðtÞ as S and KðtÞ as K.
The matrix A summarizes the per contact probabilities of ac-

quiring infection during contact: it is a matrix with the group-
specific per contact probability of becoming infected a1, a2, . . .,
am on the diagonal, and zeros elsewhere.
The contact matrix B gives the contact pattern: it is a matrix

with elements bij, the contact parameter of individuals in group j
with others in group i. (Using the notation of the standard de-
terministic SIR transmission model of section 2.2, we have bij =
βij/γ). The contact parameter bij is defined such that the total
number of contacts from age group j to age group i is given by

pij = nibijnj, where ni gives the population size of group i and nj
gives the population size of group j. We require the contact
matrix B to be symmetric, and this symmetry is guaranteed when
infectious agents are transmitted predominantly through direct
contact or through small infectious droplets between persons
who are present at the same time at the same location.
The matrix C gives the infectivity of the infected individuals: it

is a matrix that has the group-specific per contact probability of
transmitting infection c1, c2, . . ., cm on the diagonal and zeros
elsewhere.
The top eigenvalue R of the reproduction matrix K is often

referred to as the “effective reproduction number,” it gives the
number of secondary infections produced by a typical infective in
the structured population. It is related to the top right ei-
genvector w1 of the reproduction matrix through the standard
characteristic equation (refs. 4 and 5):

Kw1 ¼ Rw1: [1]

The top eigenvalue R is also related to the top left eigenvector v1
through another characteristic equation (refs. 4 and 5):

v⊤1 K ¼ Rv⊤1: [2]

To avoid any ambiguity on the precise values of the eigenvector
elements we choose the elements of w1 such that they sum to 1
(that is, ∑iwi1 ¼ 1) and the elements of v1 such that the product
of left and right eigenvectors equals 1 (that is, ∑ivi1wi1 ¼ 1).
We are interested how small changes in the reproduction

matrix K will affect its top eigenvalue R. We can write the change
in top eigenvalue dR out in terms of three components: the top
left eigenvector v1, the change in the reproduction matrix dK,
and the top right eigenvector w1 (refs. 4 and 5):

dR ¼ v⊤1dKw1: [3]

A detailed derivation is given in section 3.2. This equation shows
that we need to know the top eigenvectors v1 and w1. The next
sections describe how the top right eigenvector w1 can be related
to the group-specific number of new infections, and how the top
left eigenvector v1 can be related to the group-specific force of
infection.

1.3. Relating the Top Right Eigenvector w1 to New Infections. We
consider an infection that is spreading through a population
according to the reproduction matrix K. We have an observation
interval that covers the period from t to t + Δt. We count the
number of new infections in the ith group during the observation
interval, and we denote this number by xi(t) and the vector with
numbers of infections of all groups as xðtÞ. We assume that there
have been no interventions or other major perturbations im-
mediately before time t, and that the distribution of number of
new infections over groups before time t was close to the dis-
tribution of new infections over groups during the observation
interval. When we choose the duration of our observation in-
tervals at, say, two generations of infection, and when the dis-
tribution of number of infections changes only slightly during the
interval, this distribution of number of new infections during the
observation interval xðtÞ is approximately proportional to the
right eigenvector w1. We denote this for each element of the
vector as
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wi1 ≈ fxiðtÞ; [4]

where f ¼ 1=∑ixiðtÞ is a normalization constant. A detailed
derivation is given in section 3.3. This equation enables us to
infer the top right eigenvector from the observed number of
infections over an observation interval.

1.4. Relating the Top Left Eigenvector v1 to the Force of Infection.
When the contact rate matrix B is symmetric, as described in
section 1.2, we can infer an explicit expression of each element of
the top left eigenvector v1

vi1 ≈ g
ci
ai

xiðtÞ
siðtÞ: [5]

Here, g ¼ ∑ixiðtÞ=∑i
ci
ai

x2i ðtÞ
siðtÞ is a normalization constant. A de-

tailed derivation is provided in section 3.4. This equation allows
us to infer the top left eigenvector v1 from the “force of in-
fection”, xiðtÞ

siðtÞ, the per susceptible risk of being infected during a
given observation interval.

1.5. Sensitivity of Reproduction Number to Targeted Social
Distancing. We are interested in the impact of social distancing
measures that aim to reduce the number of at-risk contacts
between individuals in the ith group. We denote the total number
of contacts within group i as pii = ni

2bii. The corresponding
perturbation of the reproduction matrix per added or prevented
contact within group i is

dkii ¼ aisici
n2i

d pii; [6]

and none of the other elements of the reproduction matrix K
changes when the number contacts within group i are altered. A
detailed derivation is given in section 3.5.
Now we turn to Eq. 3 for sensitivity of epidemic growth:

dR ¼ v⊤1ðdKÞw1. We substitute the approximation of the the right
eigenvector w1 based on the observed numbers of new infections
(Eq. 4), the perturbation of the reproduction matrix dK that results
from targeted reduction of contacts (Eq. 6), and the approximation
of the left eigenvector v1 based on the observed force of infection
(Eq. 5). This gives an equation for the decrease in reproduction
number by preventing a single contact within the group i:

dR
dpii

≈− hc2i

�
xiðtÞ
ni

�2

;

where h ¼ fg ¼ 1=∑i
ci
ai

x2i
si
. The term in brackets, xiðtÞ

ni
, is the ob-

served incidence of infection in group i over an observation in-
terval that covers the period from t to t + Δt. This result shows
that the expected decrease in reproduction number R by pre-
venting a single contact within the ith group is proportional to the
squared incidence in the ith group. The equation allows for
quantification of the expected gains of social distancing in absence
of information on the precise contact structure of the population.

