Human adrenodoxin reductase: Two mRNAs encoded by a single gene on chromosome 17cen→q25 are expressed in steroidogenic tissues

Sharyn B. Solish*, James Picado-Leonard*, Yves Morel*, Robert W. Kuhn[†], T. K. Mohandas[‡], Israel Hanukoglu[§], and Walter L. Miller^{*¶}

*Department of Pediatrics and the Metabolic Research Unit, and [†]Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143; [‡]Division of Medical Genetics, Harbor Medical Center, University of California, Los Angeles, CA 90509; and [§]Department of Hormone Research, Weizmann Institute of Science, Rehovot, 76100, Israel

Communicated by Seymour Lieberman, June 8, 1988

ABSTRACT Adrenodoxin reductase is a mitochondrial flavoprotein that receives electrons from NADPH, thus initiating the electron-transport chain serving mitochondrial cytochromes P450. We have cloned and sequenced two human adrenodoxin reductase cDNAs that differ by the presence of six additional codons in the middle of one clone. The sequence in this region indicates that these six extra codons arise by alternative splicing of the pre-mRNA. Southern blot hybridization patterns of human genomic DNA cut with four restriction enzymes indicate that the human genome has only one gene for adrenodoxin reductase. Analysis of a panel of mousehuman somatic cell hybrids localized this gene to chromosome 17cen \rightarrow q25. The alternatively spliced mRNA containing the six extra codons represents 10-20% of all adrenodoxin reductase mRNA. The expression of the adrenodoxin reductase gene may be stimulated by pituitary tropic hormones acting through cAMP, but its response is quantitatively much less than the responses of P450scc and adrenodoxin.

The first and rate-limiting step in the synthesis of all steroid hormones is the conversion of cholesterol to pregnenolone by a mitochondrial cytochrome termed P450scc. This cytochrome binds cholesterol and mediates three separate reactions on a single active site: 20-hydroxylation, 22-hydroxylation, and scission of the cholesterol side chain. Each of these reactions requires a pair of electrons. The electrons are transferred from NADPH to the flavoprotein adrenodoxin reductase and thence to the iron-sulfur protein adrenodoxin, which then donates them to the P450scc (1). This same electron-transport system donates electrons to another steroidogenic enzyme, P450c11 (2), to renal vitamin D 1 α hydroxylase (3), and to hepatic 26-hydroxylase (4). The microsomal steroidogenic enzymes P450c17 (17α -hydroxylase/17,20-lyase) (5, 6), P450c21 (21-hydroxylase) (7, 8), and P450aro (aromatase) (9) employ a different flavoprotein to transfer electrons from NADPH.

Despite this intimate functional organization, the genes encoding these three components differ greatly in structure, location, and regulation. Human P450scc is encoded by a single gene on chromosome 15 (10), and its mRNA readily accumulates in human fetal adrenal cells stimulated with cAMP or corticotropin (11, 12) or in human testicular or ovarian granulosa cells stimulated with cAMP or gonadotropins (12–14). Adrenodoxin is encoded by a single functional gene on chromosome 11q13 \rightarrow qter (15) that encodes several mRNAs differing in the lengths of their 3' untranslated regions (16). This mRNA also accumulates in steroidogenic

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

tissues stimulated with cAMP or tropic hormones (17). However, unlike P450scc mRNA, the half-life of adrenodoxin mRNA appears to be regulated posttranscriptionally (16, 18). The structure of these and other steroidogenic genes and their disease-causing lesions have been reviewed recently (19, 20).

Much less is known about adrenodoxin reductase. The recent cloning of partial-length bovine adrenodoxin reductase cDNA (21) has now permitted us to clone the full-length human cDNA^{\parallel} so that all three components of the P450scc system may be studied. Adrenodoxin reductase is encoded by a single gene on the long arm of chromosome 17. This gene encodes two species of mRNA that apparently arise by alternative processing of the primary transcript. The accumulation of neither of these mRNAs is greatly stimulated by gonadotropins or cAMP in cultured human granulosa cells.

