Supporting Information

Benzothiazines in Synthesis. Formal Total Synthesis of Pseudopteroxazole

Michael Harmata, * Zhengxin Cai and Yugang Chen

Department of Chemistry, University of Missouri, Columbia, Missouri 65211

Table of Contents

Table of Contents	S1
General	S2
Procedure and analytical data of Compound 7	S3
Procedure and analytical data of Compound 8	S3–S4
Procedure and analytical data of Compound 14	S4
Procedure and analytical data of Compound 15	S5
Procedure Analytical data of the Heck coupling product 16	S6
Spectra (¹ H and ¹³ C NMR) of Compound 7	S7–S8
Spectra (¹ H and ¹³ C NMR) of Compound 8	S9–S10
Spectra (¹ H and ¹³ C NMR) of compound 10	S11–S12
Spectra (¹ H and ¹³ C NMR) of compound 12	S13–S14
Spectra (¹ H and ¹³ C NMR) of compound 16	S15–S16
Spectra (¹ H and ¹³ C NMR) of compound 13	S17–S18
Spectra (¹ H and ¹³ C NMR) of compound 14	S19–S20
Spectra (¹ H and ¹³ C NMR) of compound 15	S21–S22
Spectra (¹ H NMR) of compound 4	S23

General Information:

All air and moisture sensitive reactions were carried out in flame-dried glassware under an argon or nitrogen atmosphere. Reactive liquid reagents (LHMDS, etc.) were measured and transferred by gastight syringes through rubber septa. Tetrahydrofuran (THF) was freshly distilled over sodium benzophenone kytyl. Toluene was distilled from CaH₂. The reaction mixture was concentrated by using a rotary evaporator attached to a water aspirator. Residue solvents were usually removed under reduced pressure using vacuum pump (approximately 1mm Hg).

Flash chromatographic separations were carried out on silica gel (230-400 mesh) with ACS reagent grade solvents. Analytical thin layer chromatography was performed on glass–backed silica gel plates with F254 indicator. Compounds were visualized under UV light or by developing in iodine, vanillin, phosphomolybdic acid solution or with potassium permanganate solution followed by heating in a hot plate to approximately 350 °C. Melting points were determined with a melting point apparatus.

¹H NMR spectra were recorded in Fourier transform mode at 250, 300 or 500 MHz, respectively, as CDCl₃ solutions with tetramethylsilane ($\delta = 0$ ppm) as the internal standard. ¹³C NMR spectra were recorded on the same instruments at 62.5, 75 or 125 MHz, respectively, with CDCl₃ ($\delta = 77$ ppm) as the internal reference. ³¹P NMR spectra were recorded on the same instruments at 101 MHz, respectively, with 85% H₃PO₄ ($\delta = 0$ ppm) as the external standard. Chemical shifts (δ) were reported in parts per million (ppm). Multiplicities were reported as s (singlet), b (broad), d (doublet), t (triplet), q (quartet), m (multiplet), and dd (doublet of doublet), etc. In ¹H NMR spectra of diastereomeric mixtures, the signals for individual isomers were reported when possible. Infrared spectra were recorded on an FT-IR spectrometer. Optical rotations were recorded on a polarimeter with sodium D line at the temperatures as indicated in the experimental for specific compounds. High resolution mass spectra were obtained on a magnetic sector instrument with a resolution greater than 10,000.