1.6. Sensitivity of Reproduction Number to Targeted Vaccination.We
are interested in the impact of vaccination targeted at unvacci-
nated susceptible individuals in group i. The number of new
vaccines allocated to the ith group is indicated as dui. The vac-
cine efficacy for the ith group is indicated as qi. The impact of
vaccination on the reproduction matrix K depends on the pro-
tective effect of the vaccine. Vaccination of a susceptible person
can reduce a number of individual outcomes, such as infection or
infectivity of infected individuals. In the following sections we
assume that vaccination of susceptible individuals renders them
completely immune to infection with a probability qi, and leaves

them completely susceptible with a probability 1 – qi (an “all-
or-nothing vaccine”). Alternatives are, for example, a vaccine
that reduces the probability of infection with a factor qi during
each infectious contact (a “leaky vaccine”) or a vaccine that
reduces the infectivity of infected individuals by a factor qi. For
each of these alternatives we can derive the resulting change in
the reproduction matrix, essentially following ideas as in-
troduced elsewhere (6). The results for these alternatives differ
up to a factor ai or ci. For brevity, we give only the results for so-
called all-or-nothing vaccines. The perturbation of the re-
production matrix that results from vaccination is then

dKw1 ¼ −
qi
si
duiRwi: [7]

A detailed derivation of this result is provided in section 3.5. We
determine the impact of targeted vaccination by returning to Eq.
3 for sensitivity of epidemic growth: dR ¼ v⊤1ðdKÞw1. We sub-
stitute the definition of the top left eigenvector in terms of ob-
served force of infection (Eq. 5) and the perturbation of the
reproduction matrix as given above (Eq. 7). We obtain an
equation for the relative change in reproduction number if
vaccination is targeted only at susceptible individuals in group i:

1
R

dR
dui

≈ − hqi
ci
ai

�
xiðtÞ
siðtÞ

�2

:

The term in brackets, xi(t)/si(t), is the force of infection in group i
during the observation interval that covers the period from t to t+
Δt. This result shows that the expected relative decrease in re-
production number R by vaccinating one susceptible individual in
group i is proportional to the squared force of infection in group i.
We are also interested in the impact of vaccination targeted at

unvaccinated individuals in group i who can be either susceptible
or immune due to natural infection. The number of new vaccines
allocated to the ith group is indicated as dui. The vaccine efficacy
for the ith group is indicated as qi. The perturbation of the re-
production matrix that results from vaccination is now

dKw1 ¼ −
qi
ni
duiRwi: [8]

A detailed derivation of this result is given in section 3.5. We
determine the impact of targeted vaccination by returning to Eq.
3 for sensitivity of epidemic growth: dR ¼ v⊤1ðdKÞw1. We sub-
stitute the definition of the top left eigenvector in terms of ob-
served force of infection (Eq. 5) and the perturbation of the
reproduction matrix as given above (Eq. 8). We obtain an
equation for the relative change in reproduction number if
vaccination is targeted at both susceptible individuals and im-
mune individuals in group i:

1
R

dR
dui

≈ − hqi
ci
ai

xiðtÞ
siðtÞ

xiðtÞ
ni

:

The term xi(t)/si(t) is the force of infection and the term xi(t)/ni is
the incidence of infection in group i during the observation in-
terval that covers the period from t to t + Δt. This result shows
that the expected relative decrease in reproduction number R by
vaccinating one random individual in group i is proportional to
the product of incidence and force of infection in group i. The
equation allows for quantification of the expected gains of tar-
geted vaccination in absence of the precise contact structure of
the population.

1.7. Allocation of Stock of Vaccines in Structured Host Population.We
are interested in minimizing the reproduction number. From the
previous section we know that the expected impact of a single
vaccination in group i is determined by the quantity qiciai

xiðtÞ
siðtÞ

xiðtÞ
ni
.
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We can use this quantity to prioritize the groups by their ex-
pected impact of a single vaccination. This prioritization remains
identical if we rank groups by the square root of this quantity
which is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qiciai

ni
siðtÞ

q
xiðtÞ
ni
. We will refer to this quantity as the “im-

portance weight” of group i, as it scores the importance of group
i for their expected impact on transmission if one individual from
that group is vaccinated. The importance weight is proportional
to the incidence of infection with a “correction factor” that ac-
counts for possible differences in vaccine efficacy, per contact
probability of acquiring infection, per contact probability of
transmitting infection, and proportion of susceptible individuals.
After a single individual has been vaccinated in group i, the
importance weight for group i will decrease approximately by a
quantity qi

ni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qiciai

ni
siðtÞ

q
xiðtÞ
ni

whereas the importance weight for other

groups in which no one was vaccinated will remain approx-
imately the same (detailed derivation in section 3.6). We can use
this information to approximate the optimal allocation of a large
stock of vaccines, large enough to vaccinate, say, 50% of the
entire population. The main idea is to divide the large stock into
small units of one dose and allocate each dose sequentially to the
group with the highest importance weight. After allocating each
dose we readjust the importance weights and allocate the next
dose; and so on, until we run out of vaccines or until all in-
dividuals are vaccinated.
This sequential allocation of an entire stock of vaccines is

described by the following pseudocode:

(1) Divide the stock of vaccine into units, and label these units
as l = 1, 2, . . ., z.
(2) For each of the groups i = 1, 2, . . ., m assess the numbers
of new infections xi, the numbers of susceptible individuals si,
and the numbers of individuals ni.
(3) Calculate the value of the importance weight yið1Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi

ci
ai

ni

siðtÞ
q

xiðtÞ
ni

for each of the groups.