MATERIALS AND METHODS

The human adrenal and testicular cDNA libraries (5) were screened with the 1.6-kilobase (kb) bovine adrenodoxin reductase cDNA fragment isolated from plasmid pAR (21) by EcoRI cleavage and gel electrophoresis. The DNA was labeled to $>10^8$ cpm/µg by random-primer labeling (15) and used to screen the libraries under low-stringency conditions $[5 \times SCC (1 \times SCC = 0.15 \text{ M NaCl}/0.015 \text{ M sodium citrate})/$ 20% (vol/vol) formamide/denatured salmon sperm DNA (100 µg/ml)/0.1% polyvinylpyrrolidone/0.1% Ficoll/0.1% bovine serum albumin at 37°C] as described (5). Clones positive on duplicate screening were purified on DEAE-cellulose (22) and sequenced in phage M13 vectors as described (5, 10, 16) or by supercoiled DNA sequencing in pUC plasmids (23). The 30-base oligodeoxynucleotide 3'-GACC-TCCGGGAGGAAAACACGGTCTCTTGC-5' complemen-tary to the codons for amino acids 202–211, including the alternatively spliced region of the mRNA, was prepared on a commercial DNA synthesizer, end-labeled by use of $[\gamma^{-32}P]$ -ATP, and used to probe the primary screening of both libraries in $6 \times$ SCC at 37°C as described (7).

DNA was isolated from human lymphocytes and from mouse-human somatic cell hybrids, cleaved with restriction endonucleases, and analyzed as described (10, 15).

Human granulosa cells were prepared and cultured with or without hormonal stimuli (13) and used as a source of RNA for gel-transfer hybridization analysis (11, 12).

[®]To whom reprint requests should be addressed at Room 677-S, Pediatrics, University of California, San Francisco, CA 94143-0434. [®]The sequence reported in this paper is being deposited in the EMBL/GenBank data base (IntelliGenetics, Mountain View, CA, and Eur. Mol. Biol. Lab., Heidelberg) (accession no. J03826).

RESULTS

Identification of Human Adrenal and Testicular Adrenodoxin Reductase cDNA Clones. Hybridization of the bovine adrenodoxin reductase cDNA to our human adrenal cDNA library yielded 49 positively hybridizing plaques. These were pooled in groups of 3 without plaque purification, and the DNA was cleaved with EcoRI, electrophoresed through agarose, and analyzed by Southern blot (24) hybridization with the bovine probe, thus identifying the pool containing the longest adrenodoxin reductase cDNA insert (5). These three clones were then analyzed in the same fashion individually, and the one containing the longest insert, λ haAR-1, was plaque-purified. Sequencing of this cDNA in phage M13 showed that it was about 1600 base pairs long, lacking about 200 bases from the 5' end (Fig. 1). We therefore cloned the 272-base fragment from the 5' EcoRI cloning linker to a Sma I site and used this to screen a human testis cDNA library, identifying 97 clones. These were screened by identifying the one bearing the longest EcoRI-Sma I fragment that hybridized to the adrenal 272-base EcoRI-Sma I fragment. The longest fragment detected was slightly less than 500 bases and was included in a 1.8-kb cDNA. This clone, designated λ htAR-1, appeared to be full-length and was sequenced in its entirety by supercoil and M13 sequencing.

Sequence of Human Adrenodoxin Reductase cDNA Clones. The nucleotide sequence and encoded amino acid sequence of the adrenal clone λ haAR-1 corresponded very well with the sequence of the bovine adrenal clone pAR used as the initial probe (I.H. and T. Gutfinger, unpublished data). This nucleotide sequence also corresponded well with a preliminary report of a full-length bovine adrenodoxin reductase cDNA (25). The sequence of our adrenal clone λ haAR-1 was confirmed by the sequence of the testicular clone λ htAR-1. That testicular cDNA corresponds to the complete coding sequence, the complete 3' untranslated sequence, and 20 bases of the 5' untranslated region, a total of 1829 bases excluding the poly(A) region (Fig. 2).

The most notable feature of the λ htAR-1 sequence is the presence of 18 additional nucleotides encoding 6 amino acids not found in the human adrenal clone. This extra region, encoding amino acids 204–209 in Fig. 2, contains an abundance of pyrimidines and ends with CAG (encoding Gln-209). Since pyrimidine-rich sequences ending with CAG constitute the canonical 3' splice donor sites of eukaryotic introns (26),

FIG. 1. Schematic diagram of the two human adrenodoxin reductase cDNAs. The upper diagram shows the protein-coding regions of the clones as boxes; the open region corresponds to the mitochondrial leader peptide, the hatched regions correspond to mature adrenodoxin reductase, and the solid region indicates the six additional amino acids resulting from alternative splicing of the mRNA precursor. The 5' and 3' untranslated sequences are indicated with a solid line. λ haAR, partial-length human adrenal cDNA; λ htAR, full-length human testicular cDNA. Only the restriction endonuclease sites mentioned in the text and used in the sequencing strategy are shown. Bg, Bgl II; Bc, Bcl II; Bm, BamHI; Hc, HincII; Hd, HindIII; N, Nae I; P, Pst I; R, Rsa I; S, Sma I. The sequencing strategies are shown by arrows representing lengths of subclones and direction of sequencing.

we propose that the presence or absence of these 18 extra nucleotides is based on the alternative use of potential 3' donor sites during the splicing of intronic RNA in this region.

