

Supporting Information

© Wiley-VCH 2008

69451 Weinheim, Germany

Synthesis of P-stereogenic Phosphinates and Phosphine Oxides by Asymmetric Ring Closing Metathesis.

James S. Harvey, Steven J. Malcolmson, Katherine S. Dunne, Simon J. Meek, Amber L. Thompson, Richard R. Schrock, Amir H. Hoveyda*, Véronique Gouverneur*

•	General Experimental procedures	2
•	Synthesis of starting materials	4
•	Synthesis of products	12
•	Tables of screening	23
•	Starting material NMRS	29
•	Product NMRS	59
•	Chiral GC traces	95
•	X-ray Single Crystal Diffraction Data	99

Experimental:

General experimental procedures

Reactions requiring anhydrous conditions were conducted in flame-dried apparatus under inert atmosphere (argon or nitrogen) using a Schlenk line. Syringes and needles for the transfer of moisture- or air-sensitive reagents were oven-dried and allowed to cool in a desiccator over self-indicating silica gel. Solvents were purified prior to use by passing through a column of activated alumina under inert atmosphere or by distillation according to standard procedures. Reactions were monitored by ¹H NMR, ³¹P NMR or thin layer chromatography. TLC was carried out on Merck aluminium-backed silica gel sheets and visualised with a UV lamp (254 nm) or by staining with KMnO₄. Flash chromatography was carried out using Merck silica gel (0.040-0.063 mm) and eluents as indicated.

NMR spectra were recorded in deuterated chloroform using Bruker or Varian spectrometers. ¹H and ¹³C spectra are internally referenced to residual undeuterated solvent and ³¹P spectra are referenced to H₃PO₄. ¹³C and ³¹P NMR spectra are protondecoupled. The following abbreviations are used to indicate multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, qu = quintet, m = multiplet, br = broad. Structural assignments are supported by phosphorus-decoupled ¹H, ¹³C-DEPT and 2D-COSY, HMQC spectra.

Melting points were recorded on a Gallenkamp Griffin apparatus and are uncorrected. IR spectra were recorded as thin films on NaCl plates using a Bruker Tensor 27 FT-IR spectrometer. Mass spectra were recorded on a Fisons Platform, Micromass LC-ToF or Bruker MicroTof (ESI) or on a Micromass GC-ToF (EI, CI, FI). Optical rotations were measured on a Perkin-Elmer 241 polarimeter.

Reactions using the molybdenum catalysts were carried out under an atmosphere of N_2 using a glovebox and all substrates were dried by azeotroping with benzene on a Schlenk line before use. THF and were Benzene distilled over sodium and benzophenone, DCM was dried by passing through a column of activated alumina.

Synthesis of substrates:

General procedure (A) synthesis of acyclic vinyl phosphates/phosphine oxides:

To an 0.25M solution of POCl₃ in Et₂O at -78°C was added dropwise an 0.25M solution of the relevant alcochol and Et₃N in Et₂O (0.25M) over 1h. The reaction mixture was allowed to warm to room temperature overnight. Following this, hexane was added to the reaction mixture and the NH₄Cl removed by filtration through celite. The reaction mix was then dried over sodium sulphate and concentrated *in vacuo*. The crude dichloride was used without further purification. The dichloride was redissolved in DCM (0.1M) and cooled to -78°C. After cooling a solution of vinyl magnesium bromide in THF (0.7M, in hexanes) was added dropwise and the reaction stirred at -78°C for 4h. The reaction was quenched by pouring the mixture on to water and the resulting emulsion broken by addition of 3N HCl. The aqueous layer was then extracted with DCM, dried over sodium sulphate and concentrated in vacuo to yield a yellow oil which was purified by flash chromatography.

General procedure (B) synthesis of acyclic allylic phosphates/phosphine oxides:

A solution of HMDS (2equiv) and ammonium hypophosphate (1 equiv) was heated to 120°C for 4h. The reaction mixture was allowed to cool to room temperature and a solution of the allylic/homoallylic bromide in toluene (1M) added slowly. The reaction was again heated to 120°C for 12h, after which it was allowed to cool to room temperature and solution of 1:1 DCM:MeOH added and stirred at 0°C for 20 min. The mixture was then concentrated *in vacuo* and redissolved in DCM and washed with 3N HCl. The organic layers were combined and dried over sodium

sulphate and concentrated in vacuo to yield the phosphinic acid which was used without purification, (83% yield). This was dissolved in DCM (0.2M) cooled to 0°C and solution of oxalyl chloride (3equiv) in DCM added dropwise and a drop of DMF added. The reaction was then stirred at room temperature for 30 min. After this the solvent was removed *in vacuo* and the pale oil placed on the vac pump for 1h to remove any excess oxalyl chloride. The phosphonic acid chloride was then redisolved in DCM (0.2M), cooled to 0°C and a solution of the alcohol (3 equiv), Et₃N (3equiv) and DMAP added dropwise. The reaction was then allowed to warm to room temperature and stirred for 4h before being quenched by pouring on to water. The aqueous layer was extracted three times with DCM and the combined organics dried over sodium sulphate and concentrated *in vacuo*.

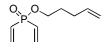
But-3-en-1-yl (2-methylprop-1-en-1-yl)(1E)-prop-1-en-1ylphosphinate (6)

(*E*,*E*): Synthesized by general procedure (**A**): 1.32 g (30%); $R_{\rm f}$: 0.45 (EtOAc/MeOH 19:1); ¹**H** NMR (400 MHz, CDCl₃): **d** (**ppm**) 6.45 (2H, ddq, ³ $J_{(\rm H,P)}$ 45.0, ³ $J_{(\rm H,H)}$ 13.0, ³ $J_{(\rm H,H)}$ 7.2 Hz, =CHMe), 5.80 (1H, ddt, ³ $J_{(\rm H,H)}$ 17.1, ³ $J_{(\rm H,H)}$ 10.3, ³ $J_{(\rm H,H)}$ 6.7 Hz, CH=CH₂), 5.67 (2H, ddq, ² $J_{(\rm H,P)}$ 20.4, ³ $J_{(\rm H,H)}$ 13.0, ⁴ $J_{(\rm H,H)}$ 1.6 Hz, PCH), 5.06-5.14 (2H, m, =CH₂), 3.99 (2H, dt, ³ $J_{(\rm H,P)}$ 6.9, ³ $J_{(\rm H,H)}$ 6.9 Hz, POCH₂), 2.43 (2H, dddt, ³ $J_{(\rm H,H)}$ 1.6 Hz, CH₃); ¹³C NMR (101 MHz, CDCl₃) **d** (**ppm**) 147.6 (d, ² $J_{(\rm C,P)}$ 3.2 Hz, CHMe), 133.9 (s, CH=CH₂), 122.4 (d, ¹ $J_{(\rm C,P)}$ 131.7 Hz, PCH), 117.3 (s, =CH₂), 62.9 (d, ² $J_{(\rm C,P)}$ 5.7 Hz, POCH₂), 35.0 (d, ³ $J_{(\rm C,P)}$ 6.5 Hz, POCH₂CH₂), 16.8 (d, ³ $J_{(\rm C,P)}$ 8.6 Hz, CH₃); ³¹P

NMR (162 MHz, CDCl₃): d 29.1 ppm; IR (film): *n*(cm⁻¹) 1640 (C=C), 1211 (P=O);

HRMS (**ES**+): *m/z* calcd for C₁₀H₁₈O₂P [M+H]⁺: 201.1044; found: 201.1041

Allyl (2-methylprop-1-en-1-yl)(1E)-prop-1-en-ylphosphinate (8)



Prepared by method (**A**) as a mixture of isomers (*E*,*E*): 1.11 g (33 %); $R_{\rm f}$: 0.15 (EtOAc); ¹**H** NMR (400 MHz, CDCl₃): **d**(**ppm**) 6.72 (2H, ddq, ³ $J_{\rm (H,P)}$ 19.9, ³ $J_{\rm (H,H)}$ 17.0, ³ $J_{\rm (H,H)}$ 6.6 Hz =C*H*Me), 5.78 (1H, ddt, ³ $J_{\rm (H,H)}$ 17.1, ³ $J_{\rm (H,H)}$ 10.3, ³ $J_{\rm (H,H)}$ 6.7 Hz C*H*=CH₂), 5.74 (2H, ddq, ² $J_{\rm (H,P)}$ 22.7, ³ $J_{\rm (H,H)}$ 17.0, ⁴ $J_{\rm (H,H)}$ 1.7 Hz PCH), 5.11 (1H, ddt, ³ $J_{\rm (H,H)}$ 17.1, ² $J_{\rm (H,H)}$ 1.6, ⁴ $J_{\rm (H,H)}$ 1.6 Hz =C $H_{\rm cis}$ H_{trans}), 5.08 (1H, ddt, ³ $J_{\rm (H,H)}$ 10.3, ² $J_{\rm (H,H)}$ 1.6, ⁴ $J_{\rm (H,H)}$ 1.6 Hz =CH_{cis}H_{trans}), 5.08 (1H, ddt, ³ $J_{\rm (H,H)}$ 10.3, ² $J_{\rm (H,H)}$ 1.6, ⁴ $J_{\rm (H,H)}$ 1.7 Hz CH₃); ¹³C NMR (101 MHz, CDCl₃) **d** (ppm) 147.9 (d, ² $J_{\rm (C,P)}$ 4.5 Hz, *C*HMe), 133.8 (s, *C*H=CH₂), 122.3 (d, ¹ $J_{\rm (C,P)}$ 136.7 Hz, PCH), 117.3 (s, =CH₂), 63.1 (d, ² $J_{\rm (C,P)}$ 5.8 Hz, POCH₂), 20.1 ppm (d, ³ $J_{\rm (C,P)}$ 20.4 Hz, CH₃); ³¹P NMR (162 MHz, CDCl₃): **d** 29.6 ppm; IR (film): *n* (cm⁻¹) 1640 (C=C), 1221 (P=O); HRMS (ES+): *m*/z calcd for C₉H₁₆O₂P [M+H]⁺: 187.0888; found: 187.0898.