(4) For each unit of vaccine l = 1 to l = z:
(4a) Find the group j with the largest value for its importance
weight yj(l).
(4b) Allocate the lth unit of vaccine to an unvaccinated indi-
vidual in group j.
(4c) The change in importance weight is obtained as dyið1Þ

dui
¼

qi
ni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi

ci
ai

ni

siðtÞ
q

xiðtÞ
ni

.

(4d) Update the value of the importance weight for group j,
yjðlþ 1Þ ¼ yjðlÞ− dyjð1Þ

duj
, leave the value of the importance

weights for all other groups i unchanged: yi(l + 1) = yi(l) for
all i ≠ j.

The final outcome of this algorithm can be seen at once.
When all vaccines are allocated the last vaccine z was allocated

to a group j with a final level for importance weights r = yj(z) =
max i[yi(z)]. There is no group with a value for the ranking higher
than this final level r, otherwise the last unit of vaccine would
have been allocated to that group. For each group i the decrease
in the importance weight over the entire allocation process is
yi(1) – r. This decrease can be related to the number of vaccines
ui that have been allocated to the ith group by dividing the de-
crease in importance weight yi(1) – r by the decrease per vacci-
nation, dyið1Þdui

. This gives ui ¼ yið1Þ− r
dyi ð1Þ
dui

. Substiting the definitions for

importance weight and its derivative and simplifying gives
ui ¼ ni

qi
ð1− rffiffiffiffiffiffiffiffiffiffiffi

qi
ci
ai

ni
si ðtÞ

p
xiðtÞ
ni

Þ. The number of vaccines that are allocated

to any group i can now be inferred from the relative decrease in
the importance weight:

ui ≈min

"
niðtÞ; niqimax

"
0; 1−

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi
ci
ai

ni
siðtÞ

r
xiðtÞ
ni

##
;

subject to a natural constraint of the system: the sum of units of
vaccines allocated to each of the groups must equal the size of the
stockpile z ¼ ∑i¼n

i¼1ui. The min and max functions serve to
guarantee that the number of vaccinations is positive and
bounded by the number of individuals in each group. When we
drop these obvious bounds, the equation above simplifies to

ui ≈
ni
qi

 
1−

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi
ci
ai

ni
siðtÞ

r
xiðtÞ
ni

!
;

and the unknown value of the final level of importance weights r is
uniquely determined by the constraint that the total amount
allocated to all groups should equal the supply z ¼ ∑i¼n

i¼1ui.
An easy way for numerically solving this system with its con-

straints is to compute a lookup table for stockpile size z and the
corresponding allocation u1; u2; . . . ; um. Such a lookup table can
be computed by incrementing the final level of importance weights
r from 0 in small steps tomaxið

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qiciai

ni
siðtÞ

q
xiðtÞ
ni
Þ, and for each value of

r we calculate the number of vaccines to be allocated to the ith
group ui and then the corresponding stockpile size of vaccines
z ¼ ∑i¼n

i¼1ui. We use the resulting lookup table to find for a given
stockpile size z the corresponding allocation of vaccines ui.
The allocation algorithm described here works by leveling the

importanceweights of all groups down to afinal level of r, hencewe
call this algorithm “importance leveling.”This algorithm allows us
to find an allocation scheme of vaccine units that achieves a near-
optimal reduction of the reproduction number during an epi-
demic. It requires information about the size of the stockpile to be
allocated, z, the group-specific proportion of susceptible in-
dividuals, siðtÞni

, and the group-specific incidence of infection during
an observation interval xi(t)/ni. These variables can be observed in
the early phase of the epidemic.

2. Test of Importance Leveling Allocation Against Simulated
Data
2.1. Objective. We examine the performance of the importance
leveling scheme in minimizing the reproduction number and
slowing down epidemic growth using simulated data. We use a
deterministic simulation model to generate the number of new
cases during an observation interval early on in an emerging
epidemic, and we use this simulated number of new infections to
calculate the allocation of a limited number of vaccines using
importance leveling as explained in section 1.7. We compare the
time course of the epidemic when vaccines are allocated
according to the importance leveling allocation with two other
strategies: allocating vaccines at random and allocating vaccines
according to an optimal allocation algorithm that provides the
largest possible reduction in the reproduction number. This
optimal allocation strategy is calculated with a general opti-
mization algorithm called simulated annealing using knowledge
on all contact parameters of the transmission model.