Frequency of Alternative Splicing in Human Adrenodoxin Reductase. We sequenced one cDNA from adrenal and one from testis and found two alternatively spliced sequences. To determine whether this splicing might be tissue-specific, we synthesized a 30-base oligonucleotide corresponding to the complement of the mRNA in this region and used this to reprobe the plaque "lifts" from the primary screenings of both the adrenal and testis cDNA libraries. The adrenal library contained 2 clones that hybridized to the 30-mer, whereas the testicular library contained 18. Thus, both tissues contained this alternatively spliced form of adrenodoxin reductase mRNA.

To determine the frequency with which this alternative splicing event occurs, we needed to know the number of adrenodoxin reductase cDNA clones lacking this 18-base region. Since the region is about 1150 bases from the poly(A)-addition site, and since the libraries might contain partial-length cDNA clones not extending to this region, we could not compare the number hybridizing to the 30-mer to the total number of positives initially identified with pAR. Therefore, we reprobed the plaque lifts from the primary screening with a 188-base-pair Rsa I-Rsa I fragment encompassing the 18-base region (extending from codon 160 to codon 220, Figs. 1 and 2). This probe identified 23 adrenal clones and 77 testicular clones. Therefore, 2 of 23 adrenal clones (9%) and 18 of 77 testicular clones (23%) contain this 18-base region.

Number of Adrenodoxin Reductase Genes. An alternative explanation for the presence of these two types of adrenodoxin reductase mRNAs might be that they are encoded by two different genes. To determine the number of adrenodoxin reductase genes in the human genome, we digested human leukocyte DNA with four different restriction enzymes and probed Southern blots of this DNA with λ haAR-1 (Fig. 3). DNA digested with *Kpn* I and *Xba* I produced single hybridizing bands indicating the presence of a single gene, as previously reported (21). Digestion with *Hin*dIII produced two bands of 5.8 and 6.4 kb, whereas digestion with *Pst* I produced four bands of 2.8, 1.8, 0.8 and 0.6 kb, thus totaling about 6 kb. As the cDNA is about 2 kb long and contains a single *Hin*dIII site, this hybridization pattern indicates that the single adrenodoxin reductase gene is fairly small, between 6 and 12 kb.

Chromosomal Location of the Human Adrenodoxin Reductase Gene. To determine the location of this unique gene, we probed *Hind*III- or *Pst* I-digested DNA from a panel of mouse-human somatic cell hybrids having karyotypically determined complements of human chromosomes. Correlation of the hybridization pattern and the karyotypic data (Table 1) indicated that the human adrenodoxin reductase gene lies on chromosome 17. We then examined additional hybrids of human cells with partial deletions of chromosome 17, localizing the adrenodoxin reductase gene to $17cen \rightarrow q25$ (Fig. 4).

Hormonal Regulation of Adrenodoxin Reductase. Human granulosa cells, if cultured *in vitro* for 8–12 days and then stimulated with gonadotropins or cAMP, will accumulate mRNAs for both P450scc and adrenodoxin (12–14, 16, 17). Transfer blots of human granulosa cell RNA probed with λ haAR-1, however, showed that the same protocol of culture and hormonal stimulation has little effect on the abundance of adrenodoxin reductase mRNA (Fig. 5). Thus, the regulation of expression of the adrenodoxin reductase gene in this tissue differs greatly from the temporal pattern of P450scc and adrenodoxin regulation.