But-3-enyl divinylphosphinate (9):

Synthesized following general procedure (**A**) to yield **9** as a pale yellow oil. 1.3 g (86%); $R_{\rm f}$: 0.3 (EtOAc/MeOH 19:1); ¹H NMR (400 MHz, CDCl₃): **d** (ppm) 6.10-6.36 (6H, m, PCH=CH₂); 5.79 (1H, ddt, ³ $J_{\rm (H,H)}$ 6.8, ³ $J_{\rm (H,H)}$ 10.3, ³ $J_{\rm (H,H)}$ 17.1 Hz, PO(CH₂)₂CH), 5.07-5.16 (2H, m PO(CH₂)₂CH=CH₂), 4.02 (2H, dt, ³ $J_{\rm (H,P)}$ 6.8, ³ $J_{\rm (H,H)}$ 6.8 Hz, POCH₂), 2.44 (2H, dddt, ³ $J_{\rm (H,H)}$ 6.7, ³ $J_{\rm (H,H)}$ 6.7, ⁴ $J_{\rm (H,H)}$ 1.3, ⁴ $J_{\rm (H,H)}$ 1.3 Hz, POCH₂CH₂); ¹³C NMR (101 MHz, CDCl₃): d (ppm) 135.3 (d, ² $J_{(C,P)}$ 1.5 Hz, PCH=CH₂); 133.5 (s, PO(CH₂)₂CH), 129.0 (d, ¹ $J_{(C,P)}$ 131.5 Hz, PCH=CH₂), 117.6 (s, PO(CH₂)₂CH=CH₂), 63.6 (d, ² $J_{(C,P)}$ 6.2 Hz, POCH₂), 34.9 ppm (d, ³ $J_{(C,P)}$ 6.5 Hz, POCH₂CH₂); ³¹P NMR (162 MHz, CDCl₃): d 28.8 ppm; IR (film): *n*(cm-1) 1645 and 1600 (C=C), 1214 (P=O); HRMS (ES+): *m*/*z* calcd for C₈H₁₄O₂P [M+H]⁺: 173.0731; found: 173.0727.

Pent-4-enyl divinylphosphinate (10):

Synthesized following general procedure (**A**) from POCl₃ (1 mL, 10.7 mmol) and 5pentene-1-ol (1.1 mL, 10.7 mmol) to yield **10** as a pale yellow oil. 1.3g (65%); R_f : 0.4 (EtOAc), ¹**H NMR (400MHz, CDCl₃) d (ppm)** 6.15 (6H, m, $CH_2=CHP$), 5.70 (1H, m, $CH_2=CH$), 4.95 (2H, m, $CH=CH_2$), 3.91 (2H, dt, ³ $J_{(H,P)}$ 6.8, ³ $J_{(H,H)}$, 6.8Hz, POC H_2), 2.11 (2H, m, POCH₂CH₂CH₂), 21.7 (2H, m, POCH₂CH₂), ¹³**C NMR (100MHz, CDCl₃) d (ppm)** 137.2 (s, $CH_2CH=CH_2$), 135.2 (s, PCH= CH_2), 129.0 (d, ¹ $J_{(C,P)}$ 131Hz, PCH= CH_2), 115.3 (s, $CH_2CH=CH_2$), 63.8 (d, ³ $J_{(C,P)}$ 6Hz POCH₂), 29.6 (2C, m, POCH₂CH₂CH₂), ³¹**P NMR (161 MHz, CDCl₃)** 28.8 ppm, ; **IR (film):** *m* **(cm⁻¹) 1641 and 1607 (C=C), 1220 (P=O); HRMS (ES+):** *m*/*z* calcd for C₉H₁₅O₂PNa [M+Na]⁺: 209.0707; found 209.0702.

Pent-4-en-1-yl di-(1E)-prop-1-en-1-ylphospinate (11)

Prepared by method (A) as a mixture of isomers (*E*,*E*): 895 mg (35 %) ¹H NMR (400 MHz, CDCl₃): **d** (ppm) 6.54 (2H, ddq, ${}^{3}J_{(H,P)}$ 45.0, ${}^{3}J_{(H,H)}$ 15.0, ${}^{3}J_{(H,H)}$ 6.4 Hz, =CHMe), 5.79 (1H, ddt, ${}^{3}J_{(H,H)}$ 17.1, ${}^{3}J_{(H,H)}$ 9.3, ${}^{3}J_{(H,H)}$ 6.0 Hz, CH=CH₂), 5.67 (ddq, ${}^{2}J_{(H,P)}$ 20.0, ${}^{3}J_{(H,H)}$ 12.0, ${}^{4}J_{(H,H)}$ 1.2 Hz, PCH), 5.06-5.14 (2H, m, =CH₂), 3.95 (2H, dt, ${}^{3}J_{(H,P)}$ 6.9 Hz, POCH₂), 2.14 (2H, dddt, ${}^{3}J_{(H,H)}$ 7.2 x 2, ${}^{4}J_{(H,H)}$ 1.2 Hz x 2, POCH₂CH₂), 2.08 ppm (6H, ddd, ${}^{3}J_{(H,H)}$ 7.2, ${}^{3}J_{(H,P)}$ 3.1, ${}^{4}J_{(H,H)}$ 1.8 Hz, CH₃); 1.77 (2H, tt, ${}^{3}J_{(H,H)}$ 7Hz x2, POCH₂CH₂) 13 C NMR (101 MHz, CDCl₃) d (ppm) 147.6 (d, ${}^{2}J_{(C,P)}$ 3.2 Hz, CHMe), 137.4 (s, CH=CH₂), 122.9 (d, ${}^{1}J_{(C,P)}$ 132.1 Hz, PCH), 115.3 (s, =CH₂), 62.9 (d, ${}^{2}J_{(C,P)}$ 5.7 Hz, POCH₂), 29.0 (s, POCH₂CH₂), 29.6 (s, POCH₂CH₂) 16.80 (d, ${}^{3}J_{(C,P)}$ 8.6 Hz, CH₃); 31 P NMR (162 MHz, CDCl₃): d 29.1 ppm; IR (film): *n* (cm⁻¹)1622 (C=C), 1213 (P=O); HRMS (ES+): *m*/z calcd for C₁₁H₂₀O₂P [M+H]⁺: 215.1201; found: 215.1195

Allyl bis(2-methylallyl)phosphinate (12):

Synthesized according to general procedure (**B**) to yield **12** as a pale yellow oil 750mg (88%) $R_f = 0.4$ (1:1 DCM: EtOAc) ¹**H** (**400MHz, CDCl₃**) **d** (**ppm**) 5.99 (1H, ddt, ³ $J_{(H,H)}$ 17.0, 11.0, 5.0 Hz CH=CH₂), 5.35 (1H, dd, ³ $J_{(H,Htrans)}$ 17.0 ² $J_{(H,H)}$ 1.6 Hz, CH=CH_{2trans}), 5.22 (1H, dd, ³ $J_{(H,Hcis)}$ 11.0, ² $J_{(H,H)}$ 1.6 Hz, CH=CH_{2cis}), 4.97 (2H, td, ⁴ $J_{(H,H)}$ 3.2, ² $J_{(H,H)}$ 1.2 Hz, MeC=CH_{2(trans)}), 4.89 (2H, br d, ⁴ $J_{(H,H)}$ 3.9 Hz, MeC=CH_{2(cis)}), 4.55 (2H, dd, ³ $J_{(P,H)}$ 5.7, ³ $J_{(H,H)}$ 5.0, POCH₂), 2.63 (4H, d, ² $J_{(P,H)}$ 16.8 Hz, P(CH₂)₂), 1.91 (6H, s, P(CH₂CM*e*)₂ ¹³C (**100MHz, CDCl₃**) **d** (**ppm**) 136.7 (d, ² $J_{(C,P)}$ 10.0 Hz, CH₃=CH₂), 133.4 (d, ³ $J_{(C,P)}$ 6.2 Hz, CH=CH₂), 117.5 (s, CH=CH₂), 115.6 (d, ³ $J_{(C,P)}$ 10.5 Hz MeC=CH₂), 65.1 (d, ² $J_{(C,P)}$ 6.2 Hz, POCH₂), 37.7 (d, ² $J_{(P,C)}$

86.2 Hz, PCH₂), 24.1 (d, ³*J*_(C,P) 2.4 Hz, *C*H₃) ³¹P (161 MHz, CDCl₃) **d** 50.2ppm IR (film) **n** (cm⁻¹) 1664 (C=C), 1228 (P=O), **HRMS** (ES+): *m*/*z* calc for C₁₁H₁₉O₂PNa [M+Na]⁺: 237.1020; found: 237.1016

But-3-enyl bis(2-methylallyl)phosphinate (13):

Synthesised according to general procedure (**B**) to yield **13** as a pale yellow oil. 680 mg, (74%) $R_f=0.4$ (1:1 DCM:EtOAc) ¹H NMR (400MHz, CDCl₃) **d** (ppm) 5.65 (1H, ddt, ³ $J_{(H,H)}$ 16.0, 10.0, 6.0 Hz, CH₂=CH), 4.96 (2H, m, CH₂=CH), 4.82 (1H, dt ² $J_{(H,H)}$ 4.9, ⁴ $J_{(H,H)}$ 1.1Hz, Me=CH_{2(trans})), 4.74 (1H, d, ² $J_{(H,H)}$ 4.9 Hz, Me=CH_{2(cis)}), 3.94 (2H, q, ³ $J_{(H,H)}$ 7.1Hz POCH₂), 2.46 (4H, d, ³ $J_{(H,P)}$ 17.0Hz, PCH₂) 2.27(2H, ddt, ³ $J_{(H,H)}$ 6.6, ⁴ $J_{(H,P)}$ 1.1Hz, POCH₂CH₂), 1.75 (6H, s, *Me*), ¹³C NMR (100MHz, CDCl₃) **d** (ppm) 136.0 (d, ² $J_{(C,P)}$ 8.3Hz, MeC=CH₂), 133 (s, CH=CH₂), 117 (s, CH=CH₂), 115 (d, ³ $J_{(C,P)}$, 10.3Hz, CH₂=CMe), 63 (d, ² $J_{(C,P)}$ 7.3Hz, POCH₂), 38 (d, ¹ $J_{(C,P)}$, 84Hz, PCH₂), 35 (d, ³ $J_{(C,P)}$ 5.9Hz, POCH₂CH₂), 24 (s, *Me*), ³¹P NMR (162MHz, CDCl₃) **d** (ppm) 49.1ppm, IR (film) (cm⁻¹) **n** 1643 (C=C), 1228 (P=O), HRMS (ES): *m*/z calc for C₁₂H₂₂O₂P [M+H]⁺: 229.1357; found: 229.1352.

