

Supporting Information © Wiley-VCH 2009 69451 Weinheim, Germany

Iridium-Catalyzed Regio- and Enantioselective N-Allylation of Indoles

Levi M. Stanley and John F. Hartwig

Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801

Supporting Information

Table of Contents

General Experimental Details	S-1
Development of Reaction Conditions for the Iridium-Catalyzed N-Allylation of 4a	S-3
Table S1	S-3
General Procedure for N-Allylation of Indoles	S-4
Characterization Data for N-Allylindoles 5a-z and N-Allylazaindole 9	S-4
Synthesis of (<i>R</i>)-Methyl 1-(3-hydroxy-1-phenylpropyl)-1 <i>H</i> -indole-3-carboxylate 10	S-13
Synthesis of (R)-3-(1H-Indol-1-yl)-3-phenylpropan-1-ol	S-14
Synthesis of (R)-1-(3-Chloro-1-phenylpropyl)-1H-indole	S-14
Synthesis of (<i>R</i>)-3-(1 <i>H</i> -Indol-1-yl)- <i>N</i> -methyl-3-phenylpropan-1-amine 11	S-15
Procedure for the Synthesis of 3-(1 <i>H</i> -Indol-1-yl)-3-arylpropan-1-amines 12a-12c	S-15
Characterization Data for 3-(1H-Indol-1-yl)-3-arylpropan-1-amines 12a-12c	S-15
Synthesis of Compound 13	S-16
Synthesis of (<i>R</i>)-3-(3-(Methoxycarbonyl)-1 <i>H</i> -indol-1-yl)-3-phenylpropanoic Acid 14	S-17
References	S-18
¹ H and ¹³ C NMR Spectra for <i>N</i> -Allylindole 5 w	S-19
¹ H and ¹³ C NMR Spectra for Compound 13	S-21
¹ H and ¹³ C NMR Spectra for Indol-1-yl Propanoic Acid 14	S-23

General Experimental Details

All air-sensitive manipulations were conducted under an inert atmosphere in a nitrogenfilled glovebox or by standard Schlenk techniques. THF and CH_2Cl_2 were degassed by purging with argon for 45 minutes and dried with a solvent purification system containing a one-meter column of activated alumina. Potassium phosphate and cesium carbonate were dried by heating at 110 °C in a vacuum oven for 24 h. Ethyl indole-2-carboxylate **4a**, methyl indole-3carboxylate **4g**, indole-3-carboxaldehyde **4h**, 3-acetylindole **4i**, 3-cyanoindole **4j**, 2phenylindole-3-carboxaldehyde **4m**, and carbazole **4p** were purchased from Sigma-Aldrich and used without further purification. Ethyl 5-methoxyindole-2-carboxylate **4b**, ethyl 5fluoroindole-2-carboxylate **4c**, ethyl 5-chloroindole-2-carboxylate **4d**, and 7-azaindole 7 were purchased from Alfa Aesar and used without further purification. Ethyl 5-nitroindole-2carboxylate **4e** was purchased from Acros and used without further purification. Indole-2carboxaldehyde **4f**¹ 3-phenylindole **4k**² 3-methylindole-2-carboxaldehyde **4l**² and 2,3diphenylindole **4n**³ were synthesized according to published procedures. 3-Methyl-2phenylindole **4o** was prepared according to a literature procedure from phenylhydrazine and propiophenone.³

 $[Ir(COD)Cl]_2$ was synthesized from $IrCl_3 imes H_2O$ and 1,5-cyclooctadiene according to a literature procedure⁴ or was obtained from Johnson-Mathey and used without further purification. Phosphoramidite ligands L1 and L2 were synthesized according to literature procedures.⁵ $[Ir(COD)(\kappa^2-L1)(ethylene)]$ (1)⁶ and $[Ir(COD)(\kappa^2-L2)(ethylene)]$ (2)⁷ were prepared according to literature procedures.

Methyl cinnamyl carbonate was synthesized from the reaction of cinnamyl alcohol with methyl chloroformate using pyridine as the base. Allylic Boc carbonates were synthesized from reactions of the corresponding allylic alcohols with Boc₂O using 30% aq. NaOH as the base and a catalytic quantity of Bu₄HSO₄ as a phase transfer catalyst.⁸ Cinnamyl alcohol, trans, trans-2,4hexadiene-1-ol, and *trans*-2-hexen-1-ol were purchased from Aldrich. (E)-4-Methoxycinnamyl alcohol, (E)-2-methoxycinnamyl alcohol, and (E)-3-(2-furanyl)-2-propen-1-ol were synthesized by reduction of corresponding commercially available aldehydes with NaBH₄. (E)-3-(4bromophenyl)prop-2-en-1-ol, (*E*)-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-ol, (*E*)-3methoxycinnamyl alcohol, (E)-3-cyclohexylprop-2-en-1-ol, and (E)-4-(benzyloxy)but-2-en-1-ol were synthesized by reduction of the corresponding α,β -unsaturated ethyl esters with DIBAL-H. The α,β -unsaturated ethyl esters were synthesized from the appropriate aldehyde and triethyl phosphonoacetate by the Roush-Masamune modification of the Horner-Wadsworth-Emmons reaction.⁹

Elemental analyses were performed by the University of Illinois at Urbana-Champaign Microanalysis Laboratory and by Roberston Microlit Laboratories, Inc. (Madison, NJ). HRMS (ESI) analyses were performed by the University of Illinois Mass Spectrometry Center. GC analyses were obtained on an Agilent 6890 GC equipped with an HP-5 column (25 m x 0.20 mm ID x 0.33 μ m film) and an FID detector. Optical rotations were measured on a Rudolph Instruments (Denville, NJ) Autopol IV polarimeter. NMR spectra were acquired on 500 MHz Varian Unity or Inova instruments at the University of Illinois VOICE NMR facility. Chemical shifts are reported in ppm relative to a residual solvent peak (CDCl₃ = 7.26 ppm for ¹H and 77.23 ppm for ¹³C) or to an external standard (85% H₃PO₄ = 0 ppm for ³¹P). Coupling constants are reported in hertz. HPLC analyses were carried out on a Waters chromatography system (1525 binary pump, 717+ autosampler, 2487 dual wavelength detector).

Flash column chromatography was performed on Silicycle Siala-P silica gel using hexanes/ethyl acetate, hexanes/acetone, hexanes/isopropanol, or chloroform/MeOH mixtures. Products were visualized on TLC by UV or by staining with KMnO₄ or ceric ammonium molybdate.

Development of Reaction Conditions for the Iridium-Catalyzed N-Allylation of 4a

	Ph	D₂R + 〔	N H CO ₂ Et base H THF,	(0.5-4 mol %) (0-100 mol%) 50 °C	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $				
	R = Me, Et, <i>i</i> Pr or	<i>t</i> Bu	4a		5a	6a			
			Ar Ar		Ar OPN OPN Ar	•			
			[Ir(COD)(κ^2 -L1)(ethylene [Ir(COD)(κ^2 -L2)(ethylene)] (1) L1: Ar = Ph)] (2) L2: Ar = 2-M	eO-C ₆ H ₄				
Entry	Catalyst (mol%)	R	Base (mol %)	Conversion [%]	5a:6a	Yield 5a [%]	Ee [%]		
1	1 (4)	Me	K ₃ PO ₄ (100)	69	98:2	48	96		
2	1 (2)	Me	$K_{3}PO_{4}(100)$	64	94:6	52	96		
3	1 (2)	Me	Cs_2CO_3 (100)	96	97:3	86	97		
4	2 (2)	Me	Cs_2CO_3 (100)	99	98:2	90	99		
5	2 (1)	Me	Cs_2CO_3 (100)	81	98:2	77	99		
6	2 (0.5)	Me	Cs_2CO_3 (100)	68	98:2	62	99		
7	2 (2)	Me	$Cs_2CO_3(50)$	99	98:2	89	99		
8	2 (2)	Me	$Cs_2CO_3(20)$	99	97:3	83	99		
9	2 (2)	Me	Cs_2CO_3 (10)	99	97:3	87	99		
10	2 (2)	Me		96	98:2	78	99		
11	2 (2)	Et	Cs_2CO_3 (10)	99	97:3	82	99		
12	2 (2)	<i>i</i> Pr	Cs_2CO_3 (10)	99	96:4	85	99		
13	2 (2)	<i>t</i> Bu	$Cs_2CO_3(10)$	99	97:3	89	99		

Table S1. Study of reaction conditions for the *N*-allylation of **4a** with alkyl cinnamyl carbonates.

In a nitrogen-filled dry-box, the catalyst precursor **1** or **2** (0.5-4 mol %), base (0-100 mol %), ethyl indole-2-carboxylate **4a** (0.104 g, 0.550 mmol), and THF (1 mL) were added to a 1-dram vial. Then, the alkyl cinnamyl carbonate (0.500 mmol) and dodecane (20 μ L) were added. The vial was sealed with a PTFE/silicone-lined septum cap, removed from the dry-box, and heated at 50 °C in an oil bath. Reaction progress was monitored by GC. When the reaction to be complete, the vial was removed from the oil bath, cooled to room temperature, then filtered through a 0.5 inch plug of silica gel (eluting with EtOAc). The crude reaction mixture was concentrated under reduced pressure. CDCl₃ (0.7-0.8 mL) was added to dissolve the crude reaction mixture, and mesitylene (23 μ L) was added as an internal standard. The branched-to-linear ratio was then determined by ¹H NMR spectroscopy. After this analysis, the crude reaction mixture was purified by flash column column chromatography (97:3 hexanes:EtOAc) to yield **5a**. The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 4.8 min (*S*); t_R 6.0 min (*R*) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min].

General Procedure for N-Allylation of Indoles

In a nitrogen-filled dry-box, the catalyst precursor 2 (0.010 mmol, 0.020 equiv), Cs₂CO₃ (0.050 mmol, 0.100 equiv), indole nucleophile 4 or azaindole 7 (0.550 mmol, 1.10 equiv), and THF (1 mL) were added to a 1-dram vial. Then, the allylic carbonate 3 (0.500 mmol, 1.00 equiv) and dodecane (20 µL) were added. The vial was sealed with a PTFE/silicone-lined septum cap, removed from the dry-box, and heated at 50 °C in an oil bath. Reaction progress was monitored by GC. When the reaction was judged to be complete, the vial was removed from the oil bath, cooled to room temperature, then filtered through a 0.5 inch plug of silica gel (eluting with EtOAc) to remove solid Cs₂CO₃. The crude reaction mixture was concentrated under reduced pressure. CDCl₃ (0.7-0.8 mL) was added to dissolve the crude reaction mixture, and mesitylene (23 µL) was added as an internal standard. The branched-to-linear ratio was then determined by ¹H NMR spectroscopy. After this analysis, the crude reaction mixture was purified by flash column silica gel chromatography (eluting with hexanes:EtOAc, hexanes:acetone, or chloroform: MeOH mixtures) to yield product 5 or 8.

