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1 Transition probabilities in different geometries

We expose here the transition probabilities corresponding to most of the geometries that may be
encountered experimentally. For rectangular domains of length L and width W , the problem can
be further simplified since ∆ is the sum of ∂2

x and ∂2
y . The transition probability can thus be

factorized, P (~r, t|~r0, t0) = P (x, t|x0, t0)× P (y, t|y0, t0), (x and y being the cartesian coordinates),
and we find that

P (x, t|x0, t0) =
∞∑
k=0

ak cos(k
π

L
x0) cos(k

π

L
x)e−k

2 π2

L2D(t−t0). (1)

with a0 = 1
L and ak≥1 = 2

L . P (y, t|y0, t0) is deduced by substituting the appropriate variables. For
circular and elliptic domains, no such factorization is possible. In circular geometry, eigenfunctions
of the laplacian operator involve Bessel functions [1] and the transition probability expressed in
polar coordinates for a circular domain of radius a reads

P (r, θ, t|r0, θ0, t0) =
∞∑
m=0

∞∑
i=1

Am,i cos (m (θ − θ0)) Jm
(
km,i

r

a

)
e−

k2m,i
r2

D(t−t0) (2)

with Jm the mth Bessel function, km,i the ith zero of the first derivative of the mth Bessel function
defined as J ′m (km,i) = 0, and if m 6= 0 and i 6= 1,

Am,i =
2Jm

(
km,i

r0
a

)
πa2 (1 + δ0,m)

(
1− m2

k2
m,i

)
J2
m (km,i)

, (3)

else A0,1 = 1
πa2 . The case of elliptic geometry leads to the Mathieu’s and modified Mathieu’s

functions [2, 1]. For an ellipse of major axis a and minor axis b, the general solution for the
transition probability in elliptic coordinates (ξ, η) is

P (ξ, η, t|ξ0, η0, t0) =
∞∑

l∈{c,s};r,m=0

Ar,m,l(ξ0, η0)φr,m,l(ξ, η)e−
4kξa
r,m,l

f2
D(t−t0), (4)

where
φr,m,c(ξ, η) = Cer

(
kξar,m,c, ξ

)
cer
(
kξar,m,c, η

)
,

φr,m,s(ξ, η) = Ser+1

(
kξar,m,s, ξ

)
ser+1

(
kξar,m,s, η

)
,

and f2 = a2 − b2. cer and ser are the even and the odd rth Mathieu Functions, and Cer and Ser
the even and odd rth Modified Mathieu Functions. kξar,m,c and kξar,m,s are respectively defined as

dCer
(
kξar,m,c, ξ

)
dξ

|ξ=ξa = 0 and
dSer+1

(
kξar,m,s, ξ

)
dξ

|ξ=ξa = 0. (5)

From the initial conditions, we can deduce the coefficients Ar,m,l(ξ0, η0),

Ar,m,l(ξ0, η0) =
φr,m,l(ξ0, η0)

ρr,m,l
, (6)

with

ρr,m,l =
∫ ξa

0

∫ 2π

0

dξdη (cosh (2ξ)− cos (2η))φ2
r,m,l(ξ, η). (7)
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Figure 1: Normalized distributions of MAP estimates of the diffusivity for free Brownian motion,
for two different noise levels: σ = 0.3 a.u(solid green line) and σ = 1 a.u.(dashed green line). The
trajectories were generated with a diffusivity D̃ = 1 a.u., a time step ∆t = 1 a.u. and N = 500
steps. Thus, these noise levels correspond respectively to a relative uncertainty of 21% and 70% on
the position of the particle with respect to the mean 1D displacement

√
2D∆t. The distribution of

the estimates without noise, common to MAP and MSD estimators, is represented with the solid
black line. The mean values of the distributions are equal to the actual value of the diffusivity
(D̃ = 1 a.u.) at which a vertical black line is positioned. The MAP estimator thus remains unbiased
as the noise on the position of the particle increases. Note that each distribution is normalized so
that its maximum value equals one.