(E/Z)-isopropyl 2-(dimethoxyphosphoryl)-5-methylhexa-2,4-dienoate (7): A mixture of 3-methylbut-2-enal (5 mL, 0.065 mol) and trimethyl phosphonoacetate (5.26 mL, 0.033 mol) in THF (300 mL) with molecular sieves (4 Å) was placed in a 1 L roundbottom flask under an argon atmosphere. To this solution, Ti(OⁱPr)₄ (29 mL, 0.098 mol) was added. Then TEA (17 mL, 0.13 mol) was added over 30 min, and the mixture was stirred at 0 °C for 7 h. The reaction mixture was poured into 1 N HCl and vigorously stirred at rt for 1 h. It was extracted by ethyl acetate (3x300 mL) and the extract was washed with 300 mL saturated sodium bicarbonate solution and 300 mL brine. The organic layer was dried with anhydrous sodium sulfate and the solvent was evaporated, affording the product as a mixture of E/Z (2:1) isomers (5.82 g, 92%). (Z)-isomer: IR (neat): 2978, 2953, 2848, 1699, 1618, 1564, 1250, 1025, 829 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.20 (dd, 1 H, J = 12.5, 44.5 Hz), 7.22 (dd, 1 H, J = 1.0, 12.0 Hz), 5.12 (septet, 1 H, J = 6.5 Hz), 3.78 (s, 3 H), 3.75 (s, 3 H), 2.00 (s, 3H), 1.98 (s, 3H), 1.30 (d, 6 H, J = 6.0 Hz); 13 C NMR (CDCl₃, 125 MHz) δ 165.9 (d, J = 15.0 Hz), 155.2 (d, J = 2.5 Hz), 152.9 $(d, J = 10.0 \text{ Hz}), 122.4 (d, J = 5.0 \text{ Hz}), 115.6 (d, J = 186.0 \text{ Hz}), 68.7, 52.6 (d, J = 5.0 \text{ Hz}), 122.4 (d, J = 5.0 \text{ Hz}), 115.6 (d, J = 186.0 \text{ Hz}), 122.4 (d, J = 5.0 \text{ Hz}), 115.6 (d, J = 186.0 \text{ Hz}), 122.4 (d, J = 5.0 \text{ Hz}), 115.6 (d, J = 186.0 \text{ Hz}), 122.4 (d, J = 5.0 \text{ Hz}), 115.6 (d, J = 186.0 \text{ Hz}), 122.4 (d, J = 5.0 \text{ Hz}), 115.6 (d, J = 186.0 \text{ Hz}), 122.4 (d, J = 5.0 \text{ Hz}), 115.6 (d, J = 186.0 \text{ Hz}), 122.4 (d, J = 5.0 \text{ Hz}), 115.6 (d, J = 186.0 \text{ Hz}), 122.4 (d, J = 5.0 \text{ Hz}), 115.6 (d, J = 186.0 \text{ Hz}), 122.4 (d, J = 5.0 \text{ Hz}), 115.6 (d, J = 186.0 \text{ Hz}), 122.4 (d, J = 5.0 \text{ Hz}), 115.6 (d, J = 186.0 \text{ Hz}), 120.4 (d, J = 5.0 \text{ Hz}), 115.6 (d, J = 186.0 \text{ Hz}), 120.4 (d, J = 5.0 \text{ H$ 27.6, 21.7 (d, J = 10.0 Hz), 19.0; HRMS calcd for $C_{12}H_{21}O_5PNa [M+Na]^+$ 299.1019; Found: 299.1006; ³¹P NMR (CDCl₃, 250 MHz) δ 23.4 (85% H₃PO₄ as external standard).

(*E*)-isopropyl 2-(dimethoxyphosphoryl)-6-methylhepta-3,5-dienoate (8): To a solution of 7 (4.86 g, 0.018 mol) in ether (20 mL) in a 50 mL round-bottom flask, a 0.5 M diazomethane solution in ether (0.088 mL, 0.045 mol) at 0 °C was added dropwise. The reaction was warmed to rt and stirred for 12 h. After the reaction was complete, the solvent was evaporated and the crude product was heated at 100 °C for 1 h. After flash

chromatography with 50% ethyl acetate in hexanes, a colorless oil 4.54 g (84% for two steps) was obtained, the product having only an (*E*) configuration. IR (neat): 2983, 2851, 1728, 1450, 1262, 1102, 1025, 829, 796 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 6.44 (ddd, 1H, J = 5.0, 11.0, 15.5 Hz), 5.85 (d, 1H, J = 11.0 Hz), 5.65 (ddd, 1H, J = 7.0, 9.5, 16.0 Hz), 5.07 (septet, 1H, J = 6.5 Hz), 3.81 (d, 3H, J = 11.0 Hz), 3.79 (d, 3H, J = 11.0 Hz), 3.75 (dd, 1H, J = 9.5, 24.0 Hz), 1.78 (s, 3H), 1.76 (s,3H), 1.28 (d, 3H, J = 4.5 Hz), 1.26 (d, 3H, J = 4.0 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 167.0 (d, J = 5.0 Hz), 136.9 (d, J = 5.0 Hz), 131.9 (d, J = 12.5 Hz), 124.0 (d, J = 5.0 Hz), 118.5 (d, J = 12.5 Hz), 69.2, 53.7 (d, J = 7.5 Hz), 53.4 (d, J = 7.5 Hz), 50.6, 49.6 (d, J = 130.0 Hz), 25.8, 21.5 (d, J = 10.0 Hz), 18.2; HRMS calcd for C₁₃H₂₃O₅PNa [M+Na]⁺ 313.1175; Found: 313.1171.