(R)-Ethyl 1-(1-phenylallyl)-1H-indole-2-carboxylate (5a): Prepared according to the general procedure from **3a** (0.0961 g, 0.500 mmol) and **4a** (0.104 g, 0.550 mmol) (reaction time = 6 h). ¹H NMR spectroscopy showed a 97:3 branched:linear ratio. The mixture was purified by flash column chromatography (97:3 hexanes: EtOAc) to give 5a as a white amorphous solid in 89% yield (0.136 g, 0.445 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 4.8 min (minor); t_R 6.0 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 99%. $[\alpha]_D^{25} = +45.5^{\circ}$ (c 1.27, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 1.44 (t, J = 7.0 Hz, 3H), 4.40 (q, J = 7.0 Hz, 2H), 5.27 (d, J = 17.5 Hz, 1H), 5.43 (d, J = 10.5 Hz, 1H), 6.64 (ddd, J = 17.5, 10.5, 6.5 Hz, 1H), 7.09-7.14(m, 3H), 7.25-7.35 (m, 5H), 7.47 (s, 1H), 7.62 (d, J = 6.5 Hz, 1H), 7.70-7.72 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz) & 14.5, 60.7, 60.9, 112.0, 114.1, 119.4, 120.7, 122.8, 124.7, 126.9, 127.0, 127.4, 128.1, 128.7, 135.2, 138.5, 139.8, 162.5. Anal. Calcd. for C₂₀H₁₉NO₂: C, 78.66; H, 6.27, N, 4.59; found: C, 78.74; H, 6.45; N, 4.56.

(*R*)-Ethyl 1-(1-(4-methoxyphenyl)allyl)-1*H*-indole-2-carboxylate (5b): Prepared according to the general procedure from **3b** (0.111 g, 0.500 mmol) and 4a (0.104 g, 0.550 mmol) (reaction time = 6 h). ¹H NMR spectroscopy showed a 99:1 branched:linear ratio. The mixture was purified by flash column chromatography (95:5 hexanes:EtOAc) to give 5b as a colorless oil

in 88% yield (0.147 g, 0.438 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 7.8 min (minor); t_R 11.6 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 99%. $[\alpha]_{D}^{25} =$ +40.2° (c 1.23, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 1.43 (t, J = 7.0 Hz, 3H), 3.79 (s, 3H), 4.40 (q, 7.0 Hz, 2H), 5.22 (d, J = 17.0 Hz, 1H), 5.40 (d, J = 10.5 Hz, 1H), 6.01 (ddd, J = 17.0, 10.5, 6.5 Hz, 1H), 6.85 (d, J = 8.5 Hz, 2H), 7.08-7.14 (m, 3H), 7.19 (d, J = 8.5 Hz, 2H), 7.45 (s, 1H), 7.54 (d, J = 6.5 Hz, 1H), 7.67-7.71 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 14.6, 55.5, 60.4, 60.9, 112.0, 114.1, 114.3, 119.1, 120.8, 122.9, 124.7, 127.0, 128.2, 128.3, 132.0, 135.6, 138.6, 158.9, 162.6. Anal. Calcd. for C₂₁H₂₁NO₃: C, 75.20; H, 6.31, N, 4.18; found: C, 75.44; H, 6.54; N, 3.99.

(*R*)-Ethyl 1-(1-(4-bromophenyl)allyl)-1*H*-indole-2-carboxylate (5c): Prepared according to the general procedure from 3c (0.160 g, 0.500 mmol) and 4a (0.104 g, 0.550 mmol) (reaction time = 5 h). ¹H NMR spectroscopy showed a 97:3 branched:linear ratio. The mixture was purified by flash column chromatography (98:2 hexanes:EtOAc) to give 5c as a colorless oil in

87% yield (0.168 g, 0.437 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 5.2 min (minor); t_R 8.0 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 99%. $[\alpha]_D^{25} = +14.8^{\circ}$ (c 1.42, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 1.43 (t, J = 7.0 Hz, 3H), 4.39 (q, J = 7.0 Hz, 2H), 5.27 (d, J = 17.0 Hz, 1H), 5.43 (d, J = 10.5 Hz, 1H), 6.57 (ddd, J = 17.0, 10.5, 7.0 Hz, 1H), 7.06-7.17 (m, 5H), 7.44 (d, J = 8.5 Hz, 2H), 7.46 (s, 1H), 7.53 (d, J = 7.0 Hz, 1H), 7.70 (d, J = 7.5 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 14.5, 60.3, 60.9, 112.2, 113.8, 119.9, 120.9, 121.4, 123.0, 124.9, 126.9, 127.9, 128.7, 131.8, 134.7, 138.3, 138.9, 162.5. Anal. Calcd. for C₂₀H₁₈NO₂Br: C, 62.51; H, 4.72, N, 3.65; found: C, 62.78; H, 4.87; N, 3.61.

(R)-Ethyl 1-(1-(4-(trifluoromethyl)phenyl)allyl)-1H-indole-2-carboxylate
(5d): Prepared according to a modified version of the general procedure from 3d (0.151 g, 0.500 mmol) and 4a (0.104 g, 0.550 mmol) using 4 mol % 2 (0.0185 g, 0.0200 mmol) as the catalyst precursor (reaction time = 24 h). ¹H NMR spectroscopy showed a 91:9 branched:linear ratio. The mixture

was purified by flash column chromatography (96:4 hexanes:EtOAc) to give **5d** as a colorless oil in 85% yield (0.159 g, 0.426 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 4.4 min (major); t_R 7.0 min (minor) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 99%. $[\alpha]_D^{25} =$ +7.1° (c 1.21, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 1.42 (t, *J* = 7.0 Hz, 3H), 3.39 (q, *J* = 7.0 Hz, 2H), 5.32 (d, *J* = 17.0 Hz, 1H), 5.47 (d, *J* = 10.5 Hz, 1H), 6.60 (ddd, *J* = 17.0, 10.5, 6.5 Hz, 1H), 7.06 (d, *J* = 8.0 Hz, 1H), 7.12-7.18 (m, 2 H), 7.34 (d, *J* = 8.5 Hz, 2H), 7.48 (s, 1H), 7.58 (d, *J* = 8.5 Hz, 2H), 7.63 (d, *J* = 6.5 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 14.5, 60.5, 61.0, 112.3, 113.7, 120.3, 121.0, 123.1, 124.3 (q, *J* = 271 Hz), 125.1, 125.7 (q, *J*_{CF} = 3.6 Hz), 127.0, 127.3, 127.9, 129.7 (q, *J*_{CF} = 33 Hz), 134.5, 138.4, 144.0, 152.5. Anal. Calcd. for C₂₁H₁₈NO₂F₃: C, 67.55; H, 4.86, N, 3.75; found: C, 67.70; H, 5.00; N, 3.76.

(*R*)-Ethyl 1-(1-(3-methoxyphenyl)allyl)-1*H*-indole-2-carboxylate (5e): Prepared according to the general procedure from 3e (0.132 g, 0.500 mmol) and 4a (0.104 g, 0.550 mmol) (reaction time = 8 h). ¹H NMR spectroscopy showed a 98:2 branched:linear ratio. The mixture was purified by flash column chromatography (95:5 hexanes:EtOAc) to give 5f as a colorless oil

in 95% yield (0.159 g, 0.474 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 7.6 min (minor); t_R 8.9 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 98:2, 1.0 mL/min] to be 99%. [α]_D²⁶ = +48.1° (c 1.36, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 1.43 (t, *J* = 7.0 Hz, 3H), 3.74 (s, 3H), 4.40 (q, *J* = 7.0 Hz, 2H), 5.27 (d, *J* = 17.0 Hz, 1H), 5.41 (d, *J* = 10.5 Hz, 1H), 6.61 (ddd, *J* = 17.0, 10.5, 7.0 Hz, 1H), 6.80-6.84 (m, 3H), 7.09-7.14 (m, 3H), 7.24 (t, *J* = 8.0 Hz, 1H), 7.46 (s, 1H), 7.58 (d, *J* = 7.0 Hz, 1H), 7.68-7.71 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 14.8, 55.3, 60.6, 60.8, 112.0, 112.3, 113.1, 114.1, 119.3, 119.4, 120.7, 122.8, 124.7, 126.8, 128.0, 129.7,

135.0, 138.5, 141.5, 159.9, 162.5. Anal. Calcd. for $C_{21}H_{21}NO_3$: C, 75.20; H, 6.31, N, 4.18; found: C, 75.24; H, 6.49; N, 3.94.

(R)-Ethyl 1-(1-(2-methoxyphenyl)allyl)-1*H*-indole-2-carboxylate (**5f**): Prepared according to a modified version of the general procedure (reaction temperature = room temperature) from 3f(0.132 g, 0.500 mmol) and 4a(0.104 mmol)g, 0.550 mmol) (reaction time = 20 h). ¹H NMR spectroscopy showed a 95:5 OMe branched:linear ratio. The mixture was purified by flash column chromatography (95:5 hexanes: EtOAc) to give 5f as a colorless oil in 72% yield (0.121 g, 0.361 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 6.2 min (major); t_R 8.0 min (minor) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 98:2, 1.0 mL/min] to be 96%. $[\alpha]_D^{26} = +132.3^\circ$ (c 0.60, CHCl₃). ¹H NMR $(CDCl_3, 500 \text{ MHz}) \delta 1.44 \text{ (t, } J = 7.0 \text{ Hz}, 3\text{H}), 3.62 \text{ (s, 3H)}, 4.42 \text{ (q, } J = 7.0 \text{ Hz}, 2\text{H}), 5.08 \text{ (dd, } J = 7.0 \text{ Hz}, 2\text{H})$ 17.0, 1.0 Hz, 1H), 5.42 (dd, J = 10.5, 1.0 Hz, 1H), 6.58 (ddd, J = 17.0, 10.5, 4.5 Hz, 1H), 6.78 (d, J = 8.5 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 7.12 (t, J = 7.0 Hz, 1H), 7.24 (t, J = 8.0 Hz, 1H), 7.36 (d, J = 7.5, 1H), 7.37 (s, 1H), 7.45 (d, J = 7.5 Hz, 1H), 7.66 (d, J = 7.5 Hz)Hz, 1H), 7.71-7.72 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 14.6, 55.5, 56.6, 60.7, 110.7, 111.1, 114.1, 117.4, 120.1, 120.2, 122.5, 124.1, 126.7, 127.7, 128.9, 129.1, 129.3, 135.4, 138.9, 157.9, 162.5. Anal. Calcd. for C₂₁H₂₁NO₃: C, 75.20; H, 6.31, N, 4.18; found: C, 74.92; H, 6.59; N, 4.03.