Allylbis(2-methylallyl)phosphine oxide (22):

P. P.

Synthesized according to general procedure (**B**), to yield **22** as a white solid. 480 mg (61%); $R_{\rm f}$: 0.2 (EtOAc); m.p. 58-59 °C; ¹H NMR (400 MHz, CDCl₃): **d** (ppm) 5.83

(1H, m, CH=CH₂), 5.20-5.27 (2H, m, CH=CH₂), 5.00 (2H, m, CMe=CH_AH_B), 4.84 (2H, m, CMe=CH_AH_B), 2.69 (2H dd, ${}^{2}J_{(H,P)}$ 15.6, ${}^{3}J_{(H,H)}$ 7.6 Hz; PCH₂CH), 2.60 (2H dd, ${}^{2}J_{(H,P)}$ 14.8, ${}^{2}J_{(H,H)}$ 13.7 Hz; PCH_AH_BCMe), 2.54 (2H, dd, ${}^{2}J_{(H,P)}$ 14.4, ${}^{2}J_{(H,H)}$ 13.7 Hz; PCH_AH_BCMe), 2.54 (2H, dd, ${}^{2}J_{(H,P)}$ 14.4, ${}^{2}J_{(H,H)}$ 13.7 Hz; PCH_AH_BCMe), 1.94 ppm (6H, s, CH₃), ¹³C NMR (101 MHz, CDCl₃): **d** (**ppm**) 137.3 (d, ${}^{2}J_{(C,P)}$ 9.3 Hz, PCH₂CMe), 128.2 (d, ${}^{2}J_{(C,P)}$ 8.0 Hz, PCH₂CH), 120.6 (d, ${}^{3}J_{(C,P)}$ 11.5 Hz, CH=CH₂), 115.5 (d, ${}^{3}J_{(C,P)}$ 9.6 Hz, CMe=CH₂), 37.3 (d, ${}^{1}J_{(C,P)}$ 61.7 Hz, PCH₂CMe), 33.8 (d, ${}^{1}J_{(C,P)}$ 63.0 Hz, PCH₂CH), 24.5 ppm (d, ${}^{3}J_{(C,P)}$ 1.8 Hz, CH₃), ³¹P NMR (162 MHz, CDCl₃): **d** 41.5 ppm; IR (flim): **n** (cm⁻¹) 1640 (C=C), 1176 (P=O); **HRMS (ES+): m/z** calc for C₁₁H₂₀OP [M+H]⁺: 199.1252; found: 199.1254.

Allyl bis(2-methylallyl)phosphine oxide (23):

Synthesised according to general procedure (**B**) to yield **23** as a colourless oil. 895 mg, (53%), $R_f=0.3$ (9:1 EtOAc:MeOH) ¹**H** NMR (400MHz, CDCl₃) **d** (ppm) 5.80 (1H, ddt, ${}^{3}J_{(H,H)}$ 16.6, 9.4, 6.1 Hz CH=CH₂) 4.88 (2H, dq, ${}^{2}J_{(H,H)}$ 17.6, ${}^{3}J_{(H,H)}$ 1.4 Hz, CH=CH_{2trans}), 4.82 (2H, dq, ${}^{3}J_{(H,H)}$ 10.8, ${}^{2}J_{(H,H)}$ 1.4 Hz, CH=CH_{2cis}), 4.78 (2H, dt, ${}^{2}J_{(H,H)}$ 4.0, ${}^{3}J_{(H,H)}$ 1.4 Hz, MeC=CH_{2a}), 4.64 (2H, d, ${}^{2}J_{(H,H)}$ 4.0 Hz MeC=CH_{2b}), 2.42 (2H, dd, ${}^{2}J_{(H,P)}$ 14.1, ${}^{2}J_{(H,H)}$ 14.1 Hz, PCH_{2a}C=CMe), 2.35 (2H, dd, ${}^{2}J_{(H,P)}$ 13.7, ${}^{2}J_{(H,H)}$ 13.7 Hz, PCH_{2b}C=CMe), 2.17 (2H, m, PCH₂CH₂), 1.75 (6H, s, CH₃), 1.64 (2H, m, PCH₂CH₂), 115 (d, ${}^{3}J_{(C,P)}$ 11 Hz MeC=CH₂), 114 (s, CH=CH₂) 38 (d, ${}^{1}J_{(C,P)}$ 56 Hz, PCH₂C=CMe), 26 (d, ${}^{1}J_{(C,P)}$ 63 Hz, PCH₂CH₂), 25 (d, ${}^{3}J_{(C,P)}$ 16 Hz, PCH₂CH₂), 24 (s, CH₃), 31 P NMR (161MHz, CDCl₃) **d** 47.0 ppm, IR (film) **n** (cm⁻¹) 1641 (C=C), 1191 (P=O), **HRMS (ES+):** *m*/*z* calc for C₁₂H₂₁OPNa [M+H]⁺: 235.1228; found: 235.1222

Bis(2-methylprop-2-en-1yl)(pent-4-en-1-yl) phosphine oxide (24)

Synthesised according to general procedure (**B**) to yield **24** as a colourless oil. 485 mg, (37%), $R_f=0.1$ (EtOAc) ¹H (400MHz, CDCl₃) **d** (ppm) 5.70 (1H, ddt, ³ $J_{(H,H)}$ 16.1, 10.3, 4.2 Hz, CH=CH₂), 4.85-5.00 (4H, m, C=CH_{2a}, CH=CH₂), 4.74 (2H, d ² $J_{(H,H)}$ 4.02Hz, C=CH_{2b}), 2.41 (2H, dd, ² $J_{(H,P)}$ 14.1, ² $J_{(H,H)}$ 14.1 Hz, PCH₂C=CMe), 2.34 (2H, dd, ³ $J_{(H,H)}$ 14.1, 14.1 Hz), 1.96 (2H, dd, ² $J_{(H,P)}$ 6.5, ² $J_{(H,H)}$ 6.5 Hz, PCH₂CH₂), 1.81 (7H, m, PCH₂C=CMe, PCH₂CH_{2a}), 1.61 (3H, m, PCH₂CH_{2b}). ¹³C (100Mhz, CDCl₃) **d** (ppm) 158.9 (s, *C*=CMe), 137.1 (s, *C*H=CH₂), 115.7 (s, CH=CH₂), 115.1 (d, ³ $J_{(C,P)}$ 9 Hz, PCH₂C=CH₂), 38.1 (d, ² $J_{(P,C)}$ 60 Hz, PCH₂C=CH₂), 34.8 (d, ³ $J_{(P,C)}$ 15 Hz, PCH₂CH₂), 26.8 (d, ² $J_{(C,P)}$ 67 Hz, PCH₂CH₂), 24.3 (d, ³ $J_{(P,C)}$ 2hz, *C*H₃) 21.0 (d, ³ $J_{(P,C)}$ 3hz, PCH₂CH₂CH₂)), ³¹P (161MHz, CDCl₃) **d** 43.6 ppm IR **n** (cm⁻¹) 1641 (C=C), 1193 (P=O), **HRMS (ES+):** *m*/*z* calc for C₁₃H₂₃OPNa [M+Na]⁺: 249.1384; found: 249.1379.

But-3-en-1-yl[di-(1E)-prop-1-en-1-yl]phosphine oxide (29)

Prepared method **(A)** 800 by mg (50 %); R_f: 0.37 (EtOAc:MeOH 9:1); ¹H NMR (400 MHz, CDCl₃): **d**(ppm) 6.26 (m, =CHMe), 5.46 (2H, m, PCH=CHMe, PCH₂CH₂CH), 4.66 (1H, dq, ${}^{3}J_{(H,H)}$ 16.7, ${}^{4}J_{(\text{H,H})}$ 1.5 Hz, =CH_{2(trans)}), 4.60 (1H, dm, ${}^{3}J_{(\text{H,H})}$ 9.7 Hz =CH_{2(cis)}) 1.92 (2H, m, PCH₂), 1.55 (3H, dd, ${}^{3}J_{(H,H)}$ 2.0, ${}^{4}J_{(H,P)}$ 2.0 Hz, CH₃) 1.53 (3H, dd, ${}^{3}J_{(H,H)}$ 2.0, ${}^{4}J_{(P,H)}$ 2.0 Hz; CH₃), 1.12 (2H, m, PCH₂CH₂) ¹³C NMR (101 MHz, CDCl₃) **d** (ppm) 145.7 (d, ²J_(C,P) 1.7 Hz, CHMe), 137.2 (d, ${}^{2}J_{(P,C)}$ 15.2 Hz, CH=CH₂), 123.2 (d, ${}^{1}J_{(C,P)}$ 98.7 Hz, PCH), 114.6 (s, =CH₂), 29.4 (d, ${}^{1}J_{(C,P)}$ 73.6 Hz, PCH₂), 25.1 (d, ${}^{2}J_{(C,P)}$ 3.4 Hz, PCH₂CH₂), 19.9 (d, ³*J*_(P,C) 17.5 Hz, *C*H₃); ³¹P NMR (162 MHz, CDCl₃): **d** 25.4 ppm; IR (film): **n** (cm⁻¹) 1634 (C=C), 1164 cm⁻¹ (P=O); HRMS (ES+): m/z calcd for C₉H₁₆O₂PNa [M+H]⁺: 207.0915; found: 207.0909

General procedure for RCM with achiral catalysts (C):

To an 0.02M solution of phosphate in DCM was added 2mol% Grubbs II and the reaction heated to reflux for 2h. The reaction mix was then concentrated in vacuo to yield a dark drown oil which was purified by flash chromatography to yield the desired product.

General procedure for ARCM with chiral molybdenum catalysts (D):

A one-dram vial containing a stirrer bar was charged with the 10mol% catalyst and diluted with benzene (0.2ml) in an N₂-filled glove box. To this, a solution of substrate (10mg) in benzene (0.2ml) was added dropwise. The vial was sealed with Teflon-lined cap and reaction stirred at 60° C for 12h. The vessel was then removed from the glove-box and quenched by exposure to air. The solution was concentrated in vacuo to yield a green oil which was purified by flash chromatography (EtOAc).

