Transferring the Concept of Multinuclearity to Ruthenium Complexes for Improvement of Anticancer Activity

Maria G. Mendoza-Ferri,^a Christian G. Hartinger,^{a,b,*} Marco A. Mendoza,^{c,~} Michael Groessl,^a Alexander Egger,^a Rene E. Eichinger,^a John B. Mangrum,^d Nicholas P. Farrell,^d Magdalena Maruszak,^e Patrick J. Bednarski,^e Franz Klein,^c Michael A. Jakupec,^a Alexey A. Nazarov,^{a,*} Kay Severin,^b Bernhard K. Keppler^a

^a University of Vienna, Institute of Inorganic Chemistry, Austria

^b Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne,

Switzerland

^c Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Austria

^d Department of Chemistry, Virgina Commonwealth University, United States

^e Department of Pharmaceutical and Medicinal Chemistry, University of Greifswald, Germany

Table of contents:

- 1.1 Elemental Analysis Data
- 1.2. Hydrolysis of **4c** by ¹H-NMR
- 1.3. pK_a determination
- 1.4. Structures of **7** and **8**

1.1. Elemental Analysis Data

	1 a		3a		5a	
	$C_{28}H_{28}N_2O_4{\cdot}2/3H_2O$		$C_{30}H_{32}N_2O_4 \cdot 1/3H_2O$		$C_{34}H_{40}N_2O_4{\cdot}2H_2O$	
	theoret.	found	theoret.	found	theoret.	found
С	71.78	71.73	73.45	73.39	70.81	70.92
Н	6.31	6.35	6.71	7.03	7.69	7.78
Ν	5.98	5.87	5.71	5.67	4.86	4.79

Table S1. Elemental Analyses Data for compounds 1a, 3a and 5a

Table S2. Elemental Analyses Data for compounds 1b, 3b and 5b

	1b		3 b		5b	
	$C_{14}H_{16}N_2O_4\cdot$		$C_{16}H_{20}N_2O_4$		$C_{20}H_{28}N_2O_4$	
	theoret.	found	theoret.	found	theoret.	found
С	60.86	61.11	63.14	62.87	66.64	66.52
Н	5.84	6.09	6.62	6.70	7.83	7.63
Ν	10.14	10.43	9.20	9.06	7.77	7.40

Table S3. Elemental Analyses Data for compounds 1c, 3c and 5c

	1c		3c		5c	
	$C_{34}H_{42}N_2O_4Ru_2Cl_2$		$C_{36}H_{46}N_2O_4Ru_2Cl_2$		$C_{40}H_{54}N_{2}O_{4}Ru_{2}Cl_{2} \\$	
	theoret.	found	theoret.	found	theoret.	found
С	50.06	49.87	51.24	50.96	53.39	53.09
Н	5.19	5.21	5.49	5.59	6.05	6.23
Ν	3.43	3.14	3.32	3.24	3.11	3.12

Figure S1. UV-vis spectra of 4c in water measured over 2 d.

Figure S2. Time-resolved ¹H-NMR spectra of 4c in D₂O before and after addition of AgNO₃.

Figure S3. Time course of UV-vis spectra of **4c** prepared in dry methanol and after addition of 10% water to the sample.

1.3. pK_a determination

Figure S4. Observed ¹H-NMR chemical shift (δ_{obs}) *vs.* pD values for **2c**, **4c**, and **6c**.

Figure S5. Structures of 7 and 8