(*R*)-Ethyl 1-(1-(furan-2-yl)allyl)-1*H*-indole-2-carboxylate (5g): Prepared according to a modified version of the general procedure (reaction temperature = room temperature) from 3g (0.112 g, 0.500 mmol) and 4a (0.104 g, 0.550 mmol) (reaction time = 6 h). ¹H NMR spectroscopy showed a 91:9 branched:linear ratio. The mixture was purified by flash column chromatography (98:2)

hexanes:EtOAc) to give **5g** as a colorless oil in 85% yield (0.125 g, 0.423 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 7.1 min (minor); t_R 11.5 min (major) [Chiracel OD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 98:2, 1.0 mL/min] to be 99%. $[\alpha]_D^{24} = +24.7^\circ$ (c 0.70, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 1.45 (t, J = 7.0 Hz, 3H), 4.43 (q, J = 7.0 Hz, 2H), 5.13 (ddd, J = 17.0, 2.0, 1.0 Hz, 1H), 5.39 (ddd, J = 10.5, 2.0, 1.0 Hz, 1H), 6.37 (app d, J = 1.0 Hz, 2H), 6.50 (ddd, J = 17.0, 10.5, 5.5 Hz, 1H), 7.14 (ddd, J = 8.0, 8.0, 1.0 Hz, 1H), 7.21 (ddd, J = 8.5, 8.0, 1.0 Hz, 1H), 7.33 (dd, J = 8.5, 1.0 Hz, 1H), 7.34 (dd, J = 1.0, 1.0 Hz, 1H), 7.45 (d, J = 1.0, 1H), 7.70 (ddd, J = 8.0, 1.0, 1.0 Hz, 1H), 1.10 Hz, 1H), 7.72 (ddd, J = 5.5, 2.0, 1.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 14.5, 55.1, 60.9, 108.3, 110.4, 112.0, 113.7, 118.4, 120.8, 122.8, 124.9, 126.7, 127.6, 133.4, 138.7, 142.6, 152.4, 162.5. Anal. Calcd. for C₁₈H₁₇NO₃: C, 73.20; H, 5.80, N, 4.74; found: C, 73.18; H, 5.93; N, 4.66.

(*R,E*)-Ethyl 1-(hexa-1,4-dien-3-yl)-1*H*-indole-2-carboxylate (5h): Prepared according to a modified version of the general procedure (reaction temperature = room temperature) from 3h (0.0991 g, 0.500 mmol) and 4a (0.104 g, 0.550 mmol) (reaction time = 23 h). ¹H NMR spectroscopy showed a 99:1 branched:linear ratio. The mixture was purified by flash column chromatography (98:2 hexanes:EtOAc) to give 5h as a colorless oil in 86% yield (0.116 g, 0.429 mmol). The enantiomeric excess after reduction of the ester with lithium aluminum hydride was determined by HPLC analysis (254 nm, 25 °C) t_R 12.2 min (major); t_R 13.9 min (minor) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 99%. $[\alpha]_D^{25} = -18.6^{\circ}$ (c 1.08, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 1.43 (t, J = 7.0 Hz, 3H), 1.74 (d, J = 6.5 Hz, 3H), 4.39 (q, J = 7.0 Hz, 2H), 5.20 (d, J = 17.0 Hz, 1H), 5.28 (d, J = 10.5 Hz, 1H), 5.69-5.76 (dq, J = 15.5, 6.5 Hz, 1H), 5.97 (ddd, J = 15.5, 6.0, 1.5 Hz, 1H), 6.28 (ddd, J = 17.0, 10.5, 4.5 Hz, 1H), 6.91 (br s, 1H), 7.15 (t, J = 8.0 Hz, 1H), 7.27 (t, J = 8.0 Hz, 1H), 7.37 (s, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 8.0, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 15.5, 18.0, 58.9, 60.8, 111.5, 114.1, 116.7, 120.6, 122.8, 124.5, 126.7, 127.4, 128.7, 129.2, 137.3, 138.5, 162.5. Anal. Calcd. for C₁₇H₁₉NO₂: C, 75.81; H, 7.11, N, 5.20; found: C, 75.83; H, 7.25; N, 5.15.

(S)-Ethyl 1-(hex-1-en-3-yl)-1*H*-indole-2-carboxylate (5i): Prepared according to a modified version of the general procedure (reaction temperature = room temperature) from 3i (0.100 g, 0.500 mmol) and 4a (0.104 g, 0.550 mmol) (reaction time = 4 h). ¹H NMR spectroscopy showed a 94:6 branched:linear

ratio. The mixture was purified by flash column chromatography (97:3 hexanes:EtOAc) to give **5i** as a colorless oil in 92% yield (0.125 g, 0.460 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 4.4 min (major); t_R 6.1 min (minor) [Chiracel OD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 98:2, 1.0 mL/min] to be 99%. $[\alpha]_D^{25} = +61.5^\circ$ (c 1.05, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 0.87 (t, *J* = 7.0 Hz, 3H), 0.93-1.02 (m, 1H), 1.23-1.30 (m, 1H), 1.43 (t, *J* = 7.0 Hz, 3H), 1.96-2.06 (m, 1H), 2.21-2.29 (m, 1H), 4.39 (q, *J* = 7.0 Hz, 2H), 5.16 (dd, *J* = 16.5, 1.5 Hz, 1H), 5.24 (dd, *J* = 10.0, 1.5 Hz, 1H), 6.25-6.32 (m, 2H), 7.15 (t, *J* = 8.0 Hz, 1H), 7.27 (t, *J* = 8.5 Hz, 1H), 7.37 (s, 1H), 7.55 (d, *J* = 8.5 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 14.0, 14.5, 19.7, 35.0, 57.5, 60.8, 111.3, 113.9, 115.9, 120.5, 122.9, 124.4, 126.7, 128.4, 138.0, 138.2, 162.6. Anal. Calcd. for C₁₇H₂₁NO₂: C, 75.25; H, 7.80, N, 5.16; found: C, 75.33; H, 7.81; N, 5.12.

(*R*)-Ethyl 1-(1-(benzyloxy)but-3-en-2-yl)-1*H*-indole-2-carboxylate (5j): Prepared according to a modified version of the general procedure (reaction temperature = room temperature) from 3j (0.139 g, 0.500 mmol) and 4a (0.104 g, 0.550 mmol) (reaction time = 6 h). ¹H NMR spectroscopy showed

a 77:23 branched:linear ratio. The mixture was purified by flash column chromatography (95:5 hexanes:EtOAc) to give **5j** as a colorless oil in 70% yield (0.122 g, 0.349 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 10.0 min (minor); t_R 16.5 min (major) [Chiracel OD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 98:2, 1.0 mL/min] to be 98%. $[\alpha]_D^{25} = +25.8^{\circ}$ (c 0.86, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 1.43 (t, J = 7.0 Hz, 3H), 4.06-4.12 (m, 2H), 4.39 (q, J = 7.0 Hz, 2H), 4.41 (d, J = 12.5 Hz, 1H), 4.48 (d, J = 12.5 Hz, 1H), 5.21 (ddd, J = 17.5, 1.0, 1.0 Hz, 1H), 5.33 (ddd, J = 11.0, 1.0, 1.0 Hz, 1H), 6.32 (ddd, J = 17.5, 11.0, 4.5 Hz, 1H), 6.58 (br s, 1H), 7.12-7.28 (m, 7H), 7.42 (s, 1H), 7.51 (d, J = 8.5 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 14.5, 57.2, 60.8, 70.6, 72.9, 111.7, 113.7, 117.4, 120.7, 122.9, 124.5, 126.9, 127.5, 127.6, 128.4, 128.6, 134.7, 138.2, 138.6, 162.5. Anal. Calcd. for C₂₂H₂₃NO₃: C, 75.62; H, 6.63, N, 4.01; found: C, 75.47; H, 6.57; N, 3.87.

(*R*)-Ethyl 1-(1-cyclohexylallyl)-1*H*-indole-2-carboxylate (5k): Prepared according to a modified version of the general procedure from 3k (0.120 g, 0.500 mmol) and 4a (0.104 g, 0.550 mmol) using 4 mol % 2 (0.0185 g, 0.0200 mmol) as the catalyst precursor (reaction time = 6 h). 1 H NMR spectroscopy showed a 87:13 branched:linear ratio. The mixture was purified by flash column

chromatography (98:2 hexanes:EtOAc) to give 5k as a colorless oil in 54% yield (0.0841 g, 0.270 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 3.8 min (major); t_R 5.0 min (minor) [Chiracel OD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 99%. $[\alpha]_D^{25} = +92.6^{\circ}$ (c 0.48, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 0.84-1.33 (series of m, 6H), 1.43 (t, J = 7.5 Hz, 3H), 1.44-2.31 (series of m, 5H), 4.34-4.40 (m, 2H), 5.14 (d, J = 17.0 Hz, 1H), 5.22 (d, J = 10.5 Hz, 1H), 5.83 (br s, 1H), 6.44 (ddd, J = 17.0, 10.5, 7.0 Hz, 1H), 7.13 (dd, J = 8.5, 8.0 Hz, 1H), 7.27 (dd, J =8.0, 8.0 Hz, 1H), 7.34 (s, 1H), 7.53 (d, J = 8.5 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) & 14.6, 26.0, 26.2, 26.5, 29.6, 31.5, 40.0, 60.8, 64.0, 111.4, 113.8, 118.5, 120.5, 123.0, 123.2, 124.5, 126.7, 128.5, 135.6, 139.3, 162.7. Anal. Calcd. for C₂₀H₂₅NO₂: C, 77.14; H, 8.09, N, 4.50; found: C, 76.86; H, 8.24; N, 4.34.

5-methoxy-1-(1-phenylallyl)-1*H*-indole-2-carboxylate (R)-Ethyl (**5I**): Prepared according to the general procedure from **3a** (0.117 g, 0.500 mmol) and **4b** (0.121 g, 0.550 mmol) (reaction time = 6 h). ¹H NMR spectroscopy showed a 97:3 branched:linear ratio. The mixture was purified by flash column chromatography (96:4 hexanes:EtOAc) to give 51 as a white

amorphous solid in 88% yield (0.147 g, 0.438 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 7.2 min (minor); t_R 9.2 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/i-PrOH, 95:5, 1.0 mL/min] to be 99%. $\left[\alpha\right]_{D}^{25} = +52.1^{\circ}$ (c 1.12, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 1.43 (t, J = 7.0 Hz, 3H), 3.83 (s, 3H), 4.39 (q, 7.0 Hz, 2H), 5.25 (d, J = 17.5 Hz, 1H), 5.42 (d, J = 10.0 Hz, 1H), 6.60 (ddd, J = 10.0 Hz, 2H), 5.25 (d, J = 17.5 Hz, 1H), 5.42 (d, J = 10.0 Hz, 1H), 6.60 (ddd, J = 10.0 Hz, 2H), 5.25 (d, J = 17.5 Hz, 1H), 5.42 (d, J = 10.0 Hz, 1H), 6.60 (ddd, J 17.5, 10.0, 7.0 Hz, 1H), 6.81 (dd, J = 9.5, 2.5 Hz, 1H), 6.99 (d, J = 9.5 Hz, 1H), 7.09 (d, J = 2.5Hz, 1H), 7.23-7.34 (m, 5H), 7.38 (s, 1H), 7.60 (d, J = 7.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 14.5, 55.7, 60.6, 60.8, 102.6, 111.3, 115.0 116.2, 119.2, 127.0, 127.2, 127.4, 128.3, 128.6, 133.9, 135.3, 139.9, 154.6, 162.4. Anal. Calcd. for C₂₁H₂₁NO₃: C, 75.20; H, 6.31, N, 4.18; found: C, 75.24; H, 6.58; N, 4.09.