2-(*E*)-Propenyl-5,6-dihydro-1,2-oxaphosphorin 2-oxide (7)

Synthesised according to general procedure **C** from **6** (40mg, 0.20mmol) and Grubbs II (4mg, 0.0045mmol). Purification by flash chromatography (EtOAc:MeOH 9:1) to yield **7** as a dark brown oil (25mg) Yield (80%) ¹**H** NMR (400MHz, CDCl₃) **d** (ppm) 6.70 (2H, m, CH=CHMe, CH=CHCH₂), 5.90 (1H, dddd, ${}^{2}J_{(P,H)}$ 23.0, ${}^{3}J_{(H,H)}$ 11.5, 1.4, 2.3 Hz, PCH=CH), 5.62 (1H, ddq, ${}^{2}J_{(P,H)}$ 23.3, ${}^{3}J_{(H,H)}$ 17.0, 1.5 Hz, PCH=CHMe), 4.38 (1H, m, POCH₂a), 4.14 (1H, m, POCH₂b), 2.40 (1H, m, POCH₂CH₂a), 2.20 (1H, m, POCH₂CH₂b), 1.83 (3H, dt, ${}^{3}J_{(P,H)}$ 6.5, ${}^{3}J_{(H,H)}$ 2 Hz, PCH=CHMe) **1**³C (100MHz, CDCl₃) **d** (ppm) 150.0 (d, ${}^{2}J_{(P,C)}$ 5 Hz, PCH, =CH), 145.9 (d, ${}^{2}J_{(P,C)}$ 2 Hz, PCH=CHMe), 122.2 (d, ${}^{1}J_{(C,P)}$ 48 Hz, PCH=CH), 120.1 (d, ${}^{1}J_{(C,P)}$ 18.0 Hz, PCH=CHMe), 62.6 (d, ${}^{2}J_{(C,P)}$ 7.0 Hz, POCH₂), 27.2 (d, ${}^{3}J_{(C,P)}$ 11 Hz, POCH₂CH₂), 20.1 (d, ${}^{3}J_{(C,P)}$ 22 Hz, PCH=CMe) **3**¹P NMR (161Mhz, CDCl₃) **d** 21.0 ppm. **IR** (film): **?** (cm⁻¹) 1607 (C=C), 1218 (P=O) **HRMS (ES+)**: *m/z* calc for C₇H₁₁O₂PNa [M+Na]⁺: 181.0394; found: 181.0393. Enatiomers separated by chiral GC using a CDGTA column at 130°C and 20psi. Retention times: 143.8mins and 160.3mins 60%ee.

2-[(1*E*)-prop-1-en-1-yl]-2,5-dihydro-1,2-oxaphosphole 2-oxide (14)

Synthesised according to general proceedure **C** from **8** (400 mg, 2.15 mmol) and Grubbs II (37 mg, 0.04 mmol) Purification by flash chromatography (EtOAc/MeOH 9:1) afforded **14** as a brown oil. Yield: 252 mg (82%); R_f :0.2 (EtOAc/MeOH 9:1); ¹**H NMR (400 MHz, CDCl₃): d (ppm)** 8.86 (1H, dddd, ³ $J_{(H,P)}$ 38.2, ³ $J_{(H,H)}$ 8.1, ³ $J_{(H,H)}$ 2.3 Hz × 2, PCH=CH), 6.12-6.38 (4H m, PCH=CH₂ and PCH=CH), 5.03 (ddd, ² $J_{(H,H)}$ 16.2, ³ $J_{(H,H)}$ 1.6, ³ $J_{(H,P)}$ 1.6 Hz, 1H; POCH_AH_B), 4.83 (4H, dddd, ² $J_{(H,H)}$ 16.2, ³ $J_{(H,P)}$ 10.8, ³ $J_{(H,H)}$ 1.6, ⁴ $J_{(H,P)}$ 1.6 Hz, POCH_AH_B); ¹³C NMR (**101 MHz, CDCl₃**): **d (ppm)** 149.6 (d, ² $J_{(C,P)}$ 4.1 Hz, PCH=CHMe), 147.5 (d, ² $J_{(C,P)}$ 13.3 Hz, PC=CH), 122.0 (d, ¹ $J_{(C,P)}$ 75.5 Hz, PCH=CHMe), 120.7 (d, ¹ $J_{(C,P)}$ 50.3 Hz, PCH=CH), 73.5 ppm (d, ² $J_{(C,P)}$ 5.8 Hz, POCH₂) 19.9 (d, ³ $J_{(C,P)}$ 21.5Hz); ³¹P NMR (**162 MHz, CDCl₃**): **d** 53.7 ppm; **IR (film): n (cm⁻¹)**1645 (C=C), 1217 (P=O); **HRMS (ES+):** *m*/z calcd for C₅H₈O₂PNa [M+Na]⁺: 167.0238; found: 167.0232.

2-vinyl-5,6-dihydro-2H-1,2-oxaphosphine 2-oxide (15):

Syntheised according to general procedure **C** from **9** (104mg, 0.60 mmol) and Grubbs II (10 mg, 0.012 mmol). Purification by flash chromatography (EtOAc/MeOH 19:1) afforded **15** as a brown oil. Yield: 73 mg (85%); R_f 0.1 (EtOAc/MeOH 19:1); ¹**H NMR (400 MHz, CDCl₃): d (ppm)** 6.84 (1H, ddddd, ³ $J_{(H,P)}$ 37.8, ³ $J_{(H,H)}$ 12.6, ³ $J_{(H,H)}$ 5.4, ³ $J_{(H,H)}$ 2.8 Hz, ⁴ $J_{(H,H)}$ 1.0 Hz, PCH=CH), 6.04-6.38 (3H, m, PCH=CH₂), 6.02 (1H, dddd, ² $J_{(H,P)}$ 22.9, ³ $J_{(H,H)}$ 12.6, ⁴ $J_{(H,H)}$ 2.7, ⁴ $J_{(H,H)}$ 1.4 Hz, PCH=CH), 4.47 (1H, dddd, ³ $J_{(H,P)}$ 11.5, ³ $J_{(H,H)}$ 10.0, ³ $J_{(H,P)}$ 8.6, ² $J_{(H,H)}$ 3.5 Hz, POCH_AH_B), 4.26 (1H, ddddd, ³ $J_{(H,P)}$ 16.7, ³ $J_{(H,H)}$ 11.5, ³ $J_{(H,H)}$ 5.2, ² $J_{(H,H)}$ 3.2, ⁴ $J_{(H,H)}$ 1.0, POCH_AH_B), 2.45-2.56 (1H, m, POCH₂CH_AH_B), 2.28-2.37 ppm (1H, m, POCH₂CH_AH_B); ¹³C NMR (100 MHz,

CDCl₃): d (**ppm**) 146.7 (d, ${}^{2}J_{(C,P)}$ 1.2 Hz, PCH=*C*H), 136.0 (d, ${}^{2}J_{(C,P)}$ 2.4 Hz, PCH=*C*H₂), 129.0 (d, ${}^{1}J_{(C,P)}$ 138.1 Hz, PCH=CH₂), 120.6 (d, ${}^{1}J_{(C,P)}$ 119.4 Hz, PCH=CH₂), 62.8 (d, ${}^{2}J_{(C,P)}$ 6.4 Hz, POCH₂), 27.2 (d, ${}^{3}J_{(C,P)}$ 10.8 Hz, POCH₂CH₂); ³¹**P NMR (162 MHz, CDCl₃): d** 21.7 ppm; **IR (film):** *n* (cm⁻¹) 1614 (C=C), 1221 (P=O); **HRMS (ES+):** *m*/*z* calcd for C₆H₁₀O₂P [M+H]⁺: 145.0418; found: 145.0418. Enatiomers separated by chiral GC using a β-dex column at 140°C and 15psi. Retention times: 38.2mins and 39.1mins 86%ee.

2-vinyl-2,5,6,7-tetrahydro-1,2-oxaphosphine 2-oxide (16)

Synthesised according to general procedure **C** to yield **16** as a dark brown oil. Yield 366mg (86%) ¹**H NMR (400MHz, CDCl₃) d (ppm)** 6.61 (1H, m, PCH=C*H*), 6.10 (3H, m, PC*H*=C*H*₂), 5.85 (1H, m, PC*H*=CH), 4.40 (1H, m, POCH₂a), 4.05 (1H, m, POCH₂b), 2.41 (2H, m, PCH=CHCH₂C*H*₂), 2.21 (1H, m, POCH₂C*H*₂a), 1.95 (1H, m, POCH₂C*H*₂b), ¹³**C NMR (100MHz, CDCl₃) d (ppm)** 148.1 (s, PCH=CH₂), 134.1 (d, ${}^{2}J_{(C,P)}$ 2.1 Hz, PCH=CH), 130.0 (d, ${}^{1}J_{(C,P)}$ 130 Hz, PCH=CH₂), 123.2 (d, ${}^{1}J_{(C,P)}$ 120 Hz, PCH=CH), 66.0 (d, ${}^{2}J_{(C,P)}$ 6 Hz, POCH₂), 28.8 (m, POCH₂CH₂CH₂), ³¹**P NMR(161Mhz, CDCl₃) d** 31.5ppm, **IR (film):** *n* (cm⁻¹)1640 (C=C), 1211 (P=O) **HRMS (ES+):** *m/z* calc for C₇H₁₁O₂PNa [M+Na]⁺: 181.0394; found: 181.0389 . Enantiomers separated by chiral GC using a β–dex column at 140°C and 15psi. Retention times: 39.8mins and 40.9mins 73% ee.

