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1  Proofs for the Asymptotic Results

1.1  Proof of consistency

Note that 8 solves n_lﬁ(ﬂ) = 0. Follow closely the arguments of Foutz(1977), one can show
that [?E is consistent for 3y, provided:

(I) n_laﬁ(ﬂ)/aﬁ exists and is continuous in an open neighborhood B of By;

(I1) n=10U (By)/dfo is negative definite with probability going to 1;

(I11) n=10U(B) /83 converges in probability to a fixed function, say, %(f), uniformly in an
open neighborhood of Fy;

(IV) n=1U(3p) — 0 in probability.
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Clearly (I) is satisfied. For (II) and (III), we can prove
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alent to a local square integrable martingale, hence by the Lenglart inequality (e.g.Andersen
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uniformly in B. For A(ﬂ) we have
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in probability. Based on the above results, (III) is satisfied.



When = [y, we have ey (0o, t) = sk (ﬂo, t), hence the above limit equals

(o) Z/ [ )¥%s (0 (Bo,t) — e1r(Bo,t) | Aok (t)dt.

Based on condition (iv), (II) is satisfied. R
For (IV), using similar arguments as above, n~1U(y) converges to the same limit as
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where T, = n — n, is the size of the non-validation set. Let L, and Lo denote the first and
second term of the above expression and let ¢q,,1(51,t) be the ¢;;(01,t) when A% (t) = ay,, and

Gamk(Br,t) = B{M PO Yy (1) = 1, A% (1) = am}.

By assumption (v) and the law of large numbers, we have
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By the law of large numbers, Lq; — qE(Yik(t)EikeﬁloEik(t)+ﬁéozik(t)) in probability. Therefore,
by assumption (v), Ly + Lo — E(Yik(t)RZ%) (G0, t)eﬁéozik(t)) in probability.
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it can be proved that

Ly 0 1)) — BT () = o0 Gont) i probabilty.
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It follows that
B(6y) — Z/ 60, 1)(60, t)) Aok (t)dt =0 in probability,

and (IV) is satisfied. Therefore we have shown that B converges in probability to Bo.

1.2  Proof of normality
It can be shown that the score function n=/2(9/83){log EPPL(/3)}, can be expressed as
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By Taylor expansion of U(8), we have
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Where 04 is between ﬁE and [y. To prove the asymptotic normality, it suffices to prove that
n2 U (Bo) converges to a normal random variable in distribution and that n~'-2- U (B«) con-
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verges to an invertible matrix. By consistency of B and the convergence proof of n ™! 856(?)

(IIT), it can be shown that n~! agT U(B3,) converges to the invertible matrix $(3p).

For proving the asymptotic distribution of n_%U (6o), apply the first Order expansion x/y =

1
z0/yo + (x —x0)/yo — (y — yo)zo/yg + of (x — x0)* + (y — yo)?} to Tzk /Tzk and S /S at T,(k)/rik
and Slil)/ S,go), respectively, we can show that the second term of (2) evaluated at [y can be

for
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here sk (610, t) is the first m elements of the vector sk (610, t), and 31(32) (B10,t) contains the
remaining p elements. Let
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be the first m elements of (4), then by assumptions (i)-(vi), we have
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Therefore, the first m elements of the vector in (4) is asymptotically equivalent to

%ﬁ— Z Z Quk(Bo), where Qur(0o) is defined as in Theorem 2. Using similar arguments
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we can show that the remaining elements of the vector in (4) is asymptotically equivalent to
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Hence n~ 20 U(Bo) is asymptotically equivalent to
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The first and second summation of (5) are independent. Let
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then the first term of (5) equals nz > Gr(fo). By the multivariate central limit theorem, we
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have 7, 2 converges in distribution to a zero-mean normal random vector with
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variance-covariance matrix E(G(60)G(Bo)). Therefore, the first term converges in distribution
to a zero-mean normal random vector with asymptotic covariance matrix 31(/p) as defined in
Theorem 2.
The second term of (5) is a summation of i.i.d. terms from subjects in the validation sample.
By central limit theorem, it converges to a normal distribution with mean
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Observe that these terms have mean zero since M;;(t) is a martingale, and E(Qx(80)) = 0

and E(H;;(6p)) = 0. Therefore the second term of (5) is asymptotically normally distributed
with mean zero and variance ¥o(fp,t). Since these two terms are independent, it follows that

E

n"il (Bo) converges to a mean zero normal distribution variable with variance ¥1(8y) 4+ X2(00)-
These results together with the Taylor expansion in (3) give the desired normality result for Sg
in Theorem 2.

2 Web Table 1

Web Table 1 presents some additional simulation results under the model: Ak (t; Ei(t), Zix(t)) =
Aok (t) exp{Br1 Eix(t) + B2Zix(t)}(k = 1,2), where (11 = log(2) = 0.693, B21 = log(1.3) = 0.262,



B2 = —0.2. Censoring rate is 20%. These results illustrate performance of the proposed method-
ology in the case when the sample size of the validation set is fixed at 60 and 120, while the total
sample size are 200, 1000, and 3000. The simulation studies are conducted with 500 replications.
Values for other parameters are: o = 0.1, § = 0.25, r = 0.8.

Web Table 1: Additonal Simulation Results

validation sample size=60 validation sample size=120

True Value I} SD SE I} SD SE

n=200
611 =0.693 [y 0.7214 0.1892 0.1709 0.6980 0.1230  0.1179
Orp  0.6968 0.0985 0.1225 0.6957 0.0968  0.1024
Bo1 =0.262 [y 0.2842 0.1736 0.1510 0.2716  0.1051  0.1060
O 0.2650 0.0894 0.1657 0.2669 0.0868  0.1075

B2=-02 [y -0.1998 0.1132 0.1065 -0.1980 0.0782  0.0742
Be -0.1926 0.0598  0.0587 -0.1952  0.0608  0.0614
n=1000

Bi1 =0.693 By 0.7357 0.1852  0.1719 0.7142 0.1224  0.1189
Be  0.6870 0.0478  0.0962 0.6899 0.0439  0.0761
B21 =0.262 By 0.2797 0.1807 0.1528 0.2634 0.1175  0.1055
Be  0.2545 0.0433  0.0909 0.2565 0.0397  0.0780

f2=-02 [y -0.2070 0.1155 0.1081 -0.2003 0.0784  0.0751
Be -0.1913 0.0257 0.0594 -0.1920 0.0256  0.0420
n=3000

£11=0.693 By 0.7149 0.1921 0.1712 0.7063 0.1244  0.1186
Be  0.6698 0.0231  0.0630 0.6705 0.0212  0.0431
P21 =0.262 [y 0.2717 0.1643  0.1508 0.2657 0.1076  0.1049
Be  0.2518 0.0221  0.0603 0.2521 0.0205  0.0404
B2=-02 [y -0.2052 0.1190 0.1081 -0.2030 0.0767  0.0749
Be -0.1915 0.0146 0.0418 -0.1921 0.0145  0.0284
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