							1									10										20			
GGGGGTTGCTCCCAGCC				3	Met ATG	Ala GCT	Ser TCC	Arg CGC	Cys TGC	Trp TCC	Arg CGC	Trp TGG	Trp TGG	Gly GCC	Trp TCC	Ser TCC	Ala GCG	Trp TCC	Pro CCT	Arg CGG	Thr ACC	Arg CCC	Leu ÇTG	Pro CCȚ	Pro CCC	Ala GCC	с1у ССС		
_		_	_		_	30		7	7							40										50			
Ser AGC	Thr ACC	Pro CCG	Ser AGC	Phe TTC	Cys TGC	His CAC	His Cat	Phe TTC	Ser TCC	Thr ACA	Gln CAG	Glu GAG	Lys AAG	Thr ACC	Pro CCC	Gln CAG	Ile ATC	Cys TCT	Val GTG	Val GTG	Gly GGC	Ser AGT	Cly CCC	Pro CCA	Ala GCT	Gly CCC	Phe TTC	Tyr Tac	Thr ACG
						60										70													
Ala	Gln	His	Leu	Leu	Lys	His	Pro	Gln	Ala	His	Val	Asp	I1e	Tyr	Clu	Lys	Gln	Pro	Val	Pro	Phe	Cly	Leu	Val	Arg	Phe	Cly	Val	Ala
GCC	CAA	CAC	CTC	CTA	AAG	CAC	CCC	CAG	GCC	CAC	CTC	GAC	ATC	TAC	GAG	***	CAG	CCT	CTC	ccc	TTT	CCC	CTC	CTC	CCC	TTT	CCT	CTC	CCC
Pro	Asp	Hie	Pro	G 111	Val	90 Lve	Aen	V=1	T1.		The	Phe	The	<u>61</u> m	The	100		8	C 1v	1-0	•••		Phe	T	C 1	110	V-1	~ 1	V -1
ССТ	GAT	CAC	CCC	GAG	GTC	ANC	AAT	GTC	ATC	AAC	ACA	TTT	ACC	CAG	ACG	GCC	CAT	TCT	GCC	CGC	TGT	GCC	TTC	TCC	GCC	AAC	CTC	CAC	GTC
						120			Arg							130										140			
Gly CCC	Arg Acc	Asp	Val GTC	Thr	Val CTC	Pro	Glu GAG	Leu	Gln	Glu GAC	Ala GCC	Tyr TAC	His CAC	Ala	Val GTC	Val GTC	Leu	Ser	Tyr	Gly	Ala CCA	Glu	Asp	His	Arg	Ala	Leu	Glu	Ile
••••							0.10		C	ono		140	unu	001	010	010	010	100	140	000	Uun	UNU	UNU	~~1	çoo	000	010	UAA	A11
Pro	Gly	Glu	Glu	Leu	Pro	150 Cly	Val	Суз	Ser	Ala	Arg	Ala	Phe	Val	Cly	160 Trp	Tyr	Asn	Cly	Leu	Pro	Glu	Asn	Gln	Glu	170 Leu	Glu	Pro	Asp
CCT	CCT	GAC	GAG	CTG	CCA	CCT	CTC	TGC	TCC	CCC	CCC	CCC	TTC	CTC	CCC	TCC	TAC	ĂY C	CCC	CTT	CCT	GAC	AAC	CAG	GAG	CTC	CYC	CCA	GAC
_	_	_				180		_				_			_	190										200			
Leu CTG	Ser AGC	Cys TGT	Asp GAC	Thr ACA	Ala GCC	Val CTC	Ile ATT	Leu CTG	G1Y CCC	Gln CAG	Cly CCC	Asn AAC	Val GTC	Ala GCT	Leu CTG	Asp GAC	Val GTG	Ala GCC	Arg CGC	II.	Leu CTA	Leu CTG	Thr ACC	Pro CCA	Pro CCT	Glu GAG	His CAC	Leu CTG	Glu GAG
						210										220										220			
Ala	Leu	Leu	Leu	Cys	Gln	Arg	Thr	Asp	110	Thr	Lys	Ala	Ala	Leu	Cly	Val	Leu	Arg	Gln	Ser	Arg	Val	Lys	Thr	Val	Trp	Leu	Val	Gly
GCC	CTC	CTT	TTC	TGC	CAG	AGA	ACG	GAC	ATC	ACG	AAG	GCA	GCC	CTG	GGT	GTA	CTG	AGG	CAG	AGT	CGA	CTC	AAC	ACA	CTC	TCC	CTA	CTC	GGC
Ara	Ara	Glv	Pro	Leu	61 n	240 Val	A1.	Phe	Thr	11.	Lve	61,1	Len	Ara	61.1	250 Met	T1.	Gla	T.e.u	Pro	61 v	A1 .	Ara	Pro	T1.	260		P ro	Vel
CCC	CCT	CCA	CCC	CTC	CAA	CTC	GCC	TŤC	ACC	ATT	AAG	GAC	CTT	CCC	CAC	ATC	ATT	CAG	TTA	CCC	GGA	CCC	COC	ccc	ATT	TTC	GAT	CCT	CTC