2-[(1E)-prop-1-en-1-yl]-2,5,6,7-tetrahydro-1,2-oxaphosphepine 2-oxide (17)

Synthesised according to general procedure **C** from **20** (100 mg, 0.46 mmol) and Grubbs II (8 mg, 0.009 mmol). Purification by flash chromatography (EtOAc:MeOH 9:1) to yield **17** as a dark brown oil (64 mg) Yield (81%) ¹**H NMR** (**400MHz**, **CDCl**₃) **d** (**ppm**) 6.70 (2H, m, CH=CHMe, CH=CHCH₂), 5.90 (2H, m, PCH=CHMe, PCH=CH), 4.41 (1H, m, POCH₂a), 4.05 (1H, m, POCH₂b), 2.50 (2H, m, POCH₂CH₂), 2.23 (1H, m, POCH₂CH₂CH₂a), 1.97 (1H, m, POCH₂CH₂CH₂b) 1.87 (3H, dt, ³ $J_{(P,H)}$ 6.5, ³ $J_{(H,H)}$ 2 Hz, PCH=CHMe), ¹³C (**100MHz**, **CDCl**₃) **d** (**ppm**) 147.6 (d, ² $J_{(P,C)}$ 6 Hz, PCH=CHCH₂), 147.2 (s, PCH=CHMe), 124.5 (d, ¹ $J_{(C,P)}$ 120 Hz, PCH=CH), 122.1 (d, ¹ $J_{(C,P)}$ 142 Hz, PCH=CHMe), 65.7 (d, ² $J_{(C,P)}$ 6 Hz, POCH₂), 28.5 (d, ³ $J_{(C,P)}$ 6 Hz, PCH=CHCH₂), 28.4 (d, ³ $J_{(C,P)}$ 6 Hz, PCH=CHCH₂), 20.1 (d, ³ $J_{(P,C)}$, 20 Hz, PCH=CHMe) ³¹P NMR (**161MHz**, **CDCl**₃) **d** 31.4ppm. **HRMS** (**ES**+): *m*/z calc for C₈H₁₃O₂PNa [M+Na]⁺: 195.0551; found: 195.0555. Enatiomers separated by chiral GC using a β-dex column at 140°C and 15psi. Retention times: 85.7mins and 88.2mins 27% ee.

4-methyl-2-(2-methylprop-2-en-1-yl)-3,6-dihydro-2*H*-1,2-oxaphosphine 2-oxide (18):

Synthesised according to general procedure C from 12 (100 mg, 0.47 mmol) and Grubbs II (6 mg, 2 mol%). Purification by flash chromatography: EtOAc to EtOAc : MeOH (9:1) to yield 18 as a dark brown oil (77 mg, 88%) R_f : 0.16 (EtOAc) ¹H

(400MHz, CDCl₃) **d** (ppm) 5.51 (1H, br, MeC=C*H*R), 4.97 (1H, dt, ${}^{4}J_{(H,H)}$ 4.8, ${}^{2}J_{(H,H)}$ 1.5 CH₂C=C*H*_{2(trans)}), 4.85 (1H, t, br, ${}^{4}J_{(H,H)}$ 4.6, CH₂C=C*H*_{2(cis)}), 4.82 (1H, m, POC*H*_{2α}), 4.58 (1H, m, POC*H*_{2β}), 2.65 (2H, d, ${}^{3}J_{(P,H)}$ 17.6 Hz, P(C*H*₂C=CH2)), 2.46 (1H, dd, ${}^{2}J_{(H,H)}$ 17.0, ${}^{2}J_{(H,P)}$ 9.4 Hz, PC*H*_{2α}C=CR), 2.24 (1H, dd, ${}^{2}J_{(H,H)}$ 16.9, ${}^{2}J_{(P,H)}$ 16.9 Hz, PC*H*_{2β}C=CR), 1.91 (3H, s, C*H*₃), 1.81 (3H, s, C*H*₃), 13 C (100MHz, CDCl₃) **d** (ppm) 136.5 (s, MeC=CHR), 129.5 (s, MeC=CH₂), 119.5 (s, C=C*H*₂), 115.5 (s, C=CHR), 65.5 (s, POCH₂), 38.0 (d, PCH₂C(Me)C=CH₂), 37.7 (d, PCH₂C(Me)=CH), 25.8, 23.8 (both s, both CH₃) **IR** (flim) **n** (cm⁻¹) 1641 (C=C), 1170 (P=O). **HRMS** (**ES**+): *m/z* calc for C₉H₁₅O₂PNa [M+Na]⁺: 209.0707; found: 209.0702

4-methyl-2-(2-methylprop-2-en-1-yl)-2,3,6,7-tetrahydro-1,2-oxaphosphine oxide (19):

Synthesised according to general procedure **C** from **13** (350 mg, 1.53 mmol) and Grubbs II (26 mg, 0.03 mmol) to yield **19** as a colourless oil. 266 mg (87%) R_f =0.2 (EtOAc:MeOH 9:1) ¹H NMR (400MHz, CDCl₃) δ 5.60 (1H, m, C=CH), 4.95 (1H, m, C=CH_{2trans}), 4.82 (1H, d, ²J_(H,H) 5.9 Hz, C=CH_{2cis}), 4.38 (1H, m, POCH_{2a}), 4.00 (1H, m, POCH_{2b}), 2.80(1H, t, dd ³J_(H,H) 13.4 ³J_(H,H) 13.1 Hz, POCH₂CH_{2a}), 2.56 (4H, m, PCH_{2a}=CH, POCH₂C=CH₂, POCH₂CH_{2b}), 2.32 (1H, m, PCH_{2b}C=CH), 1.88 (3H, s, *Me*C=CH₂), 1.82 (3H, s, *Me*C=CH), ¹³C NMR (100MHz, CDCl₃) **d** (ppm) 136.8 (d, ³J_(C,P) 9 Hz, CH=CMe), 131.1 (d, ³J_(C,P) 10 Hz, CH₂=CMe), 124.3 (d, ⁴J_(C,P) 7 Hz, C=CH), 115.4 (d, ⁴J_(C,P) 11 Hz, C=CH₂), 65 (d, ²J_(C,P) 6 Hz, POCH2), 39.7 (d, ¹J_(C,P) 91 Hz, PCH₂C=CH), 33.0 (d, ¹J_(C,P) 81 Hz, PCH₂C=CH₂), 30.3 (s, POCH₂CH₂), 27.6 (d, ${}^{3}J_{(C,P)}$ 7 Hz, *C*H₃C=CH), 23.9 (s, *C*H₃C=CH₂), ³¹P NMR (161, CDCl₃) **d** 44.4 ppm, , **IR (film):** *n* (cm⁻¹) 1645 (C=C), 1223 cm⁻¹ (P=O) **HRMS (ES+):** *m/z* calc for C₁₀H₁₈O₂P [M+H]⁺: 201.1044; found: 201.1040. Enantiomers separated by chiral GC using a β -dex column at 120°C and 20psi. Retention times: 170. 8mins and 172.9mins 96% ee. [α_{D}]^{22.5} = -47.467°, Ci_{22.5} = 0.75g/100ml

4-methyl-2-(2-methylprop-2-en-1-yl)-2,3-dihydro-1,2-oxaphosphole 2-oxide (25):

Synthesised according to gerneral procedure **C** from **22** (450 mg, 2.27 mmol) and Grubbs II (39 mg, 0.05 mmol. Purification by flash chromatography (EtOAc) afforded **26** as a brown oil. Yield: 300mg (78%); R_f 0.2 (EtOAc/MeOH 19:1); ¹**H NMR (400 MHz, CDCl₃): d (ppm)** 5.42 (1H, d, ³ $J_{(H,P)}$ 29.9 Hz, PCH₂C*H*), 4.92 (1H, m, C=CH_ACH_B), 4.76 (1H m, C=CH_AH_B), 2.62 (2H, d, ² $J_{(H,P)}$ 14.2 Hz, PCH₂CMe=CH₂), 2.49-2.52 (2H, m, PCH₂CH), 2.40-2.44 (2H, m, PCH₂CMe=CH), 1.88 (3H, s, C(CH₃)=CH₂), 1.73 (3H, s, C(CH₃)=CH); ¹³C NMR (101 MHz, CDCl₃) **d** (ppm) δ 137.4 (d, ² $J_{(C,P)}$ 9.5 Hz, PCH₂CMe=CH₂), 136.7 (d, ² $J_{(C,P)}$ 12.9 Hz, CMe=CH), 120.6 (d, ² $J_{(C,P)}$ 8.3 Hz, PCH₂CH), 115.0 (d, ³ $J_{(C,P)}$ 9.6 Hz, =CH₂), 39.3 (d, ¹ $J_{(C,P)}$ 63.5 Hz, PCH₂CMe=CH₂), 34.7 (d, ¹ $J_{(C,P)}$ 66.5 Hz, PCH₂CMe=CH), 31.8 (d, ¹ $J_{(C,P)}$ 63.5 Hz, PCH₂CH), 24.1 (d, ³ $J_{(C,P)}$ 2.1 Hz, C(CH₃)=CH₂), 20.2 ppm (d, ³ $J_{(C,P)}$ 10.5 Hz, C(CH₃)=CH); ³¹P NMR (162 MHz, CDCl₃) **d** δ 67.3 ppm; IR (film): ? (cm⁻¹) 1644 (C=C), 1174 (P=O); HRMS (ES): *m*/z calcd for C₉H₁₆OP [M+H]⁺: 171.0939; found: 171.0935. Enantiomers separated by chiral GC using a β-dex column at 15psi and 140°C. Retention times: 44.8min and 47.7.0 min 74%ee. 5-methyl-1-(2-methylprop-2-en-1-yl)-1,2,3,6-tetrahydrophosphine oxide (26):

Q. P

Synthesised according to general procedure **C** from **23** (100 mg, 0.47 mmol) and Grubbs II (8 mg, 0.009 mmol). Purification by flash chromatography (EtOAc:MeOH 9:1) to yield **27** as a dark brown oil (70 mg) Yield (81%) ¹**H NMR** (**400MHz**, **CDCl**₃) **d** (**ppm**) 5.42 (1H, s, C=C*H*), 4.97 (1H, m, C=C*H*_{2trans}), 4.76 (1H, d, ²*J*_(H,H) 4.2 Hz, C=C*H*_{2cis}), 2.59 (3H, m, PC*H*₂C=CH₂, PC*H*_{2a}CH₂), 2.41 (3H, m, PC*H*₂C=CH, PC*H*_{2b}CH₂), 1.92 (5H, m, PCH₂CH₂, PCH₂C*Me*=CH₂), 1.75 (3H, s, PCH₂C*Me*=CH) ¹³**C** (**100MHz**, **CDCl**₃) **d** (**ppm**) 136.5 (s, MeC=CHR), 129.5 (s, MeC=CH₂), 121.7 (d, ³*J*_(C,P) 14 Hz, PCH₂C=CH₂), 115.1 (d, ³*J*_(C,P) 10 Hz, PCH₂C=CH₂), 36.9 (d, ¹*J*_(C,P) 63 Hz, PCH₂C=CH₂), 29.9 (d, ¹*J*_(C,P) 63 Hz, PCH₂C=CH), 26.0 (d, ³*J*_(C,P) 10 Hz, PCH₂C*Me*=CH) 24.4 (s, PCH₂C*Me*=CH₂), 23.4 (d, ²*J*_(C,P) 5 Hz, PCH₂CH₂), 21.3 (d, ¹*J*_(C,P) 63 Hz, PCH₂CH₂) ³¹**P NMR** (**161MHz**, **CDCl**₃) **d** 38.5 ppm. **IR** (**film**): ? (**cm**⁻¹) 1644 (C=C), 1186 (P=O) **HRMS** (**ES**+): *m/z* calc for C₁₀H₁₈OP [M+H]⁺: 185.1095; found: 185.1093 Enatiomers separated by chiral GC using a β-dex column at 120°C and 20psi. Retention times: 194.9mins and 216.2mins 74%ee.