5-fluoro-1-(1-phenylallyl)-1*H*-indole-2-carboxylate (**5m**): (R)-Ethyl Prepared according to the general procedure from **3a** (0.117 g, 0.500 mmol) and 4c (0.114 g, 0.550 mmol) (reaction time = 6 h). ¹H NMR spectroscopy showed a 94:6 branched:linear ratio. The mixture was purified by flash column 5m chromatography (97:3 hexanes: EtOAc) to give 5m as a white amorphous solid in 84% yield (0.136 g, 0.421 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 4.6 min (minor); t_R 5.8 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 99%. $[\alpha]_D^{26} = +62.4^\circ$ (c 1.10, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 1.43 (t, J = 7.0 Hz, 3H), 4.40 (q, J = 7.0 Hz, 2H), 5.24 (dd, J = 17.0, 1.0 Hz, 1H), 5.43 (dd, J = 10.5, 1.0 Hz, 1H), 6.58 (ddd, J = 17.0, 10.5, 7.0 Hz, 1H),6.88 (dt, J = 2.5, 9.0 Hz, 1H), 7.01 (dd, J = 9.0, 4.0 Hz, 1H), 7.22-7.34 (m, 6H), 7.40 (s, 1H), 7.61 (d, J = 7.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 14.5, 60.7, 61.0, 106.8 (d, $J_{CF} = 22.9$ Hz), 111.5, (d, $J_{CF} = 4.5$ Hz), 113.8 (d, $J_{CF} = 26.6$ Hz), 115.1 (d, $J_{CF} = 9.1$ Hz), 119.5, 127.0,

127.1, 127.5, 128.8, 129.5, 134.96, 135.04, 139.6, 158.1 (d, $J_{CF} = 237.5$ Hz), 162.3. Anal. Calcd. for C₂₀H₁₈FNO₂: C, 74.29; H, 5.61, N, 4.33; found: C, 74.05; H, 5.79; N, 4.23.

(R)-Ethyl 5-chloro-1-(1-phenylallyl)-1H-indole-2-carboxylate (5n): Prepared according to the general procedure from 3a (0.117 g, 0.500 mmol) and 4d CO₂Et (0.123 g, 0.550 mmol) (reaction time = 6 h). ¹H NMR spectroscopy showed a 95:5 branched:linear ratio. The mixture was purified by flash column 5n chromatography (97:3 hexanes: EtOAc) to give 5n as a white amorphous solid in 91% yield (0.154 g, 0.454 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 4.9 min (minor); t_R 5.8 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 99%. $[\alpha]_D^{26} = +46.9^\circ$ (c 1.02, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 1.43 (t, J = 7.0 Hz, 3H), 4.39 (q, J = 7.0 Hz, 2H), 5.22 $(d, J = 17.0 \text{ Hz}, 1\text{H}), 5.43 (d, J = 10.5 \text{ Hz}, 1\text{H}), 6.57 (ddd, J = 17.0, 10.0, 7.0 \text{ Hz}, 1\text{H}), 6.99 (d, J = 10.5 \text{ Hz}, 1\text{H}), 6.91 (d, J = 10.5 \text{ Hz}, 100 (d, J = 10.5 \text$ = 9.0 Hz, 1H), 7.05 (dd, J = 7.0, 1.5 Hz, 1H), 7.21 (d, J = 7.0 Hz, 2H), 7.27-7.34 (m, 3H), 7.37 (s, 1H), 7.60 (d, J = 7.0 Hz, 1H), 7.65 (d, J = 1.5 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 14.6, 60.8, 61.2, 111.2, 115.3, 119.6, 122.0, 125.2, 126.6, 127.0, 127.7, 127.8, 128.9, 129.4, 134.9, 136.8, 139.5, 162.3. Anal. Calcd. for C₂₀H₁₈ClNO₂: C, 70.69; H, 5.34, N, 4.12; found: C, 70.84; H, 5.49; N, 4.00.

 O_2N

(R)-Ethyl 5-nitro-1-(1-phenylallyl)-1H-indole-2-carboxylate (50): Prepared according to a modified version of the general procedure from methyl cinnamyl carbonate (0.0961 g, 0.500 mmol) and 4e (0.129 g, 0.550 mmol) (reaction time = 6 h). ¹H NMR spectroscopy showed a 94:6 branched:linear 5o ratio. The mixture was purified by flash column chromatography (95:5 hexanes:EtOAc) to give 50 as a pale yellow amorphous solid in 90% yield (0.158 g, 0.451 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 7.8 min (minor); t_R 10.3 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/i-PrOH, 95:5, 1.0 mL/min] to be 99%. $[\alpha]_D^{25} = +36.6^\circ$ (c 1.46, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 1.43 (t, J = 7.0 Hz, 3H), 4.41 (q, J = 7.0 Hz, 2H), 5.21 (d, J = 17.0 Hz, 1H), 5.46 (d, J = 10.0 Hz, 1H), 6.56 (ddd, J = 17.0, 10.0, 6.5 Hz, 1H), 7.11 (d, J = 9.0 Hz, 1H), 7.20 (d, J = 7.5 Hz, 2H), 7.26-7.34 (m, 3H), 7.57 (s, 1H), 7.64 (d, J = 7.0 Hz, 1H), 7.95 (dd, J = 9.0, 2.0 Hz, 1H), 8.63 (d, J = 2.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 14.4, 61.1, 61.5, 113.6, 114.2, 119.5, 119.9, 120.0, 125.9, 126.9, 127.9, 128.9, 131.4, 134.3, 138.8, 140.8, 142.4, 161.7. Anal. Calcd. for C₂₀H₁₈N₂O₄: C, 68.56; H, 5.18, N, 8.00; found: C, 68.63; H, 5.25; N, 7.97.

(R)-1-(1-Phenylallyl)-1H-indole-2-carbaldehyde (5p): Prepared according to the general procedure from 3a (0.117 g, 0.500 mmol) and 4f (0.0798 g, 0.550 mmol) (reaction time = 6 h). ¹H NMR spectroscopy showed a 98:2 branched:linear ratio. The mixture was purified by flash column chromatography

(95:5 hexanes:EtOAc) to give **5p** as a yellow oil in 89% yield (0.117 g, 0.447 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 6.3 min (minor); t_R 6.9 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 98:2, 1.0 mL/min] to be 99%. $[\alpha]_D^{25} = +27.8^{\circ}$ (c 1.32, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 5.10 (d, J = 17.0 Hz, 1H), 5.52 (d, J = 10.5 Hz, 1H), 6.18 (d, J = 5.5 Hz, 1H), 6.38 (ddd, J = 17.0, 10.5, 5.5 Hz, 1H), 7.23-7.42 (m, 8H), 7.74 (s, 1H), 8.36 (dd, J = 8.5, 1.5 Hz, 1H), 10.0 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 60.9, 114.2, 119.6, 119.8, 121.2, 123.7, 126.7, 127.1,

127.4, 127.6, 128.7, 135.0, 135.7, 139.3, 139.9, 183.0. Anal. Calcd. for $C_{18}H_{15}NO$: C, 82.73; H, 5.79, N, 5.36; found: C, 82.57; H, 5.74; N, 5.22.

CO₂Me (*R*)-Methyl 1-(1-phenylallyl)-1*H*-indole-3-carboxylate (**5q**): Prepared according to the general procedure from 3a (0.117 g, 0.500 mmol) and 4g (0.0963 g, 0.550 mmol) (reaction time = 3 h). ¹H NMR spectroscopy showed a 5q 96:4 branched:linear ratio. The mixture was purified by flash column chromatography (90:10 hexanes: EtOAc) to give 5q as a colorless oil in 84% yield (0.123 g, 0.422 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 9.2 min (minor); t_R 11.1 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 97%. $[\alpha]_D^{25} = -25.7^\circ$ (c 1.23, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 3.92 (s, 3H), 5.07 (d, J = 17.0 Hz, 1H), 5.47 (d, J = 10.5 Hz, 1H), 6.15 (d, J = 5.5 Hz, 1H), 6.36 (ddd, J = 17.0, 10.5, 5.5 Hz, 1H), 7.20-7.38 (m, 8H), 7.88 (s, 1H), 8.24 (d, J = 8.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 51.1, 62.6, 110.9, 120.1, 121.9, 122.3, 123.0, 127.0, 127.7, 128.5, 129.1, 133.0, 135.3, 136.8, 137.8, 165.7. Anal. Calcd. for C₁₉H₁₇NO₂: C, 78.33; H, 5.88, N, 4.81; found: C, 78.19; H, 6.16; N, 4.73.

(*R*)-1-(1-Phenylallyl)-1*H*-indole-3-carbaldehyde (5r): Prepared according to the general procedure from 3a (0.117 g, 0.500 mmol) and 4h (0.0798 g, 0.550 mmol) (reaction time = 3 h). ¹H NMR spectroscopy showed a 94:6 branched:linear ratio.

^{Ph'} ^{Sr} The mixture was purified by flash column chromatography (80:20 hexanes:EtOAc) to give **5r** as a tan amorphous solid in 87% yield (0.114 g, 0.436 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 15.2 min (minor); t_R 21.7 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 96%. $[\alpha]_D^{25} = +1.3^\circ$ (c 1.21, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 5.08 (d, J = 17.0 Hz, 1H), 5.50 (d, J = 10.0 Hz, 1H), 6.17 (d, J = 6.0 Hz, 1H), 6.37 (ddd, J = 17.0, 10.0, 6.0 Hz, 1H), 7.22-7.41 (m, 8H), 7.73 (s, 1H), 8.36 (d, J = 7.5 Hz, 1H), 9.99 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 62.7, 111.0, 118.4, 120.3, 122.2, 123.2, 124.1, 125.7, 127.8, 128.8, 129.2, 134.9, 137.2, 137.3, 137.5, 184.8. Anal. Calcd. for C₁₈H₁₅NO: C, 82.73; H, 5.79, N, 5.36; found: C, 82.76; H, 5.84; N, 5.30.

