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(c) Predictive power of full history models versus coefficients of variation of the predicted spiking 

activity. Lower coefficients indicate more regular spike trains. Coefficients around 1 and below tended to 

correspond to a broad range of predictive power, whereas higher coefficients tended to cluster around 

intermediate predictive power values. In summary, the predictive power of history models did not seem 

to depend, in a simple manner, on mean spiking rates or on the level of irregularity of the spiking 

activity. (d) Predictive power versus the information rate (in bits per s) involved in the prediction. 

Approximately equal predictive power could relate to a broad range of information rates. Blue: point-to-

point reaching, monkeys mLA and mCL, area M1; purple: neural cursor control, participants hS1 and 

hS3, area M1; black: free reach and grasp task, monkey mCO, areas M1 and PMv; red: pursuit tracking 

task, monkey mAB, areas M1 and 5d. 

ONLINE METHODS 

Human participants, electrophysiology and behavioral tasks. An investigational device exemption 

(IDE) for these studies was obtained from the US Food and Drug Administration and all studies were 

performed with approval from Institutional Review Boards: Spaulding Rehabilitation Hospital 

Institutional Review Board, New England Institutional Review Board, Rhode Island Hospital 

Institutional Review Board, Partners Human Research Committee. The recording device, preamplifiers, 

data acquisition systems and computer are part of the BrainGate Neural Interface System (Cyberkinetics 

Neurotechnology Systems, Inc). CAUTION: Investigational device. Limited by Federal Law to 

Investigational Use.  The sensor is a 10 × 10 array of silicon microelectrodes that protrude 1 mm (hS1) or 

1.5 mm (hS3) from a 4.2 × 4.2 mm platform (Supplementary Fig. 1). For signal acquisition, 96 

electrodes are available, with minimum inter-electrode distance of 400 m. Participant 1 (hS1) was a 24-

year-old male with tetraplegia (C4 ASIA A). Participant 3 (hS3) in the pilot clinical trial is a 56-year-old 

female who sustained a pontine stroke 9 years before trial enrollment, resulting in loss of speech and 

locked-in syndrome, which later resolved to incomplete tetraplegia. After obtaining informed consent 

and carrying out the medical and surgical screening procedures, the array was implanted in the dominant 

M1 hand/arm area, identified anatomically as the ‘knob’ region
31,33

 of the precentral gyrus in pre-

operative magnetic resonance imaging. 

Each participant used M1 spiking activity to control a cursor displayed on a computer screen
31,32

. 

The participant was instructed to imagine moving a circular cursor displayed on the screen to one of four 

peripheral targets, positioned at 0, 90, 180 and 270°. In each session, 20 trials were collected for each of 
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the four pseudo-randomly presented radial targets. The 3 s period after target appearance was included in 

the analysis. Two datasets per participant were used, corresponding to two research sessions conducted 

on two different days. Data sets were collected on 2004.09.16 and 2004.09.20 (hS1) and 2006.01.23 and 

2006.01.24 (hS3). We used spike-sorting utilities in Offline Sorter (Plexon) to identify and sort neuronal 

units in all of the human and nonhuman primate recordings. We did not distinguish whether a single unit 

sorted from the same electrode on different days corresponded to the same neuron or not. 

Nonhuman primate subjects, electrophysiology and behavioral tasks. Two datasets were recorded in 

two experimental sessions from each of four rhesus monkeys (Macaca mulatta). All recordings were 

obtained via single or dual cortically implanted 10 × 10 microelectrode arrays (electrode length, 1.0 mm), 

similar to the array described above. M1 neurons from monkeys mLA and mCL were recorded while 

they performed point-to-point planar movements. The monkeys used a manipulandum to move a position 

feedback cursor that was presented on the monitor. Targets were randomly placed (that is, uniform in 

two-dimensional space), one at a time, on the workspace. After the successful acquisition of a random 

number (39) of targets, the monkeys received a juice reward. Only segments of data recorded during the 

reaching phases of the tasks, from two experimental sessions, were included in the analyses (datasets: 

mLA, 2004.03.25 and 2004.03.26; mCL, 2004.03.25 and 2004.03.29). M1 and PMv neurons were 

simultaneously recorded from monkey mCO while this monkey performed reaching and grasping 

movements toward objects moving in the workspace (C.E. Vargas-Irwin, P. Yadollahpour, G. 