6-methyl-(1,2-methylprop-2-en-1-yl)-2,3,4,7-tetrahydro-1Hphosphepine 1-oxide (27)

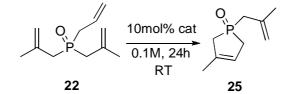
Synthesised according to general procedure **C** from **24** (175 mg, 0.77 mmol) and Grubbs II (15 mg, 0.015 mmol). Purification by flash chromatography (EtOAc:MeOH 9:1) to yield **28** as a dark brown solid mpt: 68-70°C (137 mg, 80%) ¹H NMR

(400Mhz, CDCl₃) **d** (ppm) 5.66 (1H, dd, ${}^{3}J_{(H,H)}$ 6.5, 6.5 Hz, C=C*H*), 4.94 (1H, m, C=C*H*_{2a}), 4.76 (1H, d, ${}^{2}J_{(H,H)}$ 4.5 Hz, C=C*H*_{2b}), 2.84 (1H, dd, ${}^{3}J_{(H,H)}$ 19, 15 Hz, PC*H*₂C=CHCH_{2a}), 2.62 (1H, dd, ${}^{3}J_{(H,H)}$ 14, 11 Hz, PC*H*₂C=CHCH_{2b}), 2.50 (2H, m, PC*H*₂C=CH2), 2.10 (4H, m, PC*H*₂CMe=CH, PCH₂C*H*₂), 1.90 (4H, m, PCH₂CMe=CH2, PC*H*_{2a}CH₂), 1.77 (3H, s, PCH₂CMe=CH), 1.64 (1H, m, PC*H*_{2a}CH_{2b}) ¹³C (100MHz, CDCl₃) **d** (ppm) 137.5 (d, ${}^{2}J_{(P,C)}$ 10 Hz, MeC=CHR), 130.0 (d, ${}^{2}J_{(P,C)}$ 7 Hz, MeC=CH2), 121.7 (d, ${}^{3}J_{(C,P)}$ 14 Hz, PCH₂C=C*H*₂), 127.9 (d, ${}^{3}J_{(C,P)}$ 7 Hz, PCH₂C=CHR), 115.9 (d, ${}^{3}J_{(C,P)}$ 10 Hz, PCH₂C=CH₂), 37.2 (d, ${}^{1}J_{(C,P)}$ 65 Hz, PCH₂C=CH), 35.0 (d, ${}^{1}J_{(C,P)}$ 58 Hz, PCH₂CH₂) 32.2 (d, ${}^{1}J_{(C,P)}$ 65 Hz PCH₂CMe=CH₂), 27.4 (s, PCH₂CH₂), 26.3 (d, ${}^{2}J_{(C,P)}$ 14 Hz, PCH₂CH₂), 24.5 (d, ${}^{3}J_{(C,P)}$ 3 Hz), 22.4 (d, ${}^{3}J_{(P,C)}$ 4 Hz) ³¹P NMR (161MHz, CDCl₃) **d** 35.8ppm. IR (film): ? (cm⁻¹) 1644 (C=C), 1174 (P=O) **HRMS (ES+)**: *m/z* calc for C₁₁H₂₀OP [M+H]⁺: 199.1252; found: 199.1247 Enatiomers separated by chiral GC using a β-dex column at 140°C and 15psi. Retention times: 143.6mins and 148.7mins 98%ee.

2-[(1*E*)-prop-1-en-1-yl]-2,3-dihydro-1*H*-1,2-oxaphosphole 1-oxide (30)

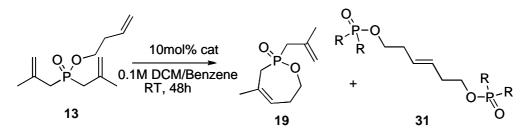
Synthesised according to general proceedure **C** from **29** (260 mg, 1.41 mmol) and Grubbs II (24 mg, 0.028 mmol) Purification by flash chromatography (EtOAc/MeOH 9:1) afforded **29** as a brown oil. Yield: 190 mg (94%); R_f 0.1 (EtOAc/MeOH 9:1); ¹**H NMR (400 MHz, CDCl₃): d (ppm)** 6.82 (1H, dddd, ³ $J_{(H,P)}$ 44.5, ³ $J_{(H,H)}$ 9.3, ³ $J_{(H,H)}$ 2.3 Hz × 2, PCH=CHCH₂), 6.56 (1H, m, PCH=CHMe), 6.08 (ddt, ² $J_{(P,H)}$ 25.5, ³ $J_{(H,H)}$ 6.8, ³ $J_{(H,P)}$ 2.1 Hz; PCH=CHCH₂), 5.69 (1H, ddq, ² $J_{(P,H)}$ 27.6, ³ $J_{(H,P)}$ 18.2, ⁴ $J_{(H,H)}$ 1.6 Hz, PC*H*=HMe), 2.70 (1H, m, PCH₂C*H*_{2a}), 2.51 (1H, m, PCH2C*H*_{2b}), 1.85 (5H, m, C*H*₃, PC*H*₂); ¹³C NMR (101 MHz, CDCl₃): **d**(**ppm**) 151.5 (d, ${}^{2}J_{(C,P)}$ 23.6 Hz, PCH=CHCH₂), 146.3 (d, ${}^{2}J_{(C,P)}$ 2.3 Hz, PC=CHMe), 126.1 (d, ${}^{1}J_{(C,P)}$ 95.4 Hz, PCH=CHCH₂), 124.2 (d, ${}^{1}J_{(C,P)}$ 95.3 Hz, PCH=CHMe), 29.5 ppm (d, ${}^{2}J_{(C,P)}$ 9.8 Hz, PCH₂CH₂) 124.1 (d, ${}^{1}J_{(C,P)}$ 73.2Hz), 20.1 (d, ${}^{3}J_{(C,P)}$ 18.3 Hz); ³¹P NMR (162 MHz, CDCl₃): **d** 57.6 ppm; IR (neat): *n* (cm⁻¹)1633 (C=C), 1165 (P=O); HRMS (ES+): *m/z* calcd for C₇H₁₁OPNa [M+H]⁺: 165.0445; found: 165.0440.

(1S,3R,7S)-1-methyl-3-(2-methylprop-2-en-1-yl)-8-oxa-3-phosphabicyclo [5.1.0] octane 3-oxide (28)



An 0.1M solution of **27** (100 mg, 0.5 mmol) in DCM (5 mL) was cooled to 0°C and *m*CPBA (174 mg, 0.5 mmol) added and reaction allowed to warm to room temperature. The reaction mixture was stirred at room temperature for 2h after which TLC analysis showed almost complete consumption of starting material. The mixture was then quenched with NaHSO₄ (1M, 10ml), extracted with DCM and washed with NaHCO₃ and dried over NaSO4 and concentrated *in vacuo*. ³¹P NMR analysis of the curde mixture showed an 6:1 dr. The mixture was purified by chromatography (9:1, EtOAc:MeOH) to yield **30** a white solid, mpt: 72-74°C Yield 70 mg (66%) ¹H NMR assignment for the major *trans* diastereomer: ¹H NMR (**400MHz, CDCl**₃) **d** (**ppm**) 4.95 (1H, ddd, ³*J*_(H,H) 4, ⁴*J*_(H,H) 2, ⁴*J*_(P,H) 2 Hz C=CH_{2trans}), 4.77 (2H, m, C=CH_{2cis}), 2.96 (1H, dd, ³*J*_(H,H) 8, 6 Hz, MeCOCH), 2.45 (2H, m, PCH_{2a}C=CH₂,

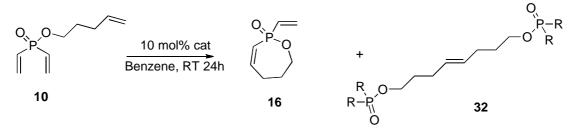
PCH₂CH₂CH₂D_b) 2.14 (1H, m, PCH₂aCH₂), 1.96 (2H, m, PCH₂CH₂a, PCH₂aCOC) 1.88 (3H, m, PCH₂CMe=CH₂), 1.80 (1H, m, PCH₂bCOC), 1.47 (4H, m, PCH₂CMeOCH, PCH₂bCH₂), 1.20 (1H, m, PCH₂CH₂CH₂b) ¹³C (100MHz, CDCl₃) **d** (ppm) 138.4 (d, ${}^{2}J_{(P,C)}$ 10 Hz, PCH₂C=CMe), 114.4 (d, ${}^{3}J_{(P,C)}$ 10 Hz, MeC=CH₂), 62.2 (s, PCH₂COCH), 56.6 (d, ${}^{3}J_{(C,P)}$ 2 Hz, PCH₂COMe), 40.6 (d, ${}^{1}J_{(C,P)}$ 61 Hz, PCH₂C=CH₂), 34.9 (d, ${}^{1}J_{(C,P)}$ 58 Hz, PCH₂COCH), 31.9 (d, ${}^{1}J_{(C,P)}$ 65 Hz, PCH₂CH₂) 31.4 (s, PCH₂CH₂CH₂), 25.6 (s, PCH₂CCH₃O), 24.7 (s, =CMe), 17.1 (d, ${}^{2}J_{(C,P)}$ 7 Hz PCH₂CH₂), 22.4 (d, ${}^{3}J_{(P,C)}$ 4 Hz) ³¹P NMR (161MHz, CDCl₃) **d** 41.7ppm. IR (film): ? (cm⁻¹) 1644 (C=C), 1183 (P=O) **HRMS (ES+)**: *m*/*z* calc for C₁₁H₂₀O₂P [M+H]⁺: 215.1201; found: 215.1195 Characteristic data for the minor diastereomer: ³¹P NMR (161MHz CDCl₃) 43.6ppm