^{C(O)Me} (*R*)-1-(1-(1-Phenylallyl)-1*H*-indol-3-yl)ethanone (5s): Prepared according to the general procedure from 3a (0.117 g, 0.500 mmol) and 4i (0.0875 g, 0.550 mmol) (reaction time = 5 h). ¹H NMR spectroscopy showed a 98:2 branched:linear ratio. The mixture was purified by flash column chromatography (75:25 hexanes:EtOAc) to give 5s as a colorless oil in 88% yield (0.122 g, 0.442 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 15.0 min (minor); t_R 20.0 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 96%. $[\alpha]_D^{25} = -19.9^\circ$ (c 0.73, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 2.52 (s, 3H), 5.10 (d, *J* = 17.0 Hz, 1H), 5.51 (d, *J* = 10.0 Hz, 1H), 6.16 (d, *J* = 5.5 Hz, 1H), 6.39 (ddd, *J* = 17.0, 10.0, 5.5 Hz, 1H), 7.20-7.40 (m, 8H), 7.77 (s, 1H), 8.43 (d, *J* = 7.5 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 27.8, 62.6, 110.8, 117.5, 120.3, 122.7, 122.9, 123.4, 126.7, 127.6, 128.6, 129.1, 133.4, 135.1, 137.1, 137.7, 193.3. Anal. Calcd. for C₁₉H₁₇NO: C, 82.88; H, 6.22, N, 5.09; found: C, 82.94; H, 6.05; N, 4.96.

(*R*)-1-(1-Phenylallyl)-1*H*-indole-3-carbonitrile (5t): Prepared according to the general procedure from 3a (0.117 g, 0.500 mmol) and 4j (0.0782 g, 0.550 mmol) (reaction time = 3 h). ¹H NMR spectroscopy showed a 96:4 branched:linear ratio.

^{Ph} St The mixture was purified by flash column chromatography (85:15 hexanes:EtOAc) to give **5t** as a white amorphous solid in 93% yield (0.120 g, 0.465 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 14.9 min (minor); t_R 15.9 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 98:2, 1.0 mL/min] to be 96%. $[\alpha]_D^{25} = -5.6^\circ$ (c 1.07, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 5.06 (d, J = 17.0 Hz, 1H), 5.50 (d, J = 10.0 Hz, 1H), 6.17 (d, J = 6.0 Hz, 1H), 6.33 (ddd, J = 17.0, 10.0, 6.0 Hz, 1H), 7.20-7.41 (m, 8H), 7.60 (s, 1H), 7.77-7.79 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 62.8, 86.2, 111.5, 116.1, 120.0, 120.4, 122.5, 124.0, 127.7, 128.2, 128.9, 129.2, 133.7, 134.8, 135.6, 137.2. Anal. Calcd. for C₁₈H₁₄N₂: C, 83.69; H, 5.46, N, 10.84; found: C, 83.59; H, 5.64; N, 10.79.

(*R*)-3-Methyl-1-(1-phenylallyl)-1*H*-indole-2-carbaldehyde (5v): Prepared according to the general procedure from 3a (0.117 g, 0.500 mmol) and 4l (0.0875 g, 0.550 mmol) (reaction time = 6 h). ¹H NMR spectroscopy showed a 98:2 branched:linear ratio. The mixture was purified by flash column chromatography

(95:5 hexanes:EtOAc) to give **5v** as a pale yellow oil in 82% yield (0.113 g, 0.410 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 4.9 min (minor); t_R 5.5 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 99%. $[\alpha]_D^{26} = +42.4^\circ$ (c 1.01, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 2.70 (s, 3H), 5.25 (d, *J* = 17.0 Hz, 1H), 5.41 (d, *J* = 10.5 Hz, 1H), 6.58 (ddd, *J* = 17.0, 10.5, 6.5 Hz, 1H), 7.08 (d, *J* = 8.5 Hz, 1H), 7.13 (t, *J* = 7.5 Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.24-7.34 (m, 5H), 7.59 (d, *J* = 6.5 Hz, 1H), 7.73 (d, *J* = 8.5 Hz, 1H), 10.22 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 8.8, 60.6, 113.9, 119.3, 120.4, 121.5, 127.0, 127.2, 127.4, 128.0, 128.4, 128.7, 130.9, 135.2, 138.8, 139.7, 181.7. Anal. Calcd. for C₁₉H₁₇NO: C, 82.88; H, 6.22, N, 5.09; found: C, 82.83; H, 6.31; N, 5.05.

(*R*)-2-Phenyl-1-(1-phenylallyl)-1*H*-indole-3-carbaldehyde (5w): Prepared according to the general procedure from 3a (0.117 g, 0.500 mmol) and 4m (0.122 g, 0.550 mmol) (reaction time = 3 h). ¹H NMR spectroscopy showed a

96:4 branched:linear ratio. The mixture was purified by flash column chromatography (80:20 hexanes:EtOAc) to give **5w** as an amorphous white solid in 93% yield (0.156 g, 0.463 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 8.7 min (major); t_R 10.0 min (minor) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 97%. $[\alpha]_D^{26} = +194.1^\circ$ (c 1.11, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 5.15 (d, J = 17.0 Hz, 1H), 5.48 (d, J = 10.5 Hz, 1H), 6.07 (d, J = 6.5 Hz, 1H), 6.57 (ddd, J = 17.0, 10.5, 6.5 Hz, 1H), 7.03 (d, J = 8.5 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 7.18 (d, J = 7.0 Hz, 2H), 7.27-7.34 (m, 4H), 7.50-7.60 (m, 5H), 8.49 (d, J = 8.0 Hz, 1H), 9.78 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 61.6, 113.7, 116.4, 120.3, 122.4, 123.2, 123.8, 126.1, 126.8, 128.1, 128.8, 129.0, 129.1 130.3, 130.9, 133.9, 135.4, 138.0, 152.1, 187.1. HRMS (ESI) calcd. for C₂₄H₂₀NO⁺ [M+H]⁺ 338.1545, found 338.1534.

(*R*)-2,3-Diphenyl-1-(1-phenylallyl)-1*H*-indole (5x): Prepared according to the general procedure from 3a (0.117 g, 0.500 mmol) and 4n (0.148 g, 0.550 mmol) (reaction time = 2 h). ¹H NMR spectroscopy showed a 98:2 branched:linear ratio. The mixture was purified by flash column chromatography (97:3 hexanes:EtOAc) to give 5x as an amorphous white solid in 95% yield (0.184 g, 0.477 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 42.8 min (major); t_R 48.9 min (minor) [Chiracel OD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 99.9:0.1, 0.3 mL/min] to be 99%. $[\alpha]_D^{24} = +180.5^\circ$ (c 0.84, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 5.16 (dt, *J* = 17.0, 1.5 Hz 1H), 5.46 (dt, *J* = 10.5, 1.5 Hz, 1H), 6.11 (d, *J* = 6.5 Hz, 1H), 6.62 (ddd, *J* = 17.0, 10.5, 6.5 Hz, 1H), 7.08-7.18 (m, 3H), 7.24 (dt, *J* = 7.5, 1.5 Hz, 1H), 7.30-7.45 (m, 14H), 7.87 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 61.3, 113.4, 116.0, 119.4, 119.9, 120.3, 121.9, 125.8, 127.0, 127.6, 128.3, 128.5 (2C), 128.7, 128.8, 130.1, 131.4, 132.4, 135.0, 135.3, 135.4, 138.5, 139.6. Anal. Calcd. for C₂₉H₂₃N: C, 90.35; H, 6.01, N, 3.63; found: C, 90.04; H, 6.04; N, 3.43.

(*R*)-3-Methyl-2-phenyl-1-(1-phenylallyl)-1*H*-indole (5y): Prepared according to the general procedure from 3a (0.117 g, 0.500 mmol) and 4o (0.114 g, 0.550 mmol) (reaction time = 4 h). ¹H NMR spectroscopy showed a 98:2 branched:linear ratio. The mixture was purified by flash column chromatography (98:2 hexanes:EtOAc) to give 5y as an amorphous white solid in 89% yield (0.143 g, 0.443 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 3.6 min (major); t_R 4.2 min (minor) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 99:1, 1.0 mL/min] to be 99%. $[\alpha]_D^{26} = +157.5^\circ$ (c 1.13, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 2.34 (s, 3H), 5.10 (dt, J = 17.0, 1.5 Hz, 1H), 5.39 (dt, 10.5, 1.5 Hz, 1H), 6.01 (d, J = 6.5 Hz, 1H), 6.54 (ddd, J = 17.0, 10.5, 6.5 Hz, 1H), 7.00 (dt, J = 8.0, 1.0 Hz, 1H), 7.14 (dt, J = 1.0, 8.0 Hz, 1H), 7.23-7.35 (m, 5H), 7.43-7.49 (m, 5H), 7.65 (dt, J = 8.0, 1.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 9.7, 61.3, 109.6, 113.1, 119.0, 119.1, 119.4, 121.5, 127.0, 127.4, 128.3, 128.6, 128.7, 129.8, 130.8, 132.6, 135.2, 135.4, 138.5, 139.9. Anal. Calcd. for C₂₄H₂₁N: C, 89.12; H, 6.54, N, 4.33; found: C, 88.89; H, 6.42; N, 4.25.

(*R*)-9-(1-Phenylallyl)-9*H*-carbazole (5z): Prepared according to the general procedure from 3a (0.117 g, 0.500 mmol) and 4p (0.0920 g, 0.550 mmol) (reaction time = 5 h). ¹H NMR spectroscopy showed a 98:2 branched:linear ratio. The mixture was purified by flash column chromatography (98:2

hexanes:EtOAc) to give **5z** as an amorphous white solid in 88% yield (0.125 g, 0.441 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 6.0 min (minor); t_R 6.9 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 98:2, 1.0 mL/min] to be 98%. $[\alpha]_D^{25} = +55.7^\circ$ (c 1.10, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 5.33 (dt, J = 17.0, 1.5 Hz, 1H), 5.50 (dt, J = 10.5, 1.5 Hz, 1H), 6.55 (d, J = 6.5 Hz, 1H), 6.68 (ddd, J = 17.0, 10.5, 6.5 Hz, 1H), 7.33 (dt, J = 1.0, 8.0 Hz, 2H), 7.36-7.41 (m, 7H), 7.44 (dt, J = 1.5, 8.0 Hz, 2H), 8.22 (d, J = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) δ 60.4, 110.6, 119.3, 119.4, 120.5, 123.6, 125.7, 127.3, 127.8, 128.9, 134.4, 138.7, 140.2. Anal. Calcd. for C₂₁H₁₇N: C, 89.01; H, 6.05, N, 4.94; found: C, 89.09; H, 6.06; N, 4.91.