						270										280										290			
Asp GAT	Phe TTC	Leu TTC	Cly CCT	Leu CTC	Gln CAG	Asp GAC	Lys AAG	Ile ATC	Lys AAG	Glu GAG	Val GTC	Pro CCC	Arg CGC	Pro CCG	Arg AGG	Lys AAG	Arg CGG	Leu CTG	Thr ACG	Glu GAA	Leu CTG	Leu CTG	Leu CTT	Arg CGA	Thr ACG	Ala GCC	Thr ACA	Glu GAG	Lys AAG
						300																		•••••					
Pro	Gly	Pro	Ala	Glu	Ala	Ala	Arg	Gln	Ala	Ser	Ala	Ser	Arg	Ala	Trp	61y	Leu	Arg	Phe	Phe	Arg	Ser	Pro	Gln	Ģln	Val	Leu	Pro	Ser
CCA	CCC	CCG	CCC	GAA	GCT	CCC	CCC	CAG	GCA	TCG	CCĆ	TCC	CCT	CCC	TCC	GCC	CTC	CCC	TTT	TTC	CCA	AGC	ccc	CAG	CAG	GTC	CTC	CCC	TCA
Pro	Aen	61 v	Ara	Ara	41.	330	C 1v	V=1	Ara	T.eu		Ve1	The	Ara	Len	340 Glu	<u>61v</u>	V-1		C 1		The	1.50		V-1	350 Bro	T b =	0 1w	l en
CCA	CAT	CCC	CCC	CCC	GCA	GCA	CCT	GTC	CCC	CTA	GCA	GTC	ACT	ACA	CTC	CYC	CCT	GTC	GAT	CAC	GCC	ACC	CGT	GCA	CTC	CCC	ACG	GGA	GAC
						360										370										380			
Met	Glu GAA	Asp GAC	Leu CTC	Pro CCT	Cys TGT	Cly CCC	Leu CTG	Val GTG	Leu CTC	Ser AGC	Ser	Ile ATT	Gly CCC	Tyr Tat	Lys AAG	Ser	Arg	Pro CCT	Val GTC		Pro	Ser	Val CTC	Pro	Phe TTT	Asp	Ser TCC	Lys AAG	Leu
																			••••	••	<u> </u>		-		•••				•••
Gly	Val	Ile	Pro	Asn	Val	390 Glu	Gly	Arg	Val	Met	Asp	Val	Pro	Gly	Leu	Tyr	Cys	Ser	Gly	Trp	Val	Lys	Arg	Gly	Pro	410 Thr	Gly	Val	Ile
CCC	GTC	ATC	CCC	AAT	CTC	GAG	GGC	CCC	CTT	ATG	GAT	CTC	CCA	CCC	CTC	TAC	TGC	AGC	GGC	TGG	CTC	AAC	AGA	GCA	CCT	YCY	CCT	GTC	ATA
•••					•	420		• • • • •		.	a	M - 4	•	•	a 1-	430	•	•	•••	a	• • • •	•	•			440	•	•	
GCC	ACA	ACC	Met ATG	Thr ACT	Asp GAC	Ser AGC	Phe TTC	Leu CTC	ACC	CCC	CAG	Met ATG	Leu CTG	Leu CTG	CAG	Asp GAC	Leu CTG	AAG	GCT	CCC	Leu TTG	Leu CTC	CCC	Ser TCT	CCC	Pro CCC	Arg ACG	Pro CCT	GGC
						450										460										470			
Tyr	Ala	Ala	Ile	Gln	Ala	Leu	Leu	Ser	Ser	Arg	Gly	Val	Arg	Pro	Val	Ser	Phe	Ser	Asp	Trp	Glu	Lys	Leu	Asp	Ala	Glu	Glu	Val	Ala
TAC	GCA	GCC	ATC	CAG	GUU	CTG	CIU	AGC	AGC	CGA	GGG	GIC	CGG	CLA	GIC	TCT	TTC	IUA	GAC	166	GAG	AAG	CIG	GAT	GCC	GAG	φ A G	GIG	
Åra	Glv	Gln	<u>Clv</u>	Thr	Glv	480 Lvs	Pro	Ara	Glu	Lys	Leu	Val	Asp	Pro	Gln	490 Glu	Met	Leu	۸ra	Leu	Leu	Gly	497 His	OP					
CCC	CCC	CAG	ccc	ACG	ccc	NG	ccc	AGC	GAG	AAC	CTG	CTC	GAT	CCT	CAG	GAG	ATG	CTG	CCC	CTC	CTC	CCC	CAC	TGA	GCC	CAGCO	CCCA	SCCC	CCCCCC
CCA	GCAG	GGAA	CCCA!	ICAC:	IGTT	GGGA	CCCC.	AAGG	CCTC	GGTC	CCTC	TGAG	ICCC.	ACTT	TGCA	CCTC	FGCT	GATC	cccc	CCGG	CCCT	GCCT	TGGA	GGCT	TGGC	IGCI	CTTC	CAGC	TCTC
TCC	TCCC	TCCT	CCCC	AACC	ICCC	CCTT	GCGC	GCAA	GGTT	TTAG	CTTT	CAGC	AACT	GAGG	TAAC	CTTA	GCGA	CAGG	TGGA	CCTC	TGGG	CCGA	TCTA	ACCC	CTTA	CCCA!	ICTC!	ICTA	CTGCT