2 Transition probability in a square domain with a Gaussian
noise on the position

In square domains, the transition probability can still be factorized when each coordinate is affected
by an independent noise and one can write

P (~r ′, t|~r ′0, t0) = P (x′, t|x′0, t0)× P (y′, t|y′0, t0). (8)

As in the case of free diffusion, we write,

P (x′, t|x′0, t0) =
∫
dxdx0P (x′|x)P (x, t|x0, t0)P (x′0|x0), (9)

where P (x′|x) is given by

P (x′|x) =
1

(2πσ2)
d
2
e−

(x′−x)2

2σ2 , (10)

with d = 1. P (x′0|x0) is obtained in the same way. Integration should be performed over all
the possible values of x and x0. We assume that P (x′0|x0) and P (x′|x) are sufficiently localized
around positions x′0 and x′ respectively so that integration can be extended to R2, thus yielding
the following approximated expression of P (x′, t|x′0, t0) :

P (x′, t|x′0, t0) =
∞∑
k=0

ak cos(k
π

L
x′0) cos(k

π

L
x′)e−k

2 π2

L2 (D(t−t0)+σ2). (11)

P (y′, t|y′0, t0) is obtained in the same way and one gets the expression of the transition probability
in the presence of a Gaussian noise on the position.
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Figure 2: Plots of the bias and standard deviation of estimations of the diffusivity by the
MAP (green curve), MSD(1)(red curve), MSD(2)(blue curve) and MSD(3)(purple curve) estima-
tors in the case where both the length of the confining domain and the diffusivity are parameters
that have to be determined. The solid black line is the Cramér-Rao lower bound for the standard
deviation of unbiased estimators.

3 Distribution of MAP estimates for free Brownian motion
in presence of noise

In the case of free Brownian motion with a Gaussian noise on the position of the particle, the
distributions of MAP estimates of the diffusivity remain peaked on the actual value of the diffusivity
as the noise level increases as demonstrated for two different noise levels (σ = 0.3 a.u. and σ =
1 a.u.) on Fig. 1. The trajectories were generated with a diffusivity D̃ = 1 a.u., a time step
∆t = 1 a.u. and N = 500 steps. The MAP estimator remains unbiased as the noise level increases.

4 Comparison of MAP and MSD estimators when the do-
main length L is estimated along with D

We consider here the case where both the length of the confining domain and the diffusivity are
parameters that have to be determined. The results concerning the estimation of the diffusivity
are summarized in Fig. 2. They don’t differ significantly from the previous case where the length
of the confining domain is considered as known. Thus, for the sake of simplicity, we only focus in
the core of the paper on the case where the only parameter to be inferred is the diffusivity.

5 Influence of the geometry of the confining domain

The Bayesian inference method makes use of transition probabilities that depend on the geometry
of the confining domain. We investigate here the effect of the geometry of the confining domain by
generating trajectories inside circular domains and inferring the diffusivity using both the square
estimator (the one used for square domains) and the circular estimator (the one using the transition
probability derived for circular domains) denoted respectively as MAPsquare and MAPcircle. The
results are shown in Fig. 3. It appears that the square estimator is rather accurate when the level
of confinement is sufficiently low. As the level of confinement increases the effect of the geometry
becomes strong and the square estimator is largely biased and has a standard deviation lower that
the Cramér-Rao limit. This reflects the fact that the model of diffusion within a square domain
is no longer adequate to describe the diffusive motion within a circular domain just as the model
of free diffusion was no longer adequate to describe the diffusive motion within a square domain
when the level of confinement is high (cf. the behavior of MSD(1) in the core of the paper).
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Figure 3: Plots of the bias and standard deviation of the estimations of the diffusivity by the
MAPcircle(light blue curve), MAPsquare(green curve), MSD(1)(red curve), MSD(2)(blue curve)
and MSD(3)(purple curve) estimators for 100-time step trajectories generated inside a circular
domain. The solid black line is the Cramér-Rao lower bound for the standard deviation of unbiased
estimators for the model of diffusion within a circular domain.

The sensitivity of the method to the geometry of the confining domain can be used to compare
the accuracy of different models of motion. Indeed, the Bayesian approach allows one to quantita-
tively compare the validity of models by calculating their evidence from the posterior probability
function. The evidence of a model is a well defined object of Bayesian analysis [3]. It is defined
as the probability of the considered model given the collected data. Given one trajectory, one
can calculate the evidence of a given model, choose the model with the maximum evidence and
evaluate the corresponding parameters. In order to compare the validity of models of diffusion
within square and circular domains in the case where trajectories are generated inside circular do-
mains, we have calculated for each 100-step realization, the evidence for each model and found that
when the square estimator becomes largely biased the evidence for the model of diffusion within
a circular domain is almost always (in 98% of the cases for u = 0.05) larger than the evidence for
the model of diffusion within a square domain. One should then choose to estimate the diffusivity
using the maximum evidence estimator.
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