2.2. Transmission Model. We use a standard deterministic SIR
transmission model that categorizes individuals as susceptible (S),
infectious (I), or recovered and immune (R) (7). The population
is partitioned into m groups. For this transmission model, the
dynamics are given by the following system of ordinary differ-
ential equations:
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dSi
dt

¼ − aiSi ∑
j¼n

j¼1
βijcjIj

dIi
dt

¼ aiSi ∑
j¼n

j¼1
βijcjIj − γIi

Si þ Ii þ Ri ¼ ni: [9]

Here,Si is the number of susceptible individuals, Ii is the number of
infected individuals, Ri is the number of recovered and immune
individuals, and ni is the total number of individuals in group i. The
recovery rate γ gives the proportion of all infected individuals that
recover per day; the contact parameters βij give the proportion of
all individuals in group i that are contacted by single individual in
group j during a day; the parameters cj measure the per contact
probability of transmitting infection for an infectious individual of
group j; and the parameters aimeasure the per contact probability
of becoming infected for an individual of group i. The parameters
ci and ai take values in between 0 and 1, with the value 1 reserved
for the group that is most infectious or most likely to be exposed
during a contact event.
The effect of vaccination of individuals is implemented in this

transmission model as a reduction of the number of susceptible
individuals Si. Vaccination of a small number of dui susceptible
individuals gives a decrease in number of susceptible individuals dSi
= qidui where the vaccine efficacy qi gives the probability that a
susceptible individual in group i becomes immuneafter vaccination.
A key variable that characterizes the epidemic growth is the

reproduction number R, defined as the number of secondary
cases produced by a typical infected individual. The value of the
reproduction number is completely determined by the parame-
ters of the SIR transmission model (1).
The parameters in Table S2 reflect an infectious agent

spreading in a susceptible population with a reproduction
number R at the start of the epidemic of 2.0, and a generation
interval of 3.5 days. This choice of parameter values is consistent
with a doubling time of number of new infections of 2.5 days in
the initial phase of an epidemic, and this doubling time is typical
for influenza pandemics. The host population is partitioned into
six age groups: 0–5 years, 6–12 years, 13–19 years, 20–39 years,
40–59 years, and 60 years and older. The contact rates within and
between these age groups are proportional to self-reported
conversational contact rates as observed in the Netherlands (8);
the population size by age reflects the size of the Dutch pop-
ulation at the time these conversational contacts were observed.
The simulated epidemic starts at day t = 0 with one infection in

40- to 59-year-old group in a population that is otherwise sus-
ceptible. In the initial phase of the simulated epidemic, from time
t = 0 to t + Δt = 14, we monitor the number of new infections in
each group. Over this monitoring period we calculate the group-
specific incidence of infection, and use this group-specific in-
cidence of infection to allocate a stock of z vaccine doses using
the importance leveling algorithm described in section 1.8.
Vaccine-induced immunity sets in 1 month after the end of the
monitoring interval at t = 44. This allows for the time needed for
vaccine delivery and development of an effective immune re-
sponse.

2.3. Test Results. For the default parameter values and without
interventions the epidemic will peak at day t = 55, the peak
incidence of infection will be 46 new infections per 1000 persons
per day, and at the end of the epidemic 75% of the population
will have been infected (Fig. S1A). The age distribution of pro-
portion infected is 0.65 for the 0- to 5-year-old group, 0.79 for
the 6- to 12-year-old group, 0.86 for the 13- to 19-year-old group,
0.82 for the 20- to 39-year-old group, 0.75 for the 40- to 59-year-
old group, and 0.58 for the 60-year and older group. If 20% of

the population can be vaccinated and the vaccine is allocated at
random, the timing of the peak incidence is delayed to day t =
59, the peak incidence is lowered to 19 new infections per 1,000
persons per day, and the proportion of the population that is
infected is reduced to 49%. Allocating the same amount of
vaccines but now allocating them according to the importance
leveling scheme results in a further delay of the peak incidence
to day t = 61. The peak incidence will be lowered further to 14
new infection per 1,000 persons per day, and the proportion of
the population that is infected will be reduced further to 44%. At
the end of the epidemic the proportion infected is 0.48 for the
0- to 5-year-old group, 0.47 for the 6- to 12-year-old group, 0.38
for the 13- to 19-year-old group, 0.44 for the 20- to 39-year-old
group, 0.48 for the 40- to 59-year-old group, and 0.41 for the
60-year and older group. These results for importance leveling
are nearly identical to the results obtained by optimal allocation
of vaccines such as to minimize the reproduction number.
To investigate the robustness of the test results we conducted

sensitivity analyses in which we systematically varied the vacci-
nation coverage in a range from 0 to 50 percent. Fig. S1B shows
the results for a vaccination coverage of 40%. Whereas random
allocation results in increasing incidence after vaccination and
leads to a proportion of 21% infected over the epidemic, both
the importance leveling and optimal allocation schemes result in
a decreasing incidence after vaccination and lead to a proportion
of 13% infected for importance leveling and 10% infected for
optimal allocation.
We explored adaptations to the simulation model, allowing for

more realistic (Erlang) distributed durations of the latent period
and infectious period (7). Fig. S1C shows the time course of the
epidemic for such an adapted model with a different generation
interval of 2.85 days. Here we observe a large difference in peak
incidence between the alternative allocation strategies. Without
vaccination, the peak incidence is 51 new infections per 1,000
persons per day. With random allocation at a coverage of 20%
this can be reduced to 35 new infections per 1,000 persons per
day. Importance leveling results in a much lower peak incidence
of 16 new infections per 1,000 persons per day. Optimal allo-
cation results in a peak incidence of 15 new infections per 1,000
persons per day. The results for the total percentage of the
population infected are similar to the simulations for the default
parameter setting.
We varied the reproduction number in a range from R = 1.5–