(*R*)-1-(1-Phenylallyl)-1*H*-pyrrolo[2,3-*b*]pyridine (8): Prepared according to the general procedure from 3a (0.117 g, 0.500 mmol) and 7 (0.0650 g, 0.550 mmol) (reaction time = 6 h). ¹H NMR spectroscopy showed a 91:9 branched:linear ratio. The mixture was purified by flash column chromatography (90:10)

hexanes:EtOAc) to give **8** as a colorless oil in 79% yield (0.0921 g, 0.393 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 5.3 min (major); t_R 6.3 min (minor) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 99%. $[\alpha]_D^{25} = +201.4^\circ$ (c 1.15, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 5.06 (dt, J = 17.0, 1.5 Hz, 1H), 5.42 (dt, J = 10.5, 1.5 Hz, 1H), 6.44 (ddd, J = 17.0, 10.5, 6.0 Hz, 1H), 6.53 (d, J = 4.0 Hz, 1H), 6.89 (d, J = 5.0 Hz, 1H), 7.11 (dd, J = 7.5, 5.0 Hz, 1H), 7.23 (d, J = 6.0 Hz, 1H), 7.30-7.38 (m, 5H), 7.95 (dd, J = 8.0, 2.0 Hz, 1H), 8.40 (dd, J = 5.0, 2.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 58.9, 100.1, 116.2, 118.3, 120.7, 126.4, 127.91, 127.92, 128.7, 128.9, 136.6, 139.5, 143.0, 147.6. Anal. Calcd. for C₁₆H₁₄N₂: C, 82.02; H, 6.02, N, 11.96; found: C, 82.14; H, 6.27; N, 11.67.

Synthesis of (*R*)-Methyl 1-(3-hydroxy-1-phenylpropyl)-1*H*-indole-3-carboxylate (10)

N-Allyl indole **5q** (0.797 g, 2.74 mmol, 97% ee) was dissolved in dry, degassed THF (11 mL) and cooled to -78 °C. Then 9-BBN (11 mL as a 0.5 M solution in THF, 5.5 mmol) was added to the reaction vessel. The reaction mixture was stirred for 1 h at -78 °C, then allowed to warm slowly to room temperature and stirred overnight. The resulting solution was cooled to 0 °C,

at which time EtOH (4.4 mL), 3 M NaOH (2.2 mL), and 30% H₂O₂ (2.3 mL) were added in the specified order. The reaction was allowed to warm to room temperature and was stirred for an additional 6 h. The reaction was diluted with ether, then washed with 1 M NaOH and saturated aqueous NH₄Cl. The organic layer was dried over MgSO₄, filtered, and concentrated. The crude product was purified by flash column silica gel chromatography (40:60 hexanes:EtOAc) to give (*R*)-methyl 1-(3-hydroxy-1-phenylpropyl)-1*H*-indole-3-carboxylate **10** as an amorphous white solid in 97% yield (0.820 g, 2.65 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 13.9 min (minor); t_R 15.4 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 90:10, 1.0 mL/min] to be 97%. [α]_D²⁵ = +1.9° (c 0.96, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 1.94 (br s, 1H), 2.49-2.60 (m, 2H), 3.54 (dd, *J* = 11.0, 7.0, 5.0, 1H), 3.66 (ddd, *J* = 11.0, 5.0, 5.0 Hz, 1H), 3.92 (s, 3H), 5.84 (dd, *J* = 8.0, 7.5 Hz, 1H), 7.19-7.32 (m, 7H), 7.39 (d, *J* = 8.0 Hz, 1H), 8.05 (s, 1H), 8.18 (d, *J* = 7.5 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 37.4, 51.3, 56.8, 58.8, 107.8, 110.9, 121.8, 122.3, 123.1, 126.7,

126.8, 128.3, 129.1, 132.0, 137.1, 139.9, 165.9. Anal. Calcd. for $C_{19}H_{19}NO_3$: C, 73.77; H, 6.19, N, 4.53; found: C, 73.49; H, 6.13; N, 4.34.

Synthesis of (*R*)-3-(1*H*-Indol-1-yl)-3-phenylpropan-1-ol¹⁰

Ph OH Th

(*R*)-Methyl 1-(3-hydroxy-1-phenylpropyl)-1*H*-indole-3-carboxylate **10** (0.400 g, 1.29 mmol) and solid KOH (0.290 g, 5.17 mmol) were combined in a reaction vessel. To this mixture was added MeOH (12 mL) and H_2O (8 mL). The reaction was heated at reflux for 4 h, then cooled to room temperature. The solution was transferred to a separatory funnel, acidified with 3 M HCl,

and extracted three times with CH₂Cl₂. The organic layer was dried over MgSO₄, filtered, and concentrated. (R)-1-(3-Hydroxy-1-phenylpropyl)-1H-indole-3-carboxylic acid was isolated as an amorphous white solid in 96% yield (0.367 g, 1.24 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 26.6 min (minor); t_R 34.1 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/i-PrOH, 90:10, 1.0 mL/min] to be 97%. ¹H NMR (CDCl₃, 500 MHz) δ 2.52-2.65 (m, 2H), 3.60 (ddd, J = 11.0, 7.0, 5.0 Hz, 1H), 3.71 (ddd, J = 11.0, 5.0, 5.0, 1H), 5.87 (app t, J = 7.5 Hz, 1H), 7.22-7.35 (m, 7H), 7.41 (d, J = 8.0 Hz, 1H), 8.16 (s, 1H), 8.24 (d, J = 8.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 37.4, 56.7, 58.9, 107.3, 111.0, 122.0, 122.6, 123.3, 126.7, 127.1, 128.4, 129.2, 133.3, 137.3, 139.7, 170.6. HRMS (ESI) calcd. for C₁₈H₁₈NO₃⁺ [M+H]⁺ 296.1287, found 296.1296. (*R*)-1-(3-Hydroxy-1-phenylpropyl)-1H-indole-3-carboxylic acid (0.200 g, 0.677 mmol) was dissolved in bromobenzene (5 mL). The reaction was heated at reflux for 20 h, and then was allowed to cool to room temperature. Bromobenzene was removed in vacuo, and the crude reaction mixture was purified by flash column silica gel chromatography (75:25 hexanes: EtOAc) to give (R)-3-(1Hindol-1-yl)-3-phenylpropan-1-ol as a green oil in 71% yield (0.120 g, 0.479 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 8.3 min (major); t_R 10.0 min (minor) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 90:10, 1.0 mL/min] to be 97%. $[\alpha]_D^{26} = +112.5^{\circ}$ (c 0.48, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 1.82 (br s, 1H), 2.52-2.57 (m, 2H), 3.50 (ddd, J = 11.0, 6.5, 5.5, 1H), 3.64 (ddd, J = 11.0, 6.5, 5.5, 1H), 3.65 (ddd, J = 11.0, 6.5, 5.5, 1H), 3.65 (ddd, J = 11.0, 6.5, 5.5, 1H), 3.65 (dddd, J = 11.0, 6.5, 5.5, 1H), 3.65 (dddddddddddddddddddddddd 5.5, 5.5 Hz, 1H), 5.82 (dd, J = 7.5, 7.5 Hz, 1H) 6.63 (d, J = 3.5 Hz, 1H), 7.14 (ddd, J = 8.0, 8.0, 1.0 Hz, 1H), 7.20 (ddd, J = 7.5, 7.5, 1.5 Hz, 1H), 7.24-7.33 (m, 6H), 7.40 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 7.5 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 37.6, 55.8, 59.3, 102.2, 110.1, 119.8, 121.1, 121.8, 125.2, 126.6, 127.7, 128.7, 128.9, 136.6, 141.3. HRMS (ESI) calcd. for C₁₇H₁₈NO⁺ [M+H]⁺ 252.1388, found 252.1394.

Synthesis of (*R*)-1-(3-Chloro-1-phenylpropyl)-1*H*-indole¹¹

(*R*)-3-(1*H*-Indol-1-yl)-3-phenylpropan-1-ol (0.0641 g, 0.255 mmol) and PPh₃ (0.0803 g, 0.306 mmol) were combined in a 1-dram vial. To this mixture was added CH_2Cl_2 (1.9 mL) and CCl_4 (0.1 mL). Then the vial was sealed, and the reaction heated at 50 °C. After 18 h, the reaction was cooled to room temperature

and filtered through a plug of silica gel (eluting with 75:25 hexanes to EtOAc). The crude reaction mixture was concentrated under reduced pressure and purified by flash column silica gel chromatography (95:5 hexanes:EtOAc) to give (*R*)-1-(3-chloro-1-phenylpropyl)-1*H*-indole as a colorless oil in 91% yield (0.0624 g, 0.231 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 5.5 min (major); t_R 6.0 min (minor) [Chiracel AD-H (0.46 cm

x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 97%. $[\alpha]_D^{25}$ = +106.0° (c 0.65, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 2.74 (m, 1H), 2.85 (m, 1H), 3.41 (ddd, *J* = 11.5, 8.0, 4.5, 1H), 3.56 (ddd, *J* = 11.5, 5.5, 5.5 Hz, 1H), 5.87 (dd, *J* = 9.0, 5.5 Hz, 1H), 6.63 (dd, *J* = 3.0, 0.5 Hz, 1H), 7.14 (ddd, *J* = 8.0, 8.0, 1.0 Hz, 1H), 7.21 (ddd, *J* = 8.0, 8.0, 1.0 Hz, 1H), 7.24-7.36 (m, 6H), 7.39 (dd, *J* = 8.0, 0.5 Hz, 1H), 7.67 (dd, *J* = 8.0, 0.5 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 37.7, 41.7, 56.4, 102.6, 110.2, 120.0, 121.2, 122.0, 125.1, 126.6, 128.1, 128.9, 129.1, 136.5, 140.3. HRMS (ESI) calcd. for C₁₇H₁₇NCl⁺ [M+H]⁺ 270.1050, found 270.1047.

Synthesis of (R)-3-(1H-Indol-1-yl)-N-methyl-3-phenylpropan-1-amine (11)¹¹

To (R)-1-(3-chloro-1-phenylpropyl)-1*H*-indole (0.0613 g, 0.227 mmol) in a 10 mL medium-walled pressure vessel equipped with a vacuum valve was 11 added methylamine (33% in EtOH, 2.5 mL). The pressure vessel was sealed and heated at 90 °C for 4 h. The reaction mixture was concentrated under NHMe reduced pressure and purified by flash column silica gel chromatography (90:10 CHCl₃:MeOH) to give (R)-3-(1*H*-indol-1-yl)-*N*-methyl-3-phenylpropan-1-amine 11 as a white amorphous solid in 95% yield (0.0573 g, 0.217 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 8.5 min (minor); t_R 13.4 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/i-PrOH, 95:5, 1.0 mL/min] to be 97%. $[\alpha]_D^{24} =$ +76.6° (c 0.49, MeOH). ¹H NMR (DMSO-*d*₆, 500 MHz) δ 2.48 (s, 3H), 2.57-2.61 (m, 1H), 2.69-2.84 (m, 3H), 3.40 (br s, 1H), 5.92 (dd, J = 9.0, 6.0 Hz, 1H), 6.56 (d, J = 3.5 Hz, 1H), 7.01 (t, J = 8.0 Hz, 1H), 7.10 (t, J = 8.5 Hz, 1H), 7.24-7.37 (m, 5H), 7.54 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 8.5 Hz, 1H), 7.76 (d, J = 3.5 Hz, 1H). ¹³C NMR (DMSO- d_6 , 125 MHz) δ 31.1, 32.7, 46.0, 56.1, 101.8, 110.4, 119.4, 120.5, 121.2, 125.4, 126.4, 127.7, 128.2, 128.6, 135.9, 141.1. HRMS (ESI) calcd. for $C_{18}H_{21}N_2^+$ [M+H]⁺ 265.1705, found 265.1703.

