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Computer Simulations. Our system consists of N superparamag-
netic beads of radius a, which interact through a potential U.
The dynamics of each bead can be modeled by using the Langevin
equation:

∂
∂t
ri ¼ ∑

N

j

ðμij · ∇rjUðtÞ þ ∇rj · DijÞ þ ξiðtÞ; [S1]

where μij is the mobility matrix, Dij is the diffusion tensor defined
as Dij ¼ kBTμij, and ξiðtÞ is a random force that satisfies
hξiðtÞξjðt0Þi ¼ 2kbTμijδðt − t0Þ. In our simulations, μij accounts
for the hydrodynamic interactions between the beads and is given
by a generalization of the Blake tensor (1, 2) that incorporates the
finite size of the beads. One can simply say it corresponds to a
Rotne–Prager–Blake tensor (3–5). For the present article we
do not include the random noise term ξiðtÞ because the magnetic
forces dominate the dynamics, as is shown below, and in accor-
dance with the experimental results.

The conserved force on the beads, F ¼ −∇rjUðtÞ, is given by
four contributions: the excluded volume interactions between
two beads Fb, the boundary repulsion between the wall and beads
Fw, the gravitational force Fg, and the magnetic dipole-dipole
force FB that is induced when the field is applied. The excluded
volume potential is simply

UbðrÞ ¼
�
∞ r ≤ 2a;
0 r > 2a;

[S2]

where a is the radius of a particle and r is the distance between the
beads. For computational convenience, this potential is approxi-
mated by a modified Lennard–Jones potential that has a corre-
sponding force given by
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[S3]

with σ ¼ 0.1a. The strength of the force is governed by ϵ that was
chosen to be 0.02kbT to render the attraction term negligible. The
repulsive force between the wall and the beads, which acts only on
the z direction, is given by a similar potential:

UwðrzÞ ¼
�
∞ rz ≤ a;
0 rz > a;

[S4]

where rz is the distance from the wall to the center of the beads.
This potential is also approximated by a modified Lennard–Jones
potential, with a corresponding force of the form
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All other parameters are the same as above.
The applied magnetic field on the superparamagnetic particle

induces a magnetic dipole moment on each of the beads. Because
the field is relatively small, we are in the linear regime and thus
can assume that the magnetic moment m is both in the direction
of and proportional to the applied field. Also, the induction time
is much smaller than the typical rotation time of the aggregate, so
that the process is taken to be instantaneous. The moment is
calculated by using the relationship

m ¼ VcΔχ
μ0

B; [S6]

where μ0 is the magnetic permittivity, Vc ¼ 4πa3f∕3 ¼ 0.42 μm3

is the effective volume of the paramagnetic bead (f ¼ 0.1 is the
fraction of the actual bead that is paramagnetic and a ¼ 1 μm is
the bead radius), and Δχ ¼ 0.7 is the magnetic susceptibility dif-
ference between the bead and the medium (water). The values
given here are those used in the simulation and correspond to
the values quoted by Invitrogen for their superparamagnetic
beads. There is both a component of B due to the applied mag-
netic field and the dipole moments of the surrounding beads (se-
parated by a distance r), which is neglected in our simulations.
Because the magnetic field creates a moment in the direction
of the applied field, the force due to the induced dipole, FB, is
given by the dipole-dipole force (6, 7):

Fij
B ¼ 3μ0
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where r is the distance between the center of the beads, rij is the
position vector between beads i and j, andmi andmj are the mag-
netic moments of beads i and j, respectively. By considering a
characteristic magnetic moment m0 ¼ VcΔχ

μ0
B0 and defining a

characteristic length scale equivalent to the radius of the bead
a, we can rewrite this equation in terms of dimensionless dis-
tances ~r ¼ r∕a and dimensionless moments ~m ¼ m∕m0:
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where the magnitude of the magnetic force can be characterized
by a single parameter F0 ¼ 4π

3μ0
ðafΔχBÞ2, which comes from the

substitution of Eq. 4 into Eq. 5. For the experimental conditions,
one finds F0 ∼ 100kbT∕a, which implies that the fluctuation term
is negligible, as mentioned before.

Finally, the gravitational force due (at the Earth’s surface) is
simply FgðzÞ ¼ −ΔρVg, where we have used the gravitational
acceleration g ¼ 9.8 m∕s2, the difference between the bead
and water densities Δρ ¼ 0.8 g∕cm3, and the bead volume V ¼
4πa3∕3.