3.0. Fig. S1D shows the time course of the epidemic for a re-
production number of R = 1.7. This value for reproduction
number results in an epidemic that, without any interventions,
will infect 64% of the population. With random allocation at a
coverage of 20% the epidemic will infect 35% of the population.
With importance leveling at a coverage of 20% the epidemic
infects 28% of the population, which is nearly the same as the
27% achieved using optimal allocation. Again we observe a large
difference in peak incidence: 28 new infections per 1,000 persons
per day in an unchecked epidemic; eight new infections per 1,000
if vaccines are allocated at random; five new infections per 1,000
persons per day if vaccines are allocated according to importance
leveling; and four new infections per 1,000 persons per day for
optimal allocation.
We repeated the simulations with a different set of contact

parameters βij that are based on self-reported conversational
contacts in the Netherlands in 2007 (9). The simulated epidemic
without vaccination resulted in a slightly lower peak incidence of
40 new infections per 1,000 persons per day, and at the end of
the epidemic 70% of the population was infected. Again, the
results for importance leveling at a coverage of 20% were very
similar to the results for optimal allocation.
Two results emerge from the simulations. First, in all sensitivity

analyses importance leveling and optimal allocation performed
better than random allocation. Not only with respect to the
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objective of reducing transmission, but also in reducing the peak
incidence and reducing the proportion infected over the entire
epidemic. We observed in nearly all sensitivity analyses, for nearly
all groups, that the numbers of infections per groups were lower
for the importance leveling and optimal allocation strategies than
they were for random allocation of a given amount of vaccine.
Second, the results for importance leveling are nearly identical to
those for the optimal allocation for all sensitivity analyses. In
other words, the importance leveling algorithm provides a good
prediction of a vaccine allocation that minimizes the reproduction
number and reduces the further spread of infection.

2.4. Uncertainty Cause by Stochastic Fluctuations in Number of
Infections. In the initial phase of an outbreak, the numbers of
new infections during an observation interval can be small. As a
consequence, the estimated group-specific risk of infection might
be uncertain. We tested the performance of the importance
leveling scheme when the estimated risk of infection is uncertain.
We simulated an initial “actual” risk of infection using a model
with a contact pattern as presented in Table S2. We used the
age-specific risk to calculate the probability pi that a given in-
fection occurs within age group i; these probabilities specify a
multinomial probability distribution. We mimicked observation
of the age distribution of a small number of infected cases by
drawing a small number from this multinomial probability dis-
tribution. The “observed” risk of infection differed from the
“actual” risk due to random fluctuations. We used this “ob-
served” risk of infection in the importance leveling scheme to
derive the allocation of vaccines, and evaluated the reduction in
transmission achieved by this allocation using the same model
that was used to generate the “actual” risk of infection. The
results are shown in Fig. S2. The performance of importance
leveling based on noisy observations is nearly always better than
random allocation, and the performance of importance leveling
approximates optimal allocation when the observations are
based on a larger number of infections.

3. Mathematical Details
3.1. Objective. This sections provides the mathematical derivation
of results that are used in section 1.1. For each result, we provide a
reference to the subsection where this results supports the line of
argument as laid out in section 1.1.

3.2. Epidemic Growth in a Structured Host Population. We decom-
pose the reproduction matrix K into its standard diagonal form as

K ¼ WΛW − 1: [10]

Here, Λ is a diagonal matrix that has as elements the eigenvalues
R, λ2, . . ., λm on the diagonal and zeros elsewhere. The eigen-
values are in order of decreasing magnitude from R to λm. The
matrix W has as columns the right eigenvectors w1;w2; . . . ;wm.
The matrix W − 1 is the inverse of the matrix W , such that
W − 1W ¼ I where I is the identity matrix which has as elements 1
on the diagonal and zeros elsewhere. The matrix W − 1 has as
rows the left eigenvectors v1; v2; . . . ; vm. To avoid any ambiguity
on the precise values of the elements of matrix W we choose the
elements of each right eigenvector such that they are positive
and sum to one.
Taking the differential of Eq. 10 and rearranging gives

dΛ ¼ W − 1dKW :

Here we are interested how small changes in the reproduction
matrix K will affect its top eigenvalue R. This change dR is given
by the first element of matrix dΛ and its value is

dR ¼ v⊤1ðdKÞw1:

This result is used as Eq. 3 in subsection 1.2.

3.3. Relating Top Right Eigenvector w1 to New Infections. In this
section we establish the conditions for which the top right
eigenvector w1 is proportional to the group-specific number of
infections. We subdivide time into consecutive observation in-
tervals during which the matrix remains approximately constant.
The duration of such an observation interval is denoted as Δt.
The number of new infections in each group at the start of the
observation interval is given by x0. We are interested in the dy-
namics over successive generations of infection during the ob-
servation interval. After t generations of infection we have a
number of new infections xt that is given by

xt ¼ K tx0:

Writing the reproduction matrix K in its diagonal form yields

xt ¼ WΛtW − 1x0:

We write out the matrix product in terms of eigenvalues and
eigenvectors:

xt ¼ ðv⊤1x0ÞRtw1 þ ðv⊤2x0Þλt2w2 þ . . .þ ðv⊤mx0Þ:
All but the first term on the right hand side with the lower
eigenvalues of the reproduction matrix K are relatively small and
we can summarize them as a “correction term” zt ¼ ðv⊤2x0Þ
λt2w2 þ . . .þ ðv⊤mx0Þ. This gives

xt ¼ ðv⊤1x0ÞRtw1 þ zt: [11]

An upper bound for the correction term is zt ≤ ðx0 − v⊤1x0Þjλ2jt. The
relative contribution of the correction term to xt is