General Procedure for the Synthesis of 3-(1*H*-indol-1-yl)-*N*-methyl-3-arylpropan-1-amines 12a-12c

N-allyl indole **5x**, **5y**, or **5z** (0.400 mmol) and Cp₂ZrHCl (0.103 g, 0.400 mmol) were added to a 1-dram vial. Then, dry, degassed THF (2 mL) was added, and the vial was sealed with a cap containing a PTFE/silicone liner. The heterogeneous solution was stirred at room temperature until the mixture became homogeneous (5-15 h). Then, the septum cap was removed from the vial, *N*-methyl hydroxylamine-*O*-sulfonic acid (0.0763 g, 0.600 mmol) was added to the reaction mixture, and the vial was resealed. The vial was removed from the dry-box, and the reaction was heated in an oil bath at 60 °C for 5 h. The reaction was cooled to room temperature, diluted with CH₂Cl₂, and transferred to separatory funnel. The organic layer was washed with 1 M NaOH, dried over MgSO₄, filtered, and concentrated. The crude product was purified by flash column silica gel chromatography (90:10 CHCl₃:MeOH) to give **12a**, **12b**, or **12c**.

(*R*)-3-(2,3-Diphenyl-1*H*-indol-1-yl)-*N*-methyl-3-phenylpropan-1amine (12a): Prepared according to the general procedure from 5x (0.154 g, 0.400 mmol) to give 12a as an amorphous white solid in 63% yield (0.105 g, 0.253 mmol). The enantiomeric excess after acylation with trifluoroacetic anhydride was determined by HPLC analysis (254 nm, 25 °C) t_R 23.3 min (minor); t_R 30.0 min (major) [Chiracel OD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 98:2, 0.5 mL/min] to be 99%. [α]_D²⁶ = +162.7° (c 0.59, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 2.17-2.23 (m, 1H), 2.25 (s, 3H), 2.29-2.35 (m, 1H), 2.49 (br s, 1H), 2.54-2.61 (m, 1H), 2.71-2.79 (m, 1H), 5.63 (dd, *J* = 11.0, 4.5 Hz, 1H), 7.10-7.23 (m, 4H), 7.27-7.41 (m, 14H), 7.84 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 32.2, 36.0, 48.5, 56.3, 113.2, 115.9, 120.1, 120.5, 122.1, 125.8, 126.5, 127.4, 128.3, 128.46, 128.51, 128.8, 128.9, 130.2, 131.1, 131.2, 132.2, 135.2, 139.0, 140.8. Anal. Calcd. for C₃₀H₂₉N₂: C, 86.50; H, 6.78, N, 6.72; found: C, 86.90; H, 6.69; N, 6.45.

(*R*)-*N*-Methyl-3-(3-methyl-2-phenyl-1*H*-indol-1-yl)-3-phenylpropan-1-amine (12b): Prepared according to the general procedure from 5y (0.129 g, 0.400 mmol) to give 12b as an amorphous white solid in 69% yield (0.0981 g, 0.276 mmol). The enantiomeric excess after acylation with trifluoroacetic anhydride was determined by HPLC analysis (254

nm, 25 °C) $t_{\rm R}$ 6.9 min (minor); $t_{\rm R}$ 9.6 min (major) [Chiracel OD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 99%. [α]_D²⁴ = +173.3° (c 0.48, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 2.09-2.22 (m, NH + CH₂, 2H), 2.23-2.29 (m, CH₃ + CH₂, 4H), 2.32 (s, 3H), 2.46-2.53 (m, 1H), 2.63-2.71 (m, 1H), 5.53 (dd, *J* = 11.5, 5.0 Hz, 1H), 7.05-7.16 (m, 3H), 7.28-7.47 (m, 10H), 7.66 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 9.7, 32.4, 36.1, 48.5, 56.4, 109.2, 112.9, 119.2, 119.4, 121.7, 126.5, 127.2, 128.3, 128.7, 128.8, 129.8, 130.7, 132.5, 135.1, 139.0, 141.2. Anal. Calcd. for C₂₅H₂₆N₂: C, 84.70; H, 7.13, N, 7.40; found: C, 84.36; H, 7.13; N, 7.40.

(*R*)-3-(9*H*-Carbazol-9-yl)-*N*-methyl-3-phenylpropan-1-amine (12c): Prepared according to the general procedure from 5z (0.113 g, 0.400 mmol) to give 12c as an amorphous white solid in 73% yield (0.0913 g, 0.290 mmol). The enantiomeric excess after acylation with trifluoroacetic anhydride was determined by HPLC analysis (254 nm, 25 °C) t_R 8.2 min (major); t_R 9.0 min (minor) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 98%. $[\alpha]_D^{25} = +95.7^\circ$ (c 0.51, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 2.12 (br s, 1H), 2.29 (s, 3H), 2.35-2.66 (m, 2H), 2.70-2.76 (m, 1H), 2.80-2.87 (m, 1H), 6.14 (dd, J = 11.0, 4.5 Hz, 1H), 7.24-7.39 (m, 11H), 8.15 (d, J = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) δ 31.6, 36.4, 48.8, 55.0, 110.5, 119.2, 120.4, 123.4, 125.7, 126.8, 127.5, 128.8, 140.26, 140.33. Anal. Calcd. for C₂₂H₂₂N₂: C, 84.04; H, 7.05, N, 8.91; found: C, 83.71; H, 6.95; N, 8.80.

Synthesis of ((1*S*,2*R*,3*R*)-1-(methylamino)-3-phenyl-2,3-dihydro-1*H*-pyrrolo[1,2-*a*]indol-2-yl)methanol (13)

N-Allyl indole **5p** (0.100 g, 0.383 mmol, 99% ee), *N*-methylhydroxylamine hydrochloride (0.0959 g, 1.15 mmol), and sodium acetate (0.0973 g, 1.19 mmol) were combined in a 10 mL round bottom flask. THF (3.0 mL) was added to this mixture. The reaction mixture was heated at reflux. After 5 h the reaction mixture was cooled to room temperature and concentrated.

The resulting residue was dissolved in $CHCl_3$ and washed with water. The water layer was extracted with two additional portions of $CHCl_3$. The combined organic layer was washed with brine, and then dried over MgSO₄, filtered, and concentrated. Analysis of the crude reaction

mixture by ¹H NMR spectroscopy showed a 90:10 regioisomeric ratio and the presence of the major regioisomer as a single diasteromer. The regioisomeric mixture was purified by flash column silica gel chromatography (60:40 hexanes:EtOAc) to give the major cycloadduct as a single isomer as an amorphous white solid in 83% yield (0.0924 g, 0.318 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 12.9 min (minor); t_R 17.0 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 99%. $[\alpha]_D^{25} = +193.6^{\circ}$ (c 0.59, CHCl₃). Anal. Calcd. for C19H18N2O: C, 78.59; H, 6.25, N, 9.65; found: C, 78.46; H, 6.34; N, 9.55. The purified cycloadduct (0.0400 g, 0.138 mmol) and zinc powder (0.132 g, 2.07 mmol) were combined in a 5 mL round bottom flask. AcOH (1.5 mL) and H₂O (0.5 mL) were added to the flask, and the reaction mixture was heated at 60 °C for 7 h. At this time, the reaction was cooled to room temperature and made basic by addition of concentrated NH₄OH (2.6 mL). The resulting mixture was extracted with CHCl₃ (3x). The combined organic layers were dried over MgSO₄, filtered, and concentrated. The product was purified by flash column silica gel chromatography ((1S,2R,3R)-1-(methylamino)-3-phenyl-2,3-dihydro-1H-(70:30)CHCl₃:*i*PrOH) to give pyrrolo[1,2-a]indol-2-yl)methanol 13 as an amorphous tan solid in 87% yield (0.0351 g, 0.120 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 10.8 min (minor); $t_{\rm R}$ 28.4 min (major) [Chiracel OD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 80:20, 1.0 mL/min] to be 99%. $[\alpha]_{\rm D}^{25} = +120.0^{\circ}$ (c 0.46, CHCl₃). ¹H NMR $(CDCl_3, 500 \text{ MHz}) \delta 2.67 \text{ (s, 3H)}, 2.94 \text{ (dddd}, J = 8.0, 7.0, 6.5, 4.0, 1H), 3.12 \text{ (br s, 2H)}, 3.90$ (dd, J = 12.5, 6.0 Hz, 1H), 4.09 (dd, J = 12.5, 4.0 Hz, 1H), 4.41 (d, J = 7.0 Hz, 1H), 5.41 (d, J = 12.5, 4.0 Hz, 1Hz), 5.41 (d, J = 12.5, 4.0 Hz, 1Hz), 5.41 (d, J = 12.5, 4.0 Hz, 1Hz), 5.41 (d, J = 12.5, 4.0 Hz), 5.41 (d, J8.0 Hz, 1H), 6.45 (s, 1H), 6.65 (d, J = 8.0 Hz, 1H), 6.97 (app t, J = 7.5, 1H), 7.07 (app t, J = 7.5, 1H), 7.20-7.22 (m, 2H), 7.35-7.39 (m, 3H), 7.64 (d, J = 7.5 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) & 35.9, 58.3, 60.2, 60.7, 61.7, 93.7, 111.1, 119.9, 121.2, 121.3, 127.0, 128.4, 129.1, 132.5, 132.9, 139.6, 145.1, HRMS (ESI) calcd. for $C_{19}H_{21}N_2O^+$ [M+H]⁺ 293.1654, found 293.1660.