The final form of the Langevin equation for a given bead is
written in dimensionless form with ~r ¼ r∕a and ~t ¼ t∕τ, where τ ¼
a2∕ðμ0kBTÞ is the characteristic diffusion time:

~rið~tþ Δ~tÞ ¼ ~rið~tÞ þ Δ~tð~μij · ð ~Fj;b þ ~Fj;w þ ~Fj;B þ ~Fj;gÞÞ: [S9]

For a given set of conditions, the simulation is run with a time step
Δ~t ¼ 0.001 for 1 × 107 iterations (or more than 10 full rotations of
the magnetic field).

Experimental Setup.The magnetic field is created by using a pair of
Helmholtz coils, each with 300 windings at a radius of 45 mm (see
Fig. S1). To induce a rotating magnetic field we use a π∕2 phase-
shifted sinusoidal signal for each coil. The signal was amplified by
a low frequency amplifier to gain an electric current of adequate
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strength to achieve a maximum magnetic field of 10 mT. The
frequency could be varied between 5 and 1000 Hz.

The sample is enclosed by the Helmholtz coils and is mounted
on an inverted fluorescent microscope equipped with phase
contrast (Zeiss, Axiovert 200M). The microscope can be tilted
by 90°, and therefore samples can be observed from the side
(as in Fig. 1B).

Magnetic beads were purchased by Invitrogen (Dynabeads
MyOne Carboxylic Acid) in aqueous solution.

The phospholipid vesicles were prepared by electroswelling
(8). In all experiments we used the lipid 1,2-Dioleoyl-sn-
Glycero-3-Phosphocholine (DOPC, Avanti Polar Lipids) without
further purification. We added a small amount (0.1% wt/wt) of
the fluorescently labeled lipid, Texas red 1,2-dihexadecanoyl-sn-
glycero-3-phosphoethanolamine (Texas red DHPE, Invitrogen)
to the DOPC lipid. The vesicles were swollen in a 200 mM
sucrose solution and injected into an isoosmotic glucose filled
chamber for the experiments. Because of the slightly higher
density of sucrose, the vesicles settle down on the bottom of
the sample chamber.

Walking Velocity of a Single Rotor.We can analytically solve for the
walking velocity of a single rotor by calculating the effect that the
surface has on the beads by using some assumptions on the nature
of the forces. To do this, we start by considering the flow profile
due to a point force in the presence of an infinite wall. This
profile can be calculated directly as

vi ¼ μijFj; [S10]

where μij is Blake’s mobility tensor (10). In the case of unbounded
flow, Blake’s tensor simplifies to the well known Oseen tensor:

μij ¼
1

8πηr
ðIij − r̂ijr̂ijÞ; [S11]

where rij is the vector from a point force at j to another point i
with magnitude rij and a direction given by the unit vector r̂ij and η
is the viscosity of the solvent. Because of symmetry, one does not
expect any motion in the bulk. However, in the presence of a wall,
the additional terms in the mobility tensor, which actually corre-
spond to image forces that enforce a zero velocity at the surface
vðz ¼ 0Þ ¼ 0, create contributions that lead to a gradient in the
self-mobilities and more. In what follows we will analytically show
how one can obtain Eq. 1 in the text.

We will first consider a dumbbell rotor consisting of two beads
each of radius a, at a height of h above the wall. To obtain rota-
tional movement, we impose a force F on each of the beads per-
pendicular to the axis of the dumbbell and calculate the effect of
the image force acting on it as a function of θ. The axis is then
rotated through the angle θ, and the overall velocity can then be
calculated by integration. For a sketch of this system, see Fig. S.2a.
The velocity of the walker as a function of θ is given by

vxðθÞ ¼
F
8πη
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��
; [S12]

where we introduce the functions λ− ¼ h − a cos θ, λþ ¼ hþ
a cos θ, and Γ ¼ h2 þ a2 sin2 θ. The average velocity is then the
average of vx over one cycle; i.e., vx ¼ ð1∕2πÞ∫ vxðθÞdθ. Before
integrating, we can extract the height h from the denominator.
Furthermore, if we assume that the height is proportional to
the length of the chain (consistent with the experimental and
simulation observations), we can write

vx ¼
F

8πηh
f ðθÞ: [S13]