ðx0 − v⊤1x0Þ
v⊤1x0

ðjλ2jR Þt
and this contribution will decline exponentially with time because
|λ2| < R. As stated earlier, we assume that there have been no
interventions or other major perturbations immediately before
time t, and that the distribution of number of new infections over
groups before time t is close to the distribution of new infections
over groups during the observation interval, such that the cor-
rection term accounts for, say, 10% of the distribution of the
distribution of infections at the start of the observation interval.
Then we have an explicit criterion for keeping the relative con-
tribution of the correction term below a preset level, of say 5%: as
long as we choose the observation interval Δt long enough such

that ðx0 − v⊤1x0Þjλ2jTl
v⊤1x0R

Tl
≤ 0:05, the correction term zt can be safely ne-

glected. We can make this argument more precise if we know the
ratioof the topeigenvalueR to the second-largest eigenvalueλ2. For
theobserved contact pattern as used in the simulation study (section
2 and Table S2) this ratio is 2.2. In that case, a correction term that
accounts for 10% of the distribution of infections at the start of the
observation interval would decrease exponentially fast to 5%after a
single generation and to 2.5% after two generations. This suggests
that, at least for contacts patterns similar to the observed pattern as
used here, if we set the length of the observation interval to ap-
proximately two generations, the approximation error by neglecting
the correction term is below the 5% level.
Summarizing, when we choose the duration of our observation

intervals from t to Δt at, say, two generations of infection, the
correction term can be neglected, and the distribution of new
infections during the observation interval xt is proportional to
the right eigenvector w1:
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xðtÞ∝w1ðtÞ [12]

where the ∝ sign denotes “proportional to”. This result is Eq. 4
in subsection 1.3.

3.4. Relating Top Left Eigenvector v1 to Force of Infection. In this
section we establish the conditions for which we can take the top
left eigenvector as proportional to the observed risk of infection
per susceptible—the so-called force of infection. To do this we
invoke two arguments.
First, we note that for any reproduction matrix K there exists a

nonsingular symmetric matrix M that transforms the re-
production matrix into the transposed reproduction matrix K⊤,
such that MKM − 1 ¼ K⊤. This transformation matrix M also
projects the top left eigenvector along the top right eigenvector:

v1 ∝Mw1:

Proof.We verify that the transformation matrix M projects the
top left eigenvector along the top right eigenvector. We start out
from the standard characteristic Eq. 1

Kw1 ¼ Rw1
MKw1 ¼ RMw1

K⊤ðMw1Þ ¼ RðMw1Þ
ðMw1Þ⊤K ¼ RðMw1Þ⊤:

We obtain the second line from the first by premultiplying by M,
we obtain the third line from the second by using using the
property MKM − 1 ¼ K⊤, which can be rewritten as MK ¼ K⊤M,
and we obtain the fourth line from the third by transposing both
sides of the equation.
As we have the characteristic equation v⊤1K ¼ Rv⊤1 (this is Eq.

2), it follows from the fourth and last line that v1 ∝ Mw1□

Second, we note that an explicit expression for the trans-
formation matrix M can be obtained for a large class of trans-
mission models, including the SIR transmission model presented
in Eq. 9. For such transmission models, the reproduction matrix
can be expressed as a product of matrices:

K ¼ SABC:

The constituent matrices S, A, B, C are all symmetric. Taking the
transpose of a product of symmetric matrices will reverse the
order of the matrices in the product. This gives us an explicit
expression for the transposed reproduction matrix:

K⊤ ¼ CBAS: [13]

The corresponding similarity transformationM that transforms K
into its transpose K⊤ is

M ¼ CA− 1S− 1:

Proof. We verify that this definition of M is correct by sub-
stitution:

MKM − 1 ¼ ðCA− 1S− 1ÞðSABCÞðSAC − 1Þ
¼ ðCA− 1S− 1ÞðSABCÞðC − 1ASÞ
¼ CðA− 1S− 1SAÞBðCC − 1ÞAS
¼ CBAS

¼ K⊤□

Taking the two arguments together, we have that for a large class
of transmission models there exists a similarity transformation

M ¼ CA− 1S− 1 that relates the top right eigenvector w1 to the
top left eigenvector v1:

v1 ∝CA− 1S− 1w1:

Combining this with our earlier finding of Eq. 12, which says that
the top right eigenvector w1 is proportional to the number of new
infections in an observations interval, we obtain

v1 ∼CA− 1S− 1xðtÞ:

where the ∼ sign denotes “approximately proportional to.” We
denote this for each element of the vector as

vi1 ≈ g
ci
ai

xiðtÞ
siðtÞ

The proportionality constant g is obtained by normalizing the
vector, that is, we require that the product of left and right ei-

genvectors equals one. This gives g ¼ ∑ixiðtÞ=∑i
ci
ai

x2i ðtÞ
siðtÞ . This re-

sult is Eq. 5 in subsection 1.4.