(2*S*,3*E*)-6-Methyl-2-[(2*R*,4*R*)-2-oxido-2-phenyl-3,4-dihydro-2l⁴,1-benzothiazin-4yl]hepta-3,5-dien-1-ol (14): To a solution of the ester 13 (383mg, 0.819 mmol) in 8 mL THF, was slowly added 8.19 mL of DIBAL (1M in THF) at 0 °C. After 2 h, it was carefully quenched with ethyl acetate and water. After filtration, followed by washing with 20 mL ethyl acetate, it was concentrated. After flash chromatography (50% ethyl acetate in hexanes), 0.285 g (88%) of 14 was obtained as a semisolid. IR (film): 3448, 2962, 2917, 1577, 1462, 1250, 1102, 1017 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.10-8.12 (m, 2H), 7.63-7.66 (m, 1H), 7.54-7.57 (m, 2H), 6.69 (s, 1H), 6.69 (s, 1H), 6.40 (dd, 1H, J = 11.0, 15.5 Hz), 5.82 (d, 1H, J = 10.5 Hz), 5.51 (dd, 1H, J = 9.0, 15.5 Hz), 3.89 (s, 3H, CH₃), 3.69 (ddd, 1H, J = 4.0, 7.0, 11.0 Hz), 3.46-3.55 (m, 3H), 2.98-3.13 (m, 1H), 2.32 (s, 3H), 1.77 (s, 3H), 1.73 (s, 3H), 1.35 (dd, 1H, J = 4.5, 6.5 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 152.8, 139.2, 136.1, 133.9, 132.2, 131.0, 130.2, 129.5, 128.4, 125.1, 124.7, 119.1, 111.6, 62.7, 56.2, 50.3, 45.0, 37.5, 26.2, 21.7, 18.6; HRMS calcd for $C_{24}H_{29}NO_3SNa [M+Na]^+ 434.1760$; Found: 434.1751; $[\alpha]^{25}{}_D = -4.04$ (c 3.02, CHCl₃).

(2R,4R)-,4-[(1S,2E)-1-Methanesulfonyloxylmethyl-5-methyl-2,4-hexadienyl]-3,4dihydro-8-methoxy-6-methyl-2-phenyl-2y4-2,1-benzothiazine-2-oxide (15): To a solution of alcohol 14 (48 mg, 0.116 mmol) in 2 mL CH₂Cl₂ was added TEA (33 µl, 24 mg, 0.24 mmol) and mesyl chloride (14 µl, 21mg, 0.18 mmol) at 0 °C. The reaction was allowed to reach rt and was stirred for 17 h. It was quenched with 1 mL saturated NH₄Cl, extracted with 2 mL CH₂Cl₂, washed with 2 mL brine, dried with Na₂SO₄, and concentrated in vacuo. After chromatography (50% ethyl acetate in hexanes), 45 mg (79%) of 15 was obtained as a white semisolid. IR (film): 3060, 2929, 2226, 1569, 1462, 11348, 1242, 1172, 1103, 964, 833, 731, 682 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.11 (d, 2H, J = 7.5 Hz), 7.66 (dd, 1H, J = 7.0, 8.0 Hz), 7.56 (dd, 2H, J = 8.0, 7.5 Hz), 6.70 (s, 1H), 6.67 (s, 1H), 6.37 (dd, 1H, J = 11.0, 15.5 Hz), 5.80 (d, 1H, J = 11.0 Hz), 5.47 (dd, 1H, J = 7.5, 15.0 Hz), 4.24 (dd, 1H, J = 4.5, 10.0 Hz), 4.05 (dd, 1H, J = 7.5, 10.0 Hz), 3.88 (s, 3H), 3.61 (dt, 1H, J = 11, 5 Hz), 3.51 (dd, 1H, J = 4.5, 13.0 Hz), 3.43 (m, 1H), $3.06 (dd, 1H, J = 11.5, 12.5 Hz), 2.90 (s, 3H), 2.33 (s, 3H), 1.77 (s, 3H), 1.72 (s, 3H); {}^{13}C$ NMR (CDCl₃, 125 MHz) δ 152.7, 138.5, 136.6, 133.8, 131.9, 130.9, 130.2, 129.3, 129.2, 126.0, 124.2, 123.5, 118.8, 111.6, 69.0, 56.0, 49.6, 41.9, 37.3, 37.2, 25.9, 21.4, 18.3; HRMS calcd for $C_{25}H_{31}NO_5S_2Na [M+Na]^+ 512.1536$; Found: 512.1526; $[\alpha]^{25}_D = -13.82$ (c 0.55, CHCl₃).

The Heck coupling product **16** is a byproduct that was formed in trace amount under the Buchwald coupling condition indicated in the main text. It was isolated as a colorless oil: IR (neat): 2978, 2917, 1708, 1573, 1454, 1372, 1274, 1221, 1136, 1103 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.28 (d, 1H, J = 1.5 Hz), 7.67 (s, 1H), 7.30 (s, 1H), 6.94 (s, 1H), 6.73 (d, 1H, J = 1.0 Hz),5.29 (septet, 1H, 6.0 Hz), 3.87 (s, 3H),1.96 (d, 3H, J = 1.0 Hz), 1.71 (d, 3H, J = 1.5 Hz), 1.40 (d, 6H, J = 6.5 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 166.4, 157.3, 136.1, 135.7, 135.3, 130.9, 128.5, 128.0, 127.7, 126.8, 124.9, 121.6, 110.4, 68.3, 55.9, 26.0, 22.0, 21.7, 19.1; HRMS calcd for C₂₀H₂₄O₃Na [M+Na]⁺ 335.1618; Found: 335.1618.

S-10

S-15

S-20