We now recall that F ¼ 6πηνa2 to obtain for a dumbbell walker
vx ∼ νa2∕h. This form is similar to Eq. 1. To include N beads, one
can substitute a → Na to obtain

vx ¼
νN2a2

h
; [S14]

which is exactly Eq. 1.
To corroborate that the last expression is the correct limiting

behavior, we calculate the walking velocity of a chain consisting of
N (even) beads. To describe the entire assembly we note that the
chain is simply a sequence of dipole (two-bead) rotors that exists
at increasing distance from the center of mass. We generalize
Eq. S14 to consider the effect of an image dipole of radius dk ¼
að2kþ 1Þ (where k is an integer index that describes the dipole
rotor of interest) on a real dipole of radius dl ¼ að2lþ 1Þ (again, l
is an integer index similar to k). We indicate this geometry in
Fig. S2b. In determining the overall effect, we must sum over both
k and l to account for all the dipole rotor to dipole rotor inter-
actions. We also note that the force F now depends on k, because
F ¼ 6πνηadk, which is the drag force on the beads as a result of an
applied frequency ν. To present a simplified general equation, we
define the following functions:

Δi ¼
�
dk − dl i ¼ odd;
dk þ dl i ¼ even; [S15]

mi ¼
�þ1 i ≤ 2;
−1 i > 2;

[S16]

αi ¼ 2hþmiΔiþ1 cos θ; [S17]

βi ¼ α2i þ Δ2
i sin

2 θ; [S18]

λi ¼ hþmidk cos θ; [S19]

γi ¼

8>><
>>:

ðhþ dl cos θÞðhþ dk cos θÞ i ¼ 1;
ðh − dl cos θÞðhþ dk cos θÞ i ¼ 2;
ðh − dl cos θÞðh − dk cos θÞ i ¼ 3;
ðhþ dl cos θÞðh − dk cos θÞ i ¼ 4.

[S20]

The force along the x axis due to the hydrodynamic interactions
on a dipole of arbitrary radius dl due to another dipole with the
same center of mass with arbitrary radius dk is

f x;kl ∼ ηνa2dk

�
cos θ∑

4

i

�
2miγi

�
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i sin
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��
: [S21]

Finally, the total translational velocity of a rotor consisting of
an arbitrary number of beads N is given by the summation of all
the forces over all dipole rotors multiplied by the mobility of the
assembly (1∕ðηNaÞ:

vx ∼
1

ηNa∑
N∕2

l¼0
∑
N∕2

k¼0

f x;kl; [S22]

where we sum to N∕2 because each vx;kl corresponds to two beads
of the chain.

The resulting vx is a function of θ, and the analytical version
given above can be compared to the velocity of the rotor center of
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mass, which is shown in Fig. S3a. Excellent agreement between
the two results is apparent, with minor differences likely as a re-
sult of the different mobility tensors used in the above analysis
versus the simulations. For this comparison we have fitted the
velocity at one point for the N ¼ 10 beads to obtain the prefactor
and used this throughout all the other calculations.

Finally, the average velocity of a long rotor can be obtained by
performing the integration of vx over a single rotation:

hvxi ¼
1

2π

Z
2π

0

vxdθ: [S23]

This integration was performed numerically, and the result is
plotted in Fig. S2b. Notice that this result matches well with
the simulation results despite all the approximations involved.
We can directly verify that the velocity is proportional toN graph-
ically, by plotting its behavior. The result is shown in Fig. S3b,
which clearly shows that vx ∼N, and thus vx ∼ aνN, further cor-
roborating the validity of Eq. 1 in the text.

Scaling Relationship for Chain Fragmentation. The breakup (or frag-
mentation) of the paramagnetic chains is a result of the conflic-
ting magnetic and frictional forces on the beads. We can describe
the torque associated with both processes with simple scaling ar-
guments. The torque input into the system due to the magnetic
field is described by the relationship

τB ¼ m × B ∼mB: [S24]

Because the value of the magnetic dipole m is linearly propor-
tional to the number of beadsN and the magnitude of the applied
magnetic field B, the torque associated with the magnetic field is

τB ∼NB2: [S25]

The frictional torque τF associated with a single bead i is given
by the moment arm di, the velocity vi, and the viscosity η. The
relationship is

τF;i ∼ diviη ∼ νd2i η; [S26]

where vi is replaced by νdi in the far right expression. This expres-
sion can be integrated over the length of the chain arm to yield
the overall torque:

τF ∼
Z

N

0

νd2i ηdðdiÞ ∼ νN3η: [S27]

Fragmentation occurs when the frictional torque overcomes the
magnetic torque. A characteristic frequency νc can be defined by
the point at which τF∕τB is on the order of unity:

νc ∼
B2

N2η
; [S28]

which is the scaling relationship described in Eq. 2 in the
main text.