3.5. Perturbation of Reproduction Matrices. A decrease in contact
rate between two groups i and j will result in a change in the
reproduction matrix

dK ¼ dðSABCÞ ¼ SAðdBÞC:
First, we focus on the impact of a decrease in the number of
contacts between two groups i and j. The total number of con-
tacts from group i to group i is pij = nibijnj. A change in contact
rate dB for only two groups i and j implies a change in the
number of contacts between those groups dbij ¼ 1

ninj
dpij. The

corresponding perturbation of the reproduction matrix is:

dkij ¼ 1
ninj

siaicjdpij;

and all other elements of the perturbed matrix dK are zero. This
result explains Eq. 6 in subsection 1.5.
Second, we focus on the impact of vaccinating group i when all

individuals in that group are susceptible. A change in numbers of
susceptible individuals dS will result in a perturbation of the
reproduction matrix:

dK ¼ ðdSÞðABCÞ ¼ ðdSÞðS− 1KÞ:
The number of new vaccinations allocated to the ith group is in-
dicated as dui and the matrix dU is a diagonal matrix with elements
dui on the diagonal and zeros elsewhere. The vaccine efficacy for
the ith group is indicated as qi, and the matrix Q is a diagonal
matrix with elements qi on the diagonal and zeros elsewhere. The
change in number of susceptible individuals due to vaccination is

dS ¼ −QdU:

Combining these two equations gives the perturbation of the
reproduction matrix

dK ¼ ð−QdUÞðS− 1KÞ:
Right multiplication of both sides of the equation by the top right
eigenvector w1 yields

dKw1 ¼ −QdUS− 1Rw1:

When vaccination is targeted only at group i this gives
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dkijwi1 ¼ −
qidui
si

Rwi1:

This result explains Eq. 7 in subsection 1.6.
Third, we focus on the impact of vaccinating group i when

individuals in that group can be immune or susceptible. This is
relevant when we cannot distinguish individuals who have nat-
ural immunity from individuals who are susceptible to infection
at the time of vaccination. We need to know the proportion of
susceptible individuals at time t before vaccination, which we
denote by SN − 1. The change in number of susceptible in-
dividuals due to vaccination is now

dS ¼ −QSN − 1dU:

The perturbation of the reproduction matrix is now

dK ¼ ð−QSN − 1dUÞðS− 1KÞ:
Right multiplication of both sides of the equation by the top right
eigenvector w1 yields

dKw1 ¼ −QN − 1dURw1:

When vaccination is targeted only at group i this gives

dkijwi1 ¼ −
qidui
ni

Rwi1:

This result explains Eq. 8 in subsection 1.6.

3.6. Eigenvector Sensitivity to Changes in Reproduction Matrix. The
sensitivity of eigenvectors to a small change of dK to the re-
production matrix K can be approximated using power iteration

with the new matrix K þ dK (see ref. 5, p351). After changing the
matrix K to a new matrix K þ dK we have after one generation:

w1 þ dw1∼ ðK þ dKÞw1

∝Kw1 þ dKw1

∝Rw1 −QN − 1dURw1

Here, we use the ∝ sign to mean “proportional to” and the ∼ sign
to mean “approximately proportional to.” If group i is targeted
with one vaccination, this means that the ith element of the top
right eigenvector changes as

wi1 þ dwi1∼wi1 −
qi
ni
wi1

and all other elements of the top left eigenvector remain
unchanged.
We use the above equation to find out how importance weights

change after targeting one group with one vaccination. We multiply

both sides by the factor 1
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qiciai

ni
siðtÞ

q
1
ni
, and simplify using first

xiðtÞ≈ 1
f wi1 and then yi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qiciai

ni
siðtÞ

q
xiðtÞ
ni
. We obtain an equation for

the change in importance weight after group i is targeted with one
vaccination:

yi þ dyi ∼ yi −
qi
ni
yi:

The value for the importance weight for other groups remains
unchanged. This result explains the change in importance value as
used in subsection 1.7.

1. Diekmann O, Heesterbeek JAP (2000) Mathematical Epidemiology of Infectious
Diseases: Model Building, Analysis and Interpretation (Wiley, Chichester).

2. Andersson H, Britton T (2000) Stochastic Epidemic Models (Springer, Berlin).
3. Ferguson NM, et al. (2006) Strategies for mitigating an influenza pandemic. Nature

442:448–452.
4. Caswell H (2001) Matrix Population Models: Construction, Analysis, and Interpretation

(Sinauer, Sunderland), 2nd Ed.
5. Golub GH, Van Loan CF (1996) Matrix Computations (Johns Hopkins University Press,

Baltimore), 3rd Ed.

6. Basta NE, Halloran ME, Matrajt L, Longini IM, Jr (2008) Estimating influenza vaccine
efficacy fromchallengeandcommunity-basedstudydata.AmJEpidemiol168:1343–1352.

7. Keeling MJ, Rohani P (2008) Modeling Infectious Diseases in Humans and Animals
(Princeton University Press, Princeton).

8. Wallinga J, Teunis P, Kretzschmar M (2006) Using data on social contacts to estimate
age-specific transmission parameters for respiratory-spread infectious agents. Am J
Epidemiol 164:936–944.

9. Mossong J, et al. (2008) Social contacts and mixing patterns relevant to the spread of
infectious diseases. PLoS Med 5:e74.