Translated Mol. Weight = 54459.32

FIG. 2. Sequence of λ htAR-1 cDNA. The downward-pointing arrowhead between amino acids 32 and 33 indicates the cleavage site of the enzyme precursor as it traverses the mitochondrial membrane. The upward pointing arrowhead between the second and third bases of codon 65 (Val) indicates the 5' limit of λ haAR-1 cDNA. Three nucleotide differences between λ htAR-1 and λ haAR-1 are indicated below the sequence, a C-to-A transversion near the end of the 3' untranslated region, a G-to-A transition in codon 327, and an A-to-G transition in codon 123, changing Glu to Arg. The presence of this allelic variation was proven experimentally; λ htAR-1 could be cleaved with *Pst* I at this location but λ haAR-1 could not, since the A-to-G transition eliminates this site.

DISCUSSION

The cloning of human adrenodoxin reductase cDNA now completes our genetic knowledge of the human cholesterol side-chain-cleavage system. There is only one functional gene for each of the three components, P450scc (10), adreno-

doxin (15), and now, adrenodoxin reductase. Despite this genetic simplicity, the P450scc system is differentially regulated in the adrenal by corticotropin, acting through cAMP, and angiotensin II, acting through calcium (27). Furthermore, kinetic studies indicate different enzymologic parameters for various lipoidal derivatives of cholesterol (28). Thus, there Biochemistry: Solish et al.

FIG. 3. Southern blot of human genomic DNA probed with λ haAR-1. The enzymes used to digest the DNA from one individual are shown above the corresponding lanes. Size markers (in kb) show positions of fragments produced by *Hind*III digestion of bacteriophage λ DNA.

appear to be multiple additional layers of control of the cholesterol side-chain-cleavage system, in addition to transcriptional control. Such variations in the behavior of a single enzyme often reflect posttranslational modification (glycosylation, phosphorylation, etc.) or the presence of small molecules acting as competitors or facilitators. The finding of alternative splicing of adrenodoxin reductase mRNA sug-

FIG. 4. Southern blot of *Pst* I-cut genomic DNA from mousehuman somatic cell hybrids probed with λ haAR-1. Lane 1: DNA from cell line CF 11-4, which lacks human chromosome 17 (third cell line from right in Table 1). Lane 2: DNA from cell line CF 80-8, which contains human chromosome 17 pter \rightarrow q25. Lane 3: same as lane 2. Lane 4: DNA from cell line CF 17-24/7, which contains the entire long arm of chromosome 17. Lane 5: DNA from cell line CF 84-11/5, which contains human chromosome 17 but no other human chromosomes (last cell line on right in Table 1).

gests the possibility of yet another level of control of the cholesterol side-chain-cleavage system.

Both alternatively spliced forms of adrenodoxin reductase mRNA were found in the testis, which has only a single steroidogenic mitochondrial P450 enzyme, P450scc. Thus, it