Shakhnarovich, M.J. Black and J.P. Donoghue, Soc. Neurosci. Abstr. 673.18, 2008). A motion-capture 

system was used to record arm-hand configurations and related behavioral epochs. Only data segments 

corresponding to 1-s segments during the reach-grasp phase before the final object grasp, from two 

sessions, were included in the analyses (datasets: 2008.03.19 and 2007.12.12). M1 and 5d neurons were 

simultaneously recorded via dual arrays from monkey mAB. The monkey performed visually guided 

pursuit tracking of a circular cursor projected on a horizontal screen while wearing an external device for 

kinematic measurements (Kinarm, BKIN Technologies). This cursor followed randomly generated 

trajectories of varying speeds over the planar, horizontal workspace (B.A. Philip and J.P. Donoghue, Soc. 

Neurosci. Abstr. 672.22, 2008). Only data segments recorded during tracking, from two sessions, were 

included in the analyses (datasets 2008.05.08 and 2008.05.09). All procedures were in accordance with 

Brown University Institutional Animal Care and Use Committee approved protocols and the Guide for 

the Care and Use of Laboratory Animals. 
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Point process history models. The distribution of the point process sample paths of a given i
th

 neuron is 

completely specified
16,18,34

 by the conditional intensity function (instantaneous conditional spiking rate) 

0

Pr( ( ) ( ) 1| ( ), ( ))
( | ( ), ( )) lim i i

i

N t N t t z t
t t z t



  



 equation (3) 

where Pr( | )   is a conditional probability, ( )iN t  denotes the sample path (that is, a right-continuous 

function that jumps 1 each time a spike occurs), ( )t  denotes the conditioning intrinsic and ensemble 

spiking histories up to, but not including, time t, and z(t) denotes other relevant extrinsic covariates, such 

as stimuli and behavioral variables. We focused on intensity function models conditioned on spiking 

histories (see Supplementary Fig. 3 for analyses involving conditional intensity function models that also 

included extrinsic covariates such as hand position and velocity). The sample path distribution for the 

discrete time point process belongs to the exponential family with canonical parameter log( ( | ) )tt  , 

which we modeled as 

10 4
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1 1

log( ( | ) )i t i i k i i j k j

k j i k

t K x K x 
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where t indexes discrete time,   1 ms, 
i  relates to a background level of spiking activity, and 

ix denotes the spiking history (spike train) in the time interval (t – 100 ms, t) for the i
th

 neuron, with 

, {0,1}i tx   for 1,2,...,i n  recorded neurons. 1, ,i kK  and 2, , ,i j kK  consisted of temporal basis functions of 

the raised cosine type
9
 with coefficients to be estimated. Ten and four basis functions were used for the 

intrinsic and ensemble history filters, respectively. Thus, 1,iK  and 2, ,i jK  in equation (2) consisted of 

nonparametric temporal filters for the intrinsic and ensemble spiking histories, respectively. Consistent 

with known neurophysiology and measured autocorrelation functions of the recorded spike trains, we 

enforced an absolute refractory period of 2 ms in the intrinsic history component. A history model for a 

particular neuron did not include the spiking history of other neurons recorded by the same electrode. 

That was done to avoid potential negative correlation artifacts, especially at zero and short time lags, 

commonly introduced by current spike thresholding and sorting algorithms. This rule was also adopted in 

the computation of the distribution of pair-wise correlation coefficients. Model parameters were 

estimated via gradient-ascent maximization of the penalized log-likelihood functions
18

. A regularization 

term in the form of a ridge regression penalty was added for the model parameters related to the 
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ensemble history effects. After estimating a conditional intensity function model, the probability of a 

given neuron spiking at any given 1-ms time bin, conditioned on past spiking histories, was obtained as
16

 

,Pr( 1| ) ( | ) ( ) ( | )i t t i t i tx t o t          equation (5) 

The term ( )o   relates to the probability of observing more than one spike in a 1-ms time interval. 