Wallinga et al. www.pnas.org/cgi/content/short/0908491107 7 of 10

www.pnas.org/cgi/content/short/0908491107


0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

T
ra

n
s
m

is
s
io

n
 p

o
te

n
ti
a
l

random allocation

importance leveling with noise

importance leveling

optimal allocation

A

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

B

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

Stockpile size

T
ra

n
s
m

is
s
io

n
 p

o
te

n
ti
a
l C

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

Stockpile size

D

Fig. S2. Sensitivity analysis of the reduction in transmission potential to stochastic variations in the risk of infection. We simulate initial risk of infection using a
contact pattern as in Fig. 2A and Table S2. We randomly sampled 100 possible values for the stockpile size on the interval 0–0.5 times the size of the entire
population. We generated noisy observations of the incidence of infection by sampling a small number of infections from a multinomial distribution specified
by the exact probability that an infection occurs in each of the six age classes. Importance leveling was applied based on noisy observations while ignoring the
uncertainty (yellow dots). For each stockpile size, we repeated the simulations of noisy age distributions with an increasing number of infections: 100 for A, 150
for B, 200 for C, and 250 for D. For comparison, we indicated the reduction in reproduction number if the same amount of vaccine was allocated at random
(orange dots), if importance leveling was based on the exact risk of infection (green dots), and if the same amount of vaccine was optimally allocated (blue
dots). The results show that the performance of the importance leveling scheme, even when based on uncertain risks of infection, is considerably better than
random allocation. The size of the stockpile is expressed relative to total population size; the transmission potential is scaled such that it equals 2.0 when the
stockpile size is 0.
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Fig. S1. Testing the importance leveling scheme. We use a standard deterministic SIR transmission model where the population is partitioned into six age
strata. The time course of incidence, as new infections per day, is shown when there is only a limited number of vaccine doses that suffice to vaccinate 20% (A)
and 40% (B) of the entire population. We explored the use of a different transmission model with more realistic distributions for the latent and the infectious
period (C) and a lower value of the reproduction number R (D). The time course of incidence is shown without interventions (red line), with vaccinated al-
located at random (yellow line), with vaccines allocated according to the importance leveling scheme (green line), and with vaccines allocated according to an
allocation schedule that minimizes the reproduction number R (blue line). The time course of the epidemic after allocating vaccines according to the im-
portance leveling algorithm closely follows the time course of the epidemic after optimal allocation, even though the importance leveling algorithm only
requires information on the (observable) incidence of infection at time t = 14 (indicated by green arrow) whereas the optimal allocation requires full in-
formation on all (unobservable) transmission parameters. Both allocations do considerably better than random allocation.
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Table S1. Notation and Meaning of Variables

Symbol Meaning

ai Per contact probability of acquiring infection for stratum i
bij Contact parameter, proportion of stratum i contacted by an infective in stratum j
βij Contact rates, proportion of stratum i contacted by an infective in stratum j per unit of time
ci Per contact probability of transmitting infection for stratum i
1/γ Duration of infectious period
f, g, h Normalization constants
i, j Indices for strata, running from 1 to m
kij Number of secondary infections in stratum i due to a single infective in stratum j
R Top eigenvalue of the reproduction matrix K
l Index for vaccination
m Number of strata into which the population is partitioned
ni Population size of stratum i
pij Number of contacts with stratum i by stratum j
qi Vaccine efficacy for stratum i
r Final level for importance weights
si(t) Stratum-specific number of susceptible individuals in stratum i at time t
t Time in days
Δt Duration of the observation interval
ui Number of vaccinations given to stratum i
vi1 ithElement of the top left eigenvector of the reproduction matrix K
wi1 ithElement of the top right eigenvector of the reproduction matrix K
xi(t) Number of new infections during the observation interval starting at time t in stratum i
yi(l) Importance weight for prioritization of vaccination in stratum i
z Number of vaccine units
A Matrix with stratum-specific per contact probability of acquiring infection ai on the diagonal
B Contact matrix with elements bij

C Matrix with stratum-specific per contact probability of transmitting infection ci on the diagonal
K Reproduction matrix with elements kij
Λ Matrix with eigenvalues of the reproduction matrix K on the diagonal
N Matrix with stratum-specific population size on the diagonal
M Similarity transformation of reproduction matrix K to its transpose KT

Q Matrix with stratum-specific vaccine efficacy on the diagonal
S Matrix with stratum-specific number of susceptible individuals on the diagonal
U Matrix with stratum-specific number of targeted vaccinations
v1 Normalized top left eigenvector of the reproduction matrix K
w1 Normalized top right eigenvector of the reproduction matrix K
W Matrix with right eigenvectors as columns
W − 1 Matrix with left eigenvectors as rows
xðtÞ Vector with stratum-specific number of new infections
zðtÞ Correction term that accounts for the lesser eigenvalues and corresponding normalized eigenvectors of K
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Table S2. Default parameter values and initial conditions

Variable Symbol Value Unit

Recovery rate γ 0.286 day−1

Generation interval 3.5 day
Reproduction number R 2.0

Age 0–5 6–12 13–19 20–39 40–59 60+

Contact parameters βij 0–5 1.393 0.259 0.146 0.284 0.130 0.094 10−7day−1

6–12 0.259 2.261 0.266 0.287 0.170 0.095
13–19 0.146 0.266 1.847 0.418 0.309 0.123
20–39 0.284 0.287 0.418 0.623 0.407 0.207
40–59 0.130 0.170 0.309 0.407 0.504 0.272
60+ 0.094 0.095 0.123 0.207 0.272 0.447

Population size ni 1060 1265 1642 4857 3312 2477 103

Number of susceptible individuals Si(0) 1060 1265 1642 4857 3312 2477 103

Number of infected individuals Ii(0) 0 0 0 0 1 0
Per contact probability of acquiring infection ai 1 1 1 1 1 1
Per contact probability of transmitting infection ci 1 1 1 1 1 1
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