		_//		0
0, ~P	,o_⁄	10 mol%	cat	U,
P. ∏	Ì	0.1M sol	→ vent	
II	II	24h RT/6		\checkmark
9				15
Entry	Cat	Solvent	% conv ^a	ee^{b} (%)
1	1 a	Benzene	<u>60</u>	<u>86</u>
2	1a	DCM	90	70
3	3b	Benzene	<2	-
4	3b	DCM	<2	-
5	4a	Benzene	15	51
6	4a	DCM	19	46
7	4b	Benezene		
8	4b	DCM		
9	1b	Benzene	23	68
10	1b	DCM	54	61
11	2	Benzene	<2	-
12	2	DCM	<2	-

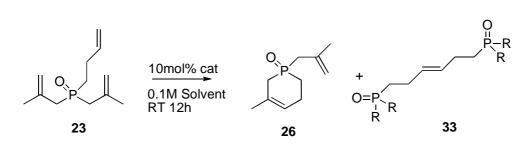
Substrate Screening:

E	ntry	Catalyst	Solvent	Conversion	
				%	ee ^b
	1	1a	DCM	40	28
	2	1b	DCM	82	38
	3	2	DCM	49	44
4		4b	DCM	42	12
	5	<u>4a</u>	DCM	<u>68</u>	<u>70</u>
	6	3a	DCM	28	42
F	<u> </u>	<u> </u>			E <i>a</i> (
Entry	Catalyst	Solvent	Temperature	Conv %	Ee %
1	4a	DCM	RT	68	75
2	4a	Benzene	RT	64	24

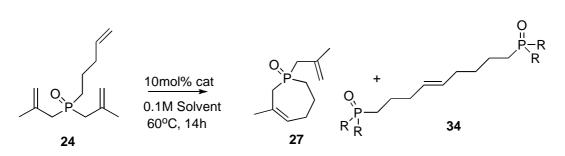
3	4a	THF	RT	<2%	-
4	4a	Benzene	60	70	27
<u>5</u>	<u>4a</u>	DCM	<u>60</u>	<u>>96</u>	<u>71</u>
6	4a	THF	60	<2%	-

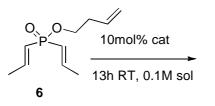

Entry	Cat	Solvent	% conv ^a (19)	% conv ^{<i>a</i>} (31)	ee^b (%)
1	1a	Benzene	<u>33</u>	26	83
2	1a	DCM	60	<u>26</u> 29	<u>83</u> 82
3	2h	Benzene	64	22	-90
4	3b	DCM	<u>86</u>	<u>8</u>	<u>-93</u>
5	40	Benzene	<u>41</u> 32	<u>27</u> 29	<u>96</u> 91
6	4a	DCM	32	29	91
7	41-	Benezene	15	44	41
8	4b	DCM	37	33	12
9	11.	Benzene	33	32	73
10	1b	DCM	54	23	73
11	2	<u>Benzene</u>	<u>30</u>	<u>36</u>	<u>-91</u>
12	2	DCM	17	<u>36</u> 25	-50

Entry	Catalyst	Solvent	T/oC	% Conv ^a (P)	% ee ^b
1a	1a	Benzene	RT	35	83
2a	1a	DCM	RT	65	82
3a	1a	THF	RT	35	68
4a	1a	Benzene	60	57	78
<u>5a</u>	<u>1a</u>	DCM	<u>60</u>	<u>70</u>	<u>82</u>
<u>6a</u>	1a	THF	60	30	68

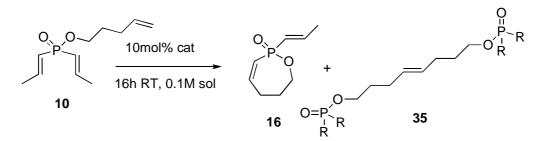

1b	4a	Benzene	RT	51	95
2b	4a	DCM	RT	36	91
3b	4a	THF	RT	19	95
<u>4b</u>	<u>4a</u>	<u>Benzene</u>	<u>60</u>	<u>81</u>	<u>96</u>
5b	4a	DCM	60	67	79
6b	4a	THF	60	48	90

<u>1c</u>	<u>2</u>	<u>Benzene</u>	<u>RT</u>	<u>43</u>	<u>-93</u>

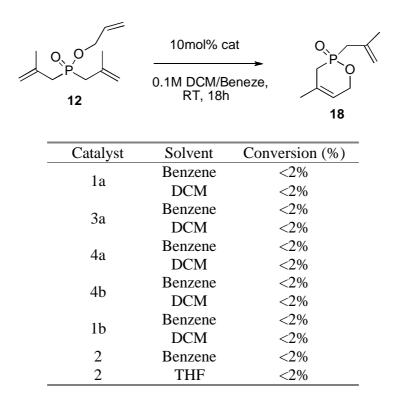

2c	2	DCM	RT	25	-78
3c	2	THF	RT	17	-17
<u>4c</u>	<u>2</u>	Benzene	<u>60</u>	<u>70</u>	<u>-81</u>
5c	2	DCM	60	38	-39
6c	2	THF	60	25	-9

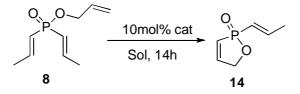

Entry	Catalyst	Temperature	Conv. (16) %	% Conv. (32)	Ee %
1	4 a	RT	48	22	73
2	4a	60	49	24	63
3	2	RT	<2%	<2	-
4	2	60	<2%	8	-
5	1a	RT	23%	18	43
6	1a	60	25%	23	41

Entry	Catalyst	Solvent	% Conv (26).	% Conv. (33)	% ee
1	1a	Benzene	52	26	-20
2	1a	DCM	84	11	-65
3	4a	Benzene	53	23	73
4	4a	DCM	88	-	69
5	2	Benzene	67	22	73
6	2	DCM	>95	-	69
7	3b	Benzene	48	20	38
8	3 b	DCM	84	12	74
9	3a	Benzene	86	13	4
10	3a	DCM	91	5	43

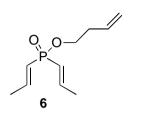


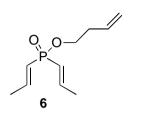
Entry	Catalyst	Solvent	%Conv	%Conv. (34)	% ee
			(27).		
1	1a	Benzene	45	36	91
2	1a	DCM	61	22	88
3	4 a	Benzene	49	34	98
4	4a	DCM	32	47	97
5	(<i>R</i>)-2	Benzene	50	42	73
6	(R)-2	DCM	55	31	39
7	3b	Benzene	43	41	-89
8	3 b	DCM	81	10	-91
9	3a	Benzene	82	16	-23
10	3a	DCM	86	12	-73

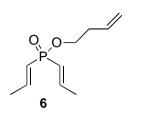


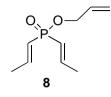

Trace amounts of dimer

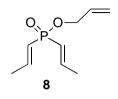
Entry	Catalyst	Solvent	% Conv(7).	% ee
1	1a	Benzene	<2	-
2	1a	DCM	<2	-
3	1b	Benzene	45	51
<u>4</u>	<u>1b</u>	DCM	<u>63</u>	<u>60</u>
5	$\overline{4a}$	Benzene	51	16
6	4a	DCM	65	11
7	2	Benzene	15	22
8	2	DCM	49	11
9	3b	Benzene	<2	-
10	3b	DCM	<2	-
11	3a	Benzene	38	60
12	3a	DCM	32	53

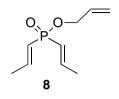


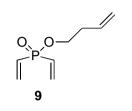

Entry	Catalyst	Solvent	% Conv. (16)	% Conv. (35)	% ee
1	1a	Benzene	<2	<2	-
2	1a	DCM	<2	18	-
3	1b	Benzene	32	17	27
4	1b	DCM	40	19	12
5	4a	Benzene	<2	19	-
6	4a	DCM	<2	26	-
7	2	Benzene	<2	10	-
8	2	DCM	<2	23	-
9	3b	Benzene	<2	<2	-
10	3b	DCM	<2	11	-
11	3b	Benzene	<2	9	-
12	3b	DCM	12	9	-

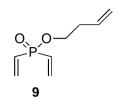


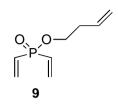


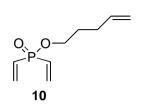

Catalyst	Solvent	Conversion (%)
1b	Benzene	<2%
10	DCM	<2%
2 -	Benzene	<2%
3a	DCM	$<\!\!2\%$
4	Benzene	<2%
4a	DCM	<2%
41-	Benzene	<2%
4b	DCM	<2%
11	Benzene	<2%
1b	DCM	<2%
2	Benzene	<2%
2	DCM	<2%