Instantaneous collective states: pair-wise maximum-entropy point process models. The total 

interdependence in multivariate stochastic processes can be decomposed into two main components
35

: a 

time ‘causal’ component (that is, the statistical dependence of current states on past events) and an 

instantaneous component (for example, instantaneous dependencies among neurons). We considered 

instantaneity at two time resolutions: 1- and 10-ms time bins. When using the 10-ms resolution, the rare 

cases of time bins with more than one spike were represented as 1-spike events. We estimated statistical 

interdependencies in these instantaneous collective states by first fitting zero time-lag pair-wise 

maximum entropy distribution models
7,22

. Estimation of probability distributions for high-dimensional 

systems without further constraints is typically an intractable problem. On the other hand, second-order 

statistics in the form of pair-wise correlations are still feasible to compute and maximum entropy 

distributions constrained on pair-wise correlations can then be estimated. This maximum entropy 

distribution model constrained on mean rates and pair-wise zero time-lag correlations
7,23

 is given by 
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where , { 1,1}i tx   , corresponding to no spike and spike, respectively, ( , )Z    is a normalization constant, 

{ }i  reflects constraints imposed by the empirical mean spiking rates, and { }ij  reflects constraints 

imposed by the zero time-lag pair-wise correlations, with
ij ji  . The conditional spiking probability of 

a given neuron under this pair-wise maximum entropy distribution model is given by 
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 equation (7) 

where \ ,i tx  denotes the observed neuronal ensemble state not including the i
th

 neuron. Parameters of these 

pair-wise maximum entropy models were estimated via maximum pseudolikelihood
36

. The consistency 
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of this estimator has been previously demonstrated
37–39

, as has its relationship to contrastive divergence 

methods
39

. We used Gibbs sampling
26

 to sample from the estimated maximum entropy models and 

compute the distributions of multiple-neuron spike coincidences in 1- and 10-ms time bins. For practical 

reasons, and in contrast with the ensemble history point process models, the data used to fit the maximum 

entropy distribution models also included neurons isolated in the same recording channel. This could 

have, if anything, helped to improve the performance of these maximum entropy models in comparison 

with the ensemble history models. 

ROC analysis. ROC curves are a standard tool for the analysis of prediction performance
19

. After 

estimating a conditional intensity function model on training data, the probability of a given neuron 

spiking at any given 1-ms time bin, conditioned on either past spiking histories or instantaneous states, 

was computed on test data according to equations (5) and (7), respectively. A tenfold-crossvalidation 

scheme was used. From this probability, true- and false-positive prediction rates were computed, 

resulting in the ROC curves. We used the AUC to derive a predictive power measure. Informally, the 

relationship between AUC and predictive power can be expressed as follows. Consider the case where all 

of the 1-ms time bin samples are separated into two populations, one consisting of samples with a spike 

and the other consisting of samples with no spikes. Next, consider randomly drawing two samples, one 

from each population. The AUC gives the probability that our conditional intensity function model will 

assign a higher probability (that is, a higher instantaneous spiking rate) to the sample from the spike 

population than to the sample from the no-spike population
20

. The AUC therefore provides an assessment 

of the discriminatory or predictive power for predictive variables under a given model. It also relates to 

the Wilcoxon-Mann-Whitney U statistics in the case of independent samples. Given the temporal 

dependencies in our data, we computed the AUC directly from the ROC curve and used random 

permutation tests to establish the statistical significance of estimated values. Typical confidence intervals 

were extremely narrow overall. The ROC curve of a chance level predictor asymptotes the diagonal line, 

resulting in a AUC of 0.5. In our datasets, the AUC corresponding to chance prediction could be slightly 

larger than 0.5. We defined a predictive power, with respect to this chance level, as 2 ( *)AUC AUC  , 

where *AUC  is the AUC corresponding to a chance level predictor for a particular neuron and model, 

estimated via random permutation methods. The scaling by a factor of 2 was introduced so that the 

predictive power ranged from 0 (no predictive power) to 1 (perfect prediction). 



 

21 

 

Information rates. We computed an information rate that estimates how much reduction in the 

uncertainty about whether or not a neuron will spike in any given time bin, conditioned on knowing only 

the mean spiking rate, is achieved by also knowing spiking histories and their estimated effects under a 

given history model. Given large enough number of samples and under an ergodicity assumption, this 

information rate can be approximated as
23
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where 
, {0,1}i tx  , 

i  is the mean spiking rate and 
, ( | )i t i tt  . The summation term corresponds to 

the average log-likelihood under the history model, with averages computed over T samples (1-ms time 

bins) and the second term corresponds to the average log-likelihood under a homogeneous Poisson 

process with the specified mean rate. Computed to base 2 and normalized by  , the above quantity 

corresponds to an information rate in bits per second. 
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