	Cell line																		
	2	7	21	25	20	26	4	34	27	39 —	3 3	5	37	30 	116	11	35	11	Discordant, no. (<i>Pst</i> I
Chromosome	4	4	4	4	4	8	4	5	3	8		4	8		4	4	4	5	bands)
1	+	-	-	-	-	+	+	•	-	•	+	•	-	-	+	-	-	-	13
2	+	-	-	-	+	-	+	-	+	-	+	+	-	-	+	-	-	-	11
3	-	+	-	-	+	+	+	-	-	+	+	+	-	+	+	-	+	-	8
4	+	+	-	+	+	+	+	+	-	-	+	-	+	+	+	-	+	-	6
5	(+)	-	-	+	(+)	+	-	-	+	-	-	+	+	(+)	+	-	-	-	9
6	+	+	-	+	-	+	+	+	+	-	+	(+)	+	+	+	-	+	-	5
7	+	(-)	+	-	+	+	+	+	-	+	+	-	+	-	-	-	+	-	6
8	+	(+)	-	+	+	+	+	+	+	+	+	+	(+)	-	+	-	+	-	4
9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	17
10	-	-	+	+	-	(+)	+	+	-	-	+	-	-	+	-	-	-	-	9
11	(-)	+	-	+	+	-	-	+	+	-	-	-	+	-	-	-	-	-	10
12	+	(+)	+	+	+	+	-	-	+	- ,	-	-	+	(+)	+	-	+	-	7
13	-	-	-	-	+	+	+	-	-	-	+	(+)	-	+	-	-	-	-	10
14	+	+	+	-	+	•	+	+	-	-	+	+	+	+	-	-	+	-	4
15	+	-	-	-	(-)	+	+	-	+	+	+	+	-	-	+	-	+	-	9
16	+	-	-	-	+	(+)	-	-	-	-	-	-	-	-	+	-	-	-	14
17	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	-	+	+	Ó
18	+	-	-	-	+	+	+	-	+	-	+	-	-	+	+	-	+	-	9
19	+	-	+	(+)	-	+	÷	(+)	-	-	+	+	-	-	+	-	-	-	9
20	+	+	+	`-`	+	(+)	+	`+	+	-	+	-	+	(-)	+	-	-	-	7
21	-	-	+	+	+	`+´	-	-	+	-	-	+	+	+	+	-	-	-	9
22	+	-	-	-	+	+	-	(+)	-	-	-	+	+	+	+	-	-	-	10
X	-	-	-	-	+	-	-	`-'	-	-	-	+	-	-	+	+	-	-	16
Ŷ	-	-	(+)	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	14

Table 1 Correlation of human chromosomes in hybrid cell lines and hybridization patterns

Presence of human chromosomes in mouse-human somatic cell lines is scored as follows: present in >30% of analyzed cells, +; 10-30%, (+); 5-9%, (-); not detected, -. Number of discordances with the *Pst* I (or *Hind*III) hybridization pattern detected on Southern blots probed with λ haAR-1 cDNA appears at right.

FIG. 5. Transfer blot of RNA from cultured human granulosa cells. Molecular size (kb) markers were *Hin*dIII fragments of phage PM-2. Each lane contained 30 μ g of total RNA. Control: cells cultured 12 days without hormonal stimulus. FSH: Duplicate cells grown 10 days without treatment and 2 days with human follicle-stimulating hormone (100 μ g/ml). hCG: Duplicate cells grown 10 days without treatment and 2 days with 8-bromo-cAMP (1 mM).

is clear that the two different forms of adrenodoxin reductase are not specific for various mitochondrial P450s such as P450scc and P450c11. Since the three-dimensional structure of adrenodoxin reductase is unknown, we cannot predict whether the alternative splicing event alters the molecule significantly. The six additional amino acids could conceivably alter the binding of NADPH to take up electrons or the binding of adrenodoxin to give them up. The alternatively spliced form of adrenodoxin reductase contains an additional cysteine residue (no. 208) that, in the reducing environment of the mitochondrial matrix, should exist in the free sulfhydryl form, thus changing the redox properties of the protein. It will be of considerable interest to compare the redox properties of the two forms of adrenodoxin reductase prepared by bacterial expression of the cDNAs.

The regulation of adrenal steroidogenesis is complex. Two different tropic hormones, corticotropin and angiotensin II, act through different intracellular second messengers. Both appear to activate cholesterol side-chain cleavage activity acutely, possibly by phosphorylation of cholesterol esterase, and both stimulate steroidogenesis chronically, by stimulating transcription of the P450scc and adrenodoxin genes (29). In addition to these two mechanisms, evidence is accumulating rapidly that the abundance of adrenodoxin mRNA is regulated posttranscriptionally by changes in mRNA half-life (16, 18). Our finding of alternative splicing of the mRNA encoding adrenodoxin reductase suggests that yet another class of regulation is involved in this crucial biological system.

We thank Nhung Huynh for technical assistance, Raimo Voutilainen for the RNA transfer blot used for Fig. 4, and Carol Dahlstrom for typing the manuscript. This work was supported by National Institutes of Health National Research Service Award 1F32 DK08010 and a grant from the University of California, San Francisco, Academic Senate to S.B.S., a predoctoral fellowship from the ARCS Foundation to J.P.-L., National Institutes of Health Fogarty International Fellowship 1F05TW03935 to Y.M., and grants from the March of Dimes (6-396) and National Institutes of Health (DK37922) to W.L.M.