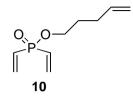


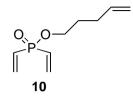


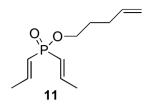


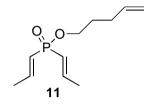


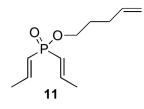


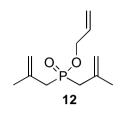


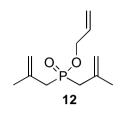


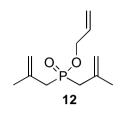


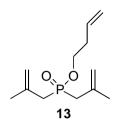


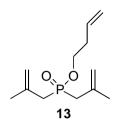


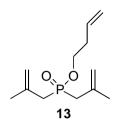


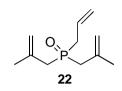


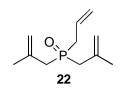


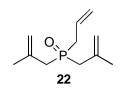


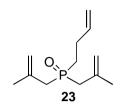


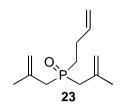


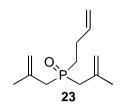


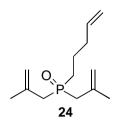


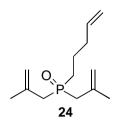


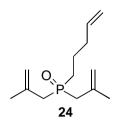


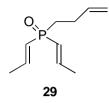


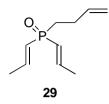


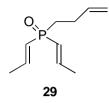


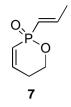




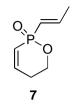


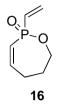


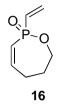


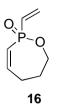


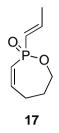




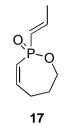


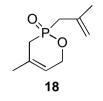


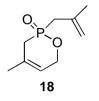

0, /= P_0 15

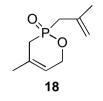


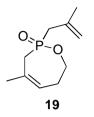


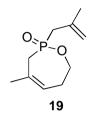


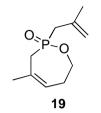


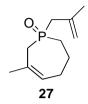


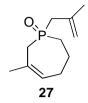


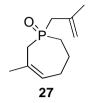

17

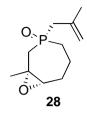


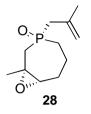


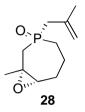


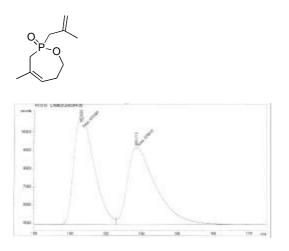


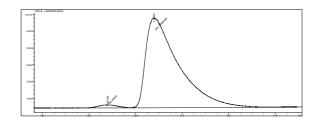

=



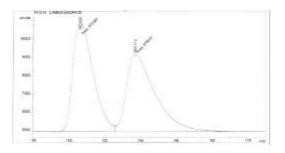


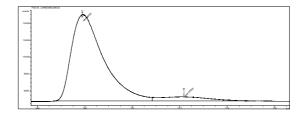






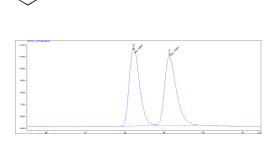
Chiral GC traces:

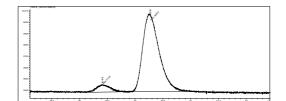




Peak	Time/min	%Area
1	160.635	49.67
2	163.710	50.32

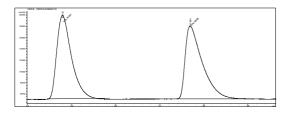
Peak	Time/min	%Area
1	166.753	2.34
2	168.806	97.65

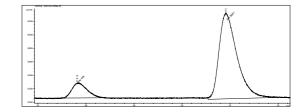




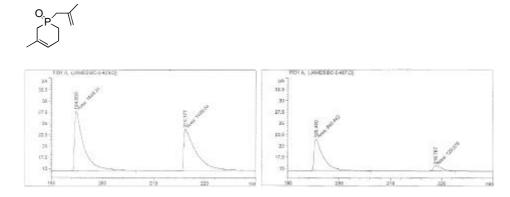
Peak	Time/min	%Area
1	160.635	49.67
2	163.710	50.32

Peak	Time/min	%Area
1	167.887	96.27
2	172.287	3.73

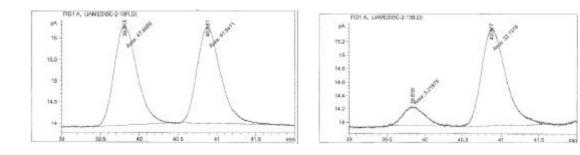

Peak	Time/min	%Area
1	38.22	50.41
2	39.133	49.59


Peak	Time/min	%Area
1	39.408	7.32
2	40.266	92.68

Q

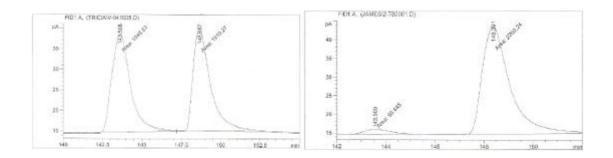

o

Peak	Time/min	%Area
1	44.792	49.58
2	47.695	50.52

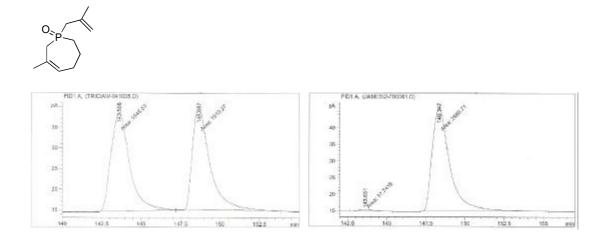

Peak	Time/min	%Area
1	47.815	12.69
2	50.91	87.30

Peak	Time/min	%Area
1	194.856	52.38
2	216.177	47.61

Peak	Time/min	%Area
1	195.460	86.67
2	218.787	13.33

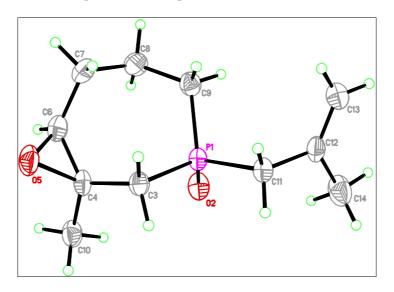


	Peak	Time/min	%Area
a 10.001 50.00	1	39.813	49.96
2 40.881 50.03	2	40.881	50.03


Peak	Time/min	%Area
1	39.835	13.97
2	40.877	86.03

Peak	Time/min	%Area	Peak	Time/min	%Area
1	143.598	50.37	1	143.569	4.18
2	148.657	49.62	2	148.391	95.81

_



Peak	Time/min	%Area	Peak	Time/min	%Area
1	143.598	50.37	1	143.631	1.49
2	148.657	49.62	2	148.347	98.51

X-ray Single Crystal Diffraction Data:

Crystals of **28** were grown by slow evaporation of diethyl ether at room temperature. The crystals were generally hexagonal plates and split on cutting along the 010 face causing severe damage and loss of crystallinity. So, plate was chosen and cut to give a large needle shaped sample and changes in illuminated volume were taken into account¹ by the multi-scan inter-frame scaling.² Single crystal X-ray diffraction data were collected using graphite monochromated Mo Ka radiation (? = 0.71073 Å) on an Enraf-Nonius KappaCCD diffractometer. The diffractometer was equipped with a Cryostream N2 open-flow cooling device,³ and the data were collected at 200(2) K. Series of ?-scans were performed in such a way as to cover a sphere of data to a maximum resolution of 0.77 Å. Cell parameters and intensity data were processed using the DENZO-SMN package.² The structures were solved by direct methods⁴ and refined by full-matrix least squares on F using the CRYSTALS suite.⁵ Intensities were corrected for absorption effects by the multi-scan method, based on multiple scans of identical and Laue equivalent reflections. All non-hydrogen atoms were refined with anisotropic displacement parameters. In general, the hydrogen atoms were visible in a difference map. However, they were repositioned geometrically, then refined with soft restraints on the bond lengths and angles to regularise their geometry after which the positions were refined with riding constraints. The Flack xparameter⁶ was refined to a value of -0.08(6) and examination of the Bijvoet pairs gave the Hooft y parameter⁷ as -0.06(3) with G=1.12(6) (giving a probability that the absolute configuration is correct as 100%).

Crystallographic data for the structure have been deposited with the Cambridge Crystallographic Data Centre. Copies of the data can be obtained free of charge from http://www.ccdc.cam.ac.uk/products/csd/request/ (CCDC ?????).

¹ Görbitz, C. H., Acta Cryst., 1999, B55, 1090-1098.

² Otwinowski, Z; Minor W. Processing of X-ray Diffraction Data Collected in Oscillation Mode, Methods

Enzymol. 1997, 276, Eds C. W. Carter, R. M. Sweet, Academic Press.

³ Cosier, J; Glazer, A. M. J. Appl. Cryst., 1986, 19, 105.

⁴ Altomare, A; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M.;. J. Appl. *Cryst.*, **1994**, 27, 435.

Betteridge, P.W.; Carruthers, J.R.; Cooper, R.I.; Prout, K; Watkin, D.J; J. Appl. Cryst., 2003, 36, 1487.

⁶ Flack, H. D., Acta Cryst. 1983, A39, 876-881; Flack, H. D. & Bernardinelli, G., J. Appl. Cryst., 2000, 33, 1143-

⁷ R. W. W. Hooft, L. H. Straver, & A. L. Spek, J. Appl. Cryst., 2008, 41, 96-103.

Table 1. Crystal data and structure refinement fo	r 28 .				
Identification code	5969				
Empirical formula	C11 H19 O2 P1				
Formula weight	214.24				
Temperature	150 K				
Wavelength	0.71073 Å				
Crystal system	Monoclinic				
Space group	P 1 21 1				
Unit cell dimensions	a = 10.4548(2) Å	α= 90°.			
	b = 5.39910(10) Å	$\beta = 109.8377(9)^{\circ}.$			
	c = 10.8511(3) Å	$\gamma = 90^{\circ}$.			
Volume	576.16(2) Å ³				
Z	2				
Density (calculated)	1.235 Mg/m ³				
Absorption coefficient	0.213 mm ⁻¹				
F(000)	232				
Crystal size	0.80 x 0.29 x 0.24 mm ³				
Theta range for data collection	5.177 to 27.479°.				
Index ranges	-13<=h<=13, -6<=k<=7, -14<=l<=13				
Reflections collected	7557				
Independent reflections	2523 [R(int) = 0.026]				
Completeness to theta = 27.479°	98.8 %				
Absorption correction	Semi-empirical from equivalents				
Max. and min. transmission 0.95 and 0.71					
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	2440 / 1 / 128				
Goodness-of-fit on F ²	1.1118				
Final R indices [I>2sigma(I)]	R1 = 0.0260, wR2 = 0.0269				
R indices (all data)	R1 = 0.0274, wR2 = 0.0288				
Absolute structure parameter	-0.08(6)				
Largest diff. peak and hole	0.20 and -0.15 e.Å ⁻³				