Velocity Profile of a Single Rotor. We can calculate the simulated
hydrodynamic field at a given point in space from the simulation
by using the appropriate mobility tensors (9). In particular, we use
a modified Blake’s tensor μij that accounts for the finite size of
our beads (1, 2). The velocity field at point ri due to a collection
of beads j on which a force Fj acts is then given by (9)

vðriÞ ¼ ∑
N

j

μijðri; rjÞFjðrjÞ: [S29]

To calculate the contour plots in Fig. 4, we simply take the time
average of the x component of this velocity at a given point over
one period, hvxit.

In order to check that our results are correct, we compare the
velocity along the x direction as a function of the distance from
the chain. In the far field, this system should decay proportional
to 1∕r3x (10). Fig. S4 shows the velocity profile along the x axis,
which follows the expected decay.

Velocity Profile of an Ensemble of Rotors. As a first approximation,
the velocity field produced by a set of rotors can be treated by the
replacement of discrete rotors by an average area density of
rotors ρS. If the system is sufficiently homogeneous, one can show
that the overall velocity can be simply computed as

vðzÞ ¼ ρSβðzÞ: [S30]

The function βðzÞ corresponds to the integral of the single chain
velocity field vx along a given z plane, namely,

βðzÞ ¼
Z

vxðx; y; zÞdxdy: [S31]

This approximation is typical of a classical mean-field velocity
approximation. A simple way to see how this works out is to
consider the rotors on a square lattice with lattice constant l.
In this case the density is simply ρS ¼ 1∕l2. If we approximate
the velocity within one of the lattice squares by the average
(mean) velocity in this square, we arrive at the formula given
above. This result is thus valid if we can assume that the distribu-
tion of rotors is sufficiently homogeneous. Alternatively, we could
take the approach of Kim and Netz (11), who derived the expres-
sion above for the area-averaged Blake mobility tensor (�μij)
describing the effect of a spatially averaged force distribution
on the average velocity at a given height z. This approximation
effectively smears the spatial distribution of rotors (as we as-
sumed before) such that the point forces on the rotors are homo-
geneously redistributed on a horizontal plane of fluid. The
velocity is then given by

vxðziÞ ¼ ρS

Z
dzj�μijðzi; zjÞFxðzjÞ∕a; [S32]

where ρSFxðzÞ∕a is the laterally averaged force density applied at
height z and �μij has the form

�μijðzi; zjÞ ¼
�
zj∕η zi > zj;
zi∕η zi < zj:

[S33]

Both approaches yield the same result, though the former re-
quires prohibitively large spatial averaging to yield the latter,
which is the asymptotic limit. The latter function is evaluated di-
rectly from the simulations and is plotted in Fig. 4 for a walker
consisting of seven beads. The value of β is also a function of
the number of beads in the chain [Fig. S4 plots the maximum
value of βðzÞ, i.e., βmax, as a function of N] and demonstrates
a large increase with chain length.

The approach of Kim and Netz (11) also allows for the deriva-
tion of an analytical form of β as a function of the basic para-
meters in this system. We specifically consider only the case
where h ¼ Na, which is the geometry present in our experiments
and simulations. In this system, if we consider a nonbending rod
of length 2h as an approximation of the discrete chain, the force
density FðzÞ∕a at a given height from the surface z is independent
of the angle of the rotor as it rotates and is given by the
equation

FðzÞ∕a ¼ 6πηνðz − hÞ: [S34]

Whereas the force density is independent of the angle of the
rotor, the angle of the rotor determines whether or not there
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is a force applied to the fluid by the rotor at a given height z. For
example, if the rotor is fully orthogonal to the surface, the rotor
imparts a force at every z between z ¼ 0 and z ¼ 2h; however, it
feels this force only for an infinitely small time. As soon as the
angle of rotation changes, the rod no longer imparts a force cor-
responding to the z ¼ 0 and z ¼ 2h extremes. In contrast, the
heights close to the center of the rotor at z ¼ h almost always
feel a force (though not directly at z ¼ h, because there is no
rotational force there). We can thus multiply FðzÞ∕a by a fraction
f ðzÞ that represents the portion of time during rotation that a
force is being applied to a given height z with respect to the sur-
face. The final form of f ðzÞ is

f ðzÞ ¼
8<
:

0 z > 2h;
2
π arccosðz−hh Þ 2h > z > h;
2
π arccosðh−zh Þ h > z > 0.

[S35]

Unfortunately, the arccosine function is inconvenient to integrate
and ultimately yields a very complicated result for βðzÞ. To sim-
plify both the integration and the final form of βðzÞ, we approx-
imate f ðzÞ as

f ðzÞ ¼
� ð2h−zh Þ 2h > z > h;
ðzhÞ h > z > 0.