- Jefcoate, C. R., McNamara, B. C. & DiBartolomeis, M. S. (1986) Endocr. Res. 12, 315-350.
- Yanagibashi, K., Haniu, M., Shively, J. E., Sheu, W. H. & Hall, P. (1986) J. Biol. Chem. 261, 3556-3562.
- Bjorkhem, I., Holmberg, I., Oftebro, H. & Pedersen, J. I. (1980) J. Biol. Chem. 255, 5244-5249.
- 4. Wikvall, K. (1984) J. Biol. Chem. 259, 3800-3804.
- Chung, B., Picado-Leonard, J., Haniu, M., Bienkowski, M., Hall, P. F., Shively, J. E. & Miller, W. L. (1987) Proc. Natl. Acad. Sci. USA 84, 407-411.
- 6. Picado-Leonard, J. & Miller, W. L. (1987) DNA 6, 439-448.
- 7. Chung, B., Matteson, K. J. & Miller, W. L. (1985) DNA 4, 211– 219.
- Higashi, Y., Yoshioka, H., Yamane, M., Gotoh, O. & Fujii-Kuriyama, Y. (1986) Proc. Natl. Acad. Sci. USA 83, 2841–2845.
- Chen, S., Besman, M. J., Sparkes, R. S., Rollman, S., Klisak, I., Mohandas, T. K., Hall, P. F. & Shively, J. E. (1988) DNA 7, 27-38.
- Chung, B., Matteson, K. J., Voutilainen, R., Mohandas, T. K. & Miller, W. L. (1986) Proc. Natl. Acad. Sci. USA 83, 8962– 8966.
- 11. DiBlasio, A. M., Voutilainen, R., Jaffe, R. B. & Miller, W. L. (1987) J. Clin. Endocrinol. Metab. 65, 170-175.
- 12. Voutilainen, R. & Miller, W. L. (1987) Proc. Natl. Acad. Sci. USA 84, 1590-1594.
- Voutilainen, R., Tapanainen, J., Chung, B., Matteson, K. J. & Miller, W. L. (1986) J. Clin. Endocrinol. Metab. 63, 202-207.
- 14. Voutilainen, R. & Miller, W. L. (1988) DNA 7, 9-15.
- Morel, Y., Picado-Leonard, J., Wu, D. A., Chang, C., Mohandas, T. K., Chung, B. & Miller, W. L. (1988) Am. J. Hum. Genet. 43, 52-59.
- Picado-Leonard, J., Voutilainen, R., Kao, L., Chung, B., Strauss, J. F., III, & Miller, W. L. (1988) J. Biol. Chem. 263, 3240-3244, and correction (1988) 263, 11016.
- Voutilainen, R., Picado-Leonard, J., DiBlasio, A. M. & Miller, W. L. (1988) J. Clin. Endocrinol. Metab. 66, 383-388.
- Golos, T. G., Miller, W. L. & Strauss, J. F., III (1987) J. Clin. Invest. 80, 896–899.
- 19. Miller, W. L. & Levine, L. S. (1987) J. Pediatr. 111, 1-17.
- 20. Miller, W. L. (1988) Endocr. Rev. 9, 295-318.
- Hanukoglu, I., Gutfinger, T., Haniu, M. & Shively, J. E. (1987) Eur. J. Biochem. 169, 449-455.
- 22. Helms, C., Graham, M. Y., Dutchik, J. E. & Olson, M. V. (1985) DNA 4, 39-49.
- 23. Chen, E. Y. & Seeburg, P. H. (1985) DNA 4, 165-170.
- 24. Southern, E. M. (1975) J. Mol. Biol. 98, 503-517.
- 25. Sagara, Y., Takata, Y., Miyata, T., Hara, T. & Horiuchi, T. (1987) J. Biochem. (Tokyo) 102, 1333-1336.
- Breathnach, R. & Chambon, P. (1981) Annu. Rev. Biochem. 50, 349–383.
- Kramer, R. E., Gallant, S. & Brownie, A. C. (1980) J. Biol. Chem. 255, 3442–3447.
- Lieberman, S., Greenfield, N. J. & Wolfson, A. (1984) Endocr. Rev. 4, 128-148.
- John, M. E., John, M. C., Boggaram, V., Simpson, E. R. & Waterman, M. R. (1986) Proc. Natl. Acad. Sci. USA 83, 4715– 4719.