Synthesis of (R)-3-(3-(methoxycarbonyl)-1H-indol-1-yl)-3-phenylpropanoic acid (14)

(*R*)-Methyl 1-(3-hydroxy-1-phenylpropyl)-1*H*-indole-3-carboxylate **10** (0.150 g, 0.485 mmol), iodobenzene diacetate (0.344g, 1.07 mmol), TEMPO (0.0152 g, 0.0970 mmol), and sodium bicarbonate (0.0815 g, 0.970 mmol) were combined in a 1-dram vial. Acetonitrile (1 mL) and H₂O (1 mL) were added to the vial. The vial was sealed with a PTFE/silicone-lined septum cap, and

the reaction was stirred at room temperature for 1 h. The reaction mixture was poured into 1 M HCl (10 mL) and extracted with CH₂Cl₃ (2 x 20 mL). The combined organic layers were concentrated. The crude product was purified by flash column silica gel chromatography (40:60 hexanes:EtOAc) to give (*R*)-3-(3-(methoxycarbonyl)-1*H*-indol-1-yl)-3-phenylpropanoic acid **14** as a pale yellow solid in 81% yield (0.126 g, 0.391 mmol). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 15.7 min (minor); t_R 21.9 min (major) [Chiracel AD-H (0.46 cm x 25 cm)(from Daicel Chemical Ind., Ltd.) hexane/*i*-PrOH, 90:10, 1.0 mL/min] to be 97%. [α]_D²⁶ = +4.6° (c 0.56, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ 3.34 (dd, *J* = 17.0, 7.0 Hz, 1H), 3.41 (dd, *J* = 17.0, 8.0 Hz, 1H), 3.91 (s, 3H), 6.08 (dd, *J* = 8.0, 7.0 Hz, 1H), 7.20-7.34 (m, 7H), 7.38 (d, *J* = 7.5 Hz, 1H), 8.03 (s, 1H), 8.17 (dd, *J* = 8.0, 1.5 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 39.9, 51.3, 56.5, 108.2, 110.7, 121.9, 122.4, 123.2, 126.4, 126.8, 128.7, 129.3, 131.9, 136.7, 138.4, 165.9, 174.4. HRMS (ESI) calcd. for C₁₉H₁₈NO₄⁺ [M+H]⁺ 324.1236, found 324.1241.

References

- (1) J. Waser, B. Gaspar, H. Nambu, E. M. Carreira, J. Am. Chem. Soc. 2006, 128, 11693-11712.
- (2) J. G. Rodríguez, A. Lafuente, P. García-Almaraz, J. Heterocyclic Chem. 2000, 37, 1281-1288.
- (3) M. Takemoto, Y. Iwakiri, and K. Tanaka, *Heterocycles* 2007, 72, 373-383.
- (4) R. Walter, S. Kirchner, R. Franz, U.S. Patent 6,399,804, 2002.
- (5) a) D. Polet, A. Alexakis, Org. Lett. 2005, 7, 1621; b) D. Polet, A. Alexakis, K. Tissot-Croset, C. Corminboeuf, K. Ditrich, Chem. Eur. J. 2006, 12, 3596.
- (6) D. Markovic, J. F. Hartwig, J. Am. Chem. Soc. 2007, 129, 11680.
- (7) L. M. Stanley, J. F. Hartwig, J. Am. Chem. Soc. 2009, 131, 8971.
- (8) D. J. Weix, M. Ueda, J. F. Hartwig, Org. Lett. 2009, 11, 2944.
- (9) M. A. Blanchette, W. Choy, J. T. Davis, A. P. Essenfeld, S. Masamune, W. R. Roush, T. Sakai, *Tetrahedron Lett.* **1984**, *25*, 2183.
- (10) R. Greenhouse, S. Jaime-Figueroa, L. Raptova, D. C. Reuter, K. A. Stein, R. J. Weikert, 3-Amino-1-arylpropyl Indoles as Monoamine Reuptake Inhibitors. Int. Pat. Appl. WO 2005/118539 A1, Dec 15, 2005.
- (11) P. E. Mahaney, A. T. Vu, C. C. McComas, P. Zhang, L. M. Nogle, W. L. Watts, A. Sarkahian, L. Leventhal, N. R. Sullivan, A. J. Uveges, E. J. Trybulski, *Bioorg. Med. Chem.* 2006, 14, 8455.

LS-II-110-1H-VXR500-1

expl s2pul

	SAMPLE	DEC	. & VT						
date	Jul 28 2009	dfrq	499.432						
solver	nt CDC13	dn	H1						
file /	/export/home/~	dpwr	25						
data/v	vxr500/Hartwi~	dof	0						
g/star	nleyl/LS-II-1~	dm	nnn						
10-1H-	-VXR500-1.fid	dmm	с						
ACÇ	QUISITION	dmf	200						
sfrq	499.432	dseq							
tn	H1	dres	1.0						
at	4.096	homo	n						
np	65536	PRO	CESSING						
SW	8000.0	1b	0.30						
fb	4000	wtfile							
bs	4	proc	ft						
tpwr	62	fn	not used						
pw	4.5	math	f				CHO		
d1	8.000								
tof	0	werr		I.		$\langle \rangle$			
nt	8	wexp	1			\mathbb{N} // \mathbb{N}			
ct	8	wbs	wft				[∕] Ph		
alock	n	wnt				N			
gain	not used					-			
	FLAGS					·	//		
il	n					Ph	> 5W		
in	n								
dp	У								
hs	nn								
1	DISPLAY								
sp	-1502.5								
wp	/999.8								
vs	80								
sc	250								
wC hamm	250								
is	32.00								
rf1	1502 7								
rfn	1302.7								
+h	7								
ins	1.000		í í		r f				
nm	ph						1 1	I	
	P		A. A						
								n	
	10	10			Л		, ,	0	
•	14	10		,	4		4	U	-z ppm
			Y Y	ᅛ ᅛᅛᆉᅛ	J L ₄ J				
		0.	. 95	5.072.10902 1.00	1.00				
			0.97	4.D704 1.00 1.0	00				

LS-IV-124-13C-VXR500-2

expl s2pul

	SAMPLE	1	DEC. & VT											
date	Jul 23 200	09 dfrq	499.4	432										
solve	ent CDC	L3 dn		H1										
file	/export/home	∍/~ dpwr		44										
data/	vxr500/Hart	vi∼ dof	-827	7.0										
g/sta	nleyl/LS-IV	-1~ dm	2	УУУ	-									
24-13	C-VXR500-2.	fi~ dmm		W	66 8.	961								
		d dmf	202	202	8.9 .81 .64	9								
AC	QUISITION	dseq			12 28 8.(12								
sfrq	125.59	96 dres	1	1.0	12	ļ								
tn	C	L3 homo		n	\sim									
at	1.02	24 1	PROCESSING											
np	655.	36 ID	. 1.	.00										
SW	32000	.0 wtfi	Le	c.								CHC)	
tb ,	1800	J0 proc		It				5			=			
bs		l6 fn	not us	sed				48	30		/ >	\rightarrow		
SS		1 math		I		11			981		< //	//		
tpwr	-)							6.5			12		
pw	1 0	.2 werr		12	n								า	
ai	1000	0 wexp			51	43	-	. .				IN · ·	•	
101 n+	1000	.0 wbs	v	MIL me	. 05	3 III	21 87 87	62				-		
nt ct	J. 1(29.2	12.6	23.	,		•		$\sim /$	5	
alock		n 1				7 ↓	-1: 12: 12:			600	Ph'		5W	/
gain	not us	h		28			ΖŢŢ.		1	1.6				
guin	FLACS	Ju		.4			///			9				
i1	1 2000	n	36	13:										
in		n	ö	ιï										
dp		v	87											
hs	1	n	-	F.										
	DISPLAY			22										
sp	-2200	.7		i i										
wp	31999	.0		\sim										
vs	10	00												
sc		0												
WC	2!	50												
hzmm	128.0	00			'									
is	500.0	00			,									
rfl	11900	. 4												
rfp	9698	.7												
th		9												
ins	100.00	00												
nm	ph													
lilah pangangangan Karipangangangan	fair ta bi she fan dhe he bhuta Martin bi she fan d	ر بالفادين والمراجع والمالية. مراجع ماريخ المراجع والمراجع المراجع المراجع المراجع المراجع المراجع المراجع الم	al, jhu stil had, attribut, attribut, adapter andra	ing halfi alamentan jing bitu aslasilikun na	incontinuous pietro dallo de la conte		and and the state of the state	Manakan Jili menadikan kutukan di sebatan sebatan sebatan sebatan sebatan sebatan sebatan sebatan sebatan sebat	in the state of the	da yu daliki wasiya 🖡 Jalak al Jalia yiyu wila dia	deliterane dela sumbra di dela di	t dill tille og anna forska forska skala det skala	hadada Medi na shi ci a	u human hara a k
and a second sec	فليطول المتقدما فيقدما فكما المرابع	ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	in i	1 1 1 1 1 1 1 1 1 1	ر بیش <i>ور باره را ا</i> ندیم میدونداند		n i i i i i i i i i i i i i i i i i i i		IIII a.usa sei a.sisteminin j	ى يا يا يا يا يا . يتبيس الأنظير الملغ الفي 1 قارم مايين	<u>يظور الارانية. فالأثر</u> في بالكرية. معدما	بيدي <u>وزور أنا الماري ور</u> يالية ويص لعا مر ادينا. ويدي وزور <u>الماري</u>	L L L L L L L L L L L L L L L L L L L	
·	220	200	180	160	140	120	1	00 80))	60	40	20	0	ppm

LS-IV-75-1H-VXR500

exp1 s2pul

LS-IV-75-13C-VXR500

exp1 s2pul

expl s2pul

s	SAMPLE	DEC	. & VT								
date	Jul 28 2009	dfra	499.432								
solvent	CDC13	dn									
file /e	export/home/~	dowr	25								
data/vx	r500/Hartwi~	dof	0							CO ₂ Me	
a/stanl	ev1/I.S_TV_1~	dm	nnn							/0021110	
97.5tuni 92_1W_W	XP500_1 fid	dmm									
32-11-0	ITSTUTON	dmf	200								
efra	100 132	dsog	200							1	
SILU	499.432	dreg	1.0						<u> </u>		
th at	HI 4 000	hama	1.0						I <u> </u>	N Q	
at	4.096	nomo	n								
np	65536	PROG	CESSING								
sw	8000.0	10	0.30						Ph	✓ OH	
1b	4000	wtille	-								
bs	4	proc	Ít								
tpwr	62	fn	not used								
pw	4.5	math	f								
d1	8.000										
tof	0	werr									
nt	8	wexp									
ct	8	wbs	wft								
alock	n	wnt									
gain	not used										
F	LAGS										
il	n										
in	n										
dp	У										
hs	nn										
DI	SPLAY										
sp	-1502.5										
WD	7999.8										
vs	151										
50	0										
WC	250										
hzmm	32 00										
112.000 ie	33 57										
15 rfl	1502 7										
111	1502.7										
110	0			- i				(.			
tn ir-	1 000			11		í					
ins	1.000				1						
nm p	n				N m		Λ.	. М			
			· · -	······	e_/ w	/\		س ۲ ۲	in the month in the second		
1	2	10		8		6	4		2	0	-2 ppm
				ŲŲ	ų ليا	Ų	U	لــا لـ			
				1 04	1 07	1 00	I	2 09			
				1.04	1.U/ 7 EO	1.00		2.03			
				0.99	1.50		3.0				

exp1 s2pul