[S36]

We note that this approximation underestimates the amount of
force that the rotor imparts upon the surrounding fluid by a small
amount; however, it still retains the limits of 0 at z ¼ 0, 2h, and 1

at z ¼ h. These functions can then be integrated with the aver-
aged mobility tensor �μijðzi; zjÞ to obtain βðzÞ:

βðzÞ ¼
Z

∞

0

dzj�μijðz; zjÞFxðzjÞf ðzjÞ∕a: [S37]

The evaluation of this integral results in Eq. 6 of the main
paper:

βðzÞ ¼
8<
:

πνz3ð1 − z
2hÞ z < h;

πνðh3 − 4h2zþ 6hz2 − 3z3 þ z4
2hÞ h < z < 2h;

πνh3 z > 2h:
[S38]

To highlight the similarity of the form of this analytical result to
the profile obtained from the simulation data, we plotted the nor-
malized βðzÞ∕βmax in Fig. 4A. The values of the analytical and
simulation results for βmax are compared in Fig. S5, which shows
that these values are of the same order of magnitude and increase
with a similar trend. The analytical solution is lower in value than
the simulations; however, this result is expected because of the
significant approximations made in the derivation of the above
equation [the flexible bead chain is replaced by a rigid rod,
and the form of f ðzÞ is simplified]. Finally, these results are used
to estimate the order of magnitude expected for the correspond-
ing experimental realization and seem to agree well with the
experiments.
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Fig. S1. A figure demonstrating the experimental setup used to probe the behavior of superparamagnetic colloids. Phase-shifted sinusoidal currents Ix and Iz
impart a rotating magnetic field at the center of the coils. Not shown is a viewing window through the coils where they intersect to allow for sideways viewing
of the rotors.
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Fig. S2. (a) Schematic describing the geometry of a hydrodynamic dipole (N ¼ 2). The no-slip boundary condition at the surface is imposed upon the addition
of the image chain (dashed beads) plus other images (not shown in this diagram), whose hydrodynamic effect on the real rotor is what drives the translational
motion. The geometry of this chain is characterized by the bead radius a, the height of the rotor h, and the angle of the dipole from the vertical axis θ. The
equations relating to this geometry can be generalized to describe the behavior of chains with N > 2, such as in (b). Here, there are two dipoles with different
distances from the center of the rotor (k ¼ 1;2) with two image chains (j ¼ 1; 2) (other images not shown). The interactions of the image dipoles with the real
dipoles becomes more complicated, as each image affects each real dipole.

Fig. S3. (a) The analytical and simulation results describing the angular dependence on the rotor’s translational velocity vx as a function of the number of
beads in the chain N. Notice that both results are in good agreement. (b) Upon integration of curves such as those in (a), we can obtain the analytical result for
the translational velocity of a rotor with an arbitrary number of beads. Results for 2–100 beads are plotted to demonstrate that the linear relationship between
vx and the number of beads is realized for large rotors. The black points are the analytical results, and the red line is a straight line meant to guide the eye and
demonstrates the agreement with a linear relationship.

Fig. S4. The plot of the flow profile of multibead rotors at a frequency of 18.5 Hz taken from simulation data. The y axis is the natural log of the velocity in the
x direction, and the x axis is the natural log of the radial distance along the x axis. The dotted lines are taken from ref. 10 using parameters in the simulation for
various rotor lengths.
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Fig. S5. The plot of βmax for ν ¼ 1.5 Hz as a function of chain length as measured from simulation data (black) and calculated from the analytical function
given in Eq. 6 of the paper (red).

Movie S1. Lateral view of colloidal self-assembled chains rotating on a surface. The frequency is varied to show the fragmentation transition. Notice how the
chains are translating along the surface.

Movie S1 (MPG)

Movie S2. Computer simulation of a colloidal self-assembled chain rotating on a surface. The frequency is varied to show the fragmentation transition. Notice
how the chain is translating along the surface. Also notice the agreement with the experimental results in Movie S1.

Movie S2 (MPG)
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Movie S3. Movie of fluorescently labeled vesicles dancing to a Bavarian Waltz. The vesicles are being moved by a collection of surface walkers that are
rotating on the surface with the direction of rotation determining the direction of motion. The colloidal chains (or surface walkers) are shown in the second
part of the movie when the microscope is changed from fluorescent to bright field mode.

Movie S3 (MPG)
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