Lodopyridone, a Structurally-Unprecedented Alkaloid from a Marine Actinomycete.

Katherine N. Maloney, John B. MacMillan, Christopher A. Kauffman, Paul R. Jensen, Antonio G. DiPasquale, Arnold L. Rheingold, and William Fenical

Supporting Information

1. Experimental Procedures	S2
2. HR-ESI mass spectrum of lodopyridone (1)	S3
3. ¹ H and ¹³ C NMR spectra of lodopyridone (1)	S4
4. ¹ H- ¹ H dqfCOSY and HSQC spectra of lodopyridone (1)	S5
5. ¹ H- ¹³ C HMBC spectrum of lodopyridone (1)	S6

Experimental Procedures

General Experimental Procedures: All NMR spectra were measured using a Varian Oxford AS500 spectrometer (5 mm double-resonance inverse broadband probe). Offline processing was conducted using Mestre-C NMR Software (Mestrelab Research, A Coruña, Spain; www.mestrec.com). ¹H and ¹³C chemical shifts of **1** were referenced with the DMSO solvent peaks at δ 2.50 and δ 39.4, respectively. The IR spectrum of **1** was recorded on a Nicolet IR100 FTIR spectrometer (Thermo). The UV spectrum of **1** was recorded on a Beckman Coulter DU800 spectrophotometer. High resolution mass spectra were run by the Scripps Center for Mass Spectrometry. HPLC was carried out on a Beckman System Gold liquid chromatograph (126) equipped with a Shimadzu diode array detector (SPD-M10AVP). All HPLC separations were done using an Ultracarb ODS (30) column (Phenomenex, 250 x 10.0 mm, 5 µm particle size) with a 3mL/min flow rate. Column chromatography was carried out on silica gel (Selecto Scientific, particle size 63-200).

Culture Conditions: A 2 mL frozen stock of CNQ490 was used to inoculate 25 mL A1 medium (10 g starch, 4 g yeast extract, 2 g peptone in 1 L seawater) in a 125 mL Erlenmeyer flask and shaken at 80 °F. The 3-day-old seed culture was then used to inoculate a one-liter culture in A1bfe+c (A1 media described above, with the addition of 1 g CaCO₃, 5 mL of a 2% (w/v) KBr stock solution, and 5 mL of a 0.8% (w/v) Fe₂(SO₄)•4H₂O stock solution). Lastly, 25 mL aliquots of the 3-day-old one-liter culture were used to inoculate each of 40 one-liter cultures in 2.8 L Fernbach flasks. CNQ490 was allowed to grow with shaking for 7 days at 80 °F prior to extraction.

Isolation of Lodopyridone: A 40 liter culture of CNQ490 was extracted using XAD-7 resin eluted with acetone (2×). The acetone was removed by evaporation, and the remaining water extracted 3× with ethyl acetate. The obtained extract was fractionated twice on silica gel (first with hexanes:ethyl acetate:methanol eluent, then with dichloromethane:methanol eluent). Fractions containing chlorinated compounds (as observed by their characteristic isotope pattern in the LCMS) were subjected to HPLC (50% aqueous acetonitrile eluent) to give lodopyridone.

X-ray Crystallographic Data Acquisition and Processing: A colorless block 0.10 x 0.04 x 0.04 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 10 seconds per frame using a scan width of 0.5°. Data collection was 98.2% complete to 67.00° in θ . A total of 9700 reflections were collected covering the indices, $-10 \le h \le 10$, $-10 \le k \le 10$, $-37 \le l \le 37$. 3859 reflections were found to be symmetry independent, with an R_{int} of 0.0378. Indexing and unit cell refinement indicated a primitive, monoclinic lattice. The space group was found to be P2(1)/c (No. 14). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SIR-2004) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-97). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-97.

HR-ESI mass spectrum of lodopyridone (1)

¹H (top) and ¹³C (bottom) NMR spectra of lodopyridone (**1**)

 $^{1}H - ^{1}H dqfCOSY$ (top) and HSQC (bottom) NMR spectra of lodopyridone (1)

¹H-¹³C HMBC NMR spectrum of lodopyridone (1)

