
Proc. Nadl. Acad. Sci. USA
Vol. 85, pp. 7418-7421, October 1988
Population Biology

Extinction dynamics of age-structured populations in a
fluctuating environment

(demography/ecology/life history/stochastic model/diffusion process)

RUSSELL LANDE AND STEVEN HECHT ORZACK
Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637

Communicated by David M. Raup, June 3, 1988 (received for review February 2, 1988)

ABSTRACT We model density-independent growth of an
age- (or stage-) structured population, assuming that mortality
and reproductive rates fluctuate as stationary time series. An-
alytical formulas are derived for the distribution of time to
extinction and the cumulative probability of extinction before
a certain time, which are determined by the initial age distri-
bution, and by the infinitesimal mean and variance, # and a2,
of a diffusion approximation for the logarithm of total popula-
tion size. These parameters can be estimated from the average
life history and the pattern of environmental fluctuations in
the vital rates. We also show that the distribution of time to
extinction (conditional on the event) depends on the magnitude
but not the sign of t. When the environmental fluctuations in
vital rates are small or moderate, the diffusion approximation
gives accurate estimates of cumulative extinction probabilities
obtained from computer simulations.

The theory of extinction times for single populations has ap-
plications in diverse fields, including paleontology, island
biogeography, community ecology, and conservation biolo-
gy. Various analytical models have been constructed to esti-
mate extinction times, probabilities of extinction, or both for
a population subject to stochastic variation in demographic
parameters (e.g., refs. 1-7). Two sources of random varia-
tion in population growth can be distinguished: first, demo-
graphic stochasticity caused by finite population size, in
which each individual independently experiences age-specif-
ic probabilities of survival and reproduction; and second, en-
vironmental stochasticity, which affects the vital rates of all
individuals similarly. Demographic stochasticity is impor-
tant only in small populations, since chance variation in vital
rates among individuals tends to average out in large popula-
tions (greater than about 100 individuals), whereas environ-
mental factors can produce substantial fluctuations in demo-
graphic parameters in populations of any size. In natural
populations subject to substantial abiotic and biotic pertur-
bations, environmental stochasticity is usually far more im-
portant than demographic stochasticity in causing extinction
(6, 7). Previous analytical models of stochastic population
growth and extinction either lacked age structure or dealt
only with demographic stochasticity (1-7).
Here we analyze the extinction dynamics of a population

subject to environmental fluctuations in age-specific birth
and death rates. The theory of population growth developed
by Cohen (8, 9) and Tuljapurkar and Orzack (10, 11) is used
to derive a diffusion approximation for the logarithm of total
population size in a population subject to density-indepen-
dent fluctuations in vital rates.

THE MODEL
Assumptions. A standard model of density-independent

growth in an age- (or stage-) structured population specifies

a recursion formula for the numbers of individuals in each
age class or developmental stage at time t + 1 in terms of
those at the previous time t,

n(t + 1) = A(t)n(t), [1]

where n(t) is a column vector with entries representing the
numbers of (female) individuals of each type at time t and
A(t) is a square projection matrix with nonnegative entries
Aij(t) that determine the number of individuals of type i pro-
duced at time t + 1 per individual of type j at time t. For an
age-structured population, A(t) is the familiar Leslie matrix
with age-specific fecundity rates in the top row, age-specific
survival probabilities along the subdiagonal, and zeros else-
where (12, 13). We assume that the projection matrices
change with time such that each of the entries, or vital rates,
compose a stationary time series.
Under a mild assumption on the life history (nonperiodic

fertilities), regardless of the initial population vector n(0), the
probability distribution of the natural logarithm of total pop-
ulation size asymptotically approaches a normal distribution
(2, 10, 14). For most life histories the rate of approach to
normality will be sufficiently fast that even for short times
the changes in logarithmic population size can be accurately
approximated as a diffusion process with constant infinitesi-
mal mean Au and infinitesimal variance cr2 (10).

Initial Age Distribution. The initial age distribution can
have a substantial effect on extinction probabilities because
individuals of different ages contribute unequally to future
population growth. The influence of the initial age distribu-
tion can be approximated in the following manner. Consider
a sample path of the stochastic process from time 0 to time t,
expressed as a product of t projection matrices (Eq. 1). Stan-
dard demographic reasoning applied to the stochastic case
(e.g., ref. 15, page 51) indicates that asymptotically

[2]

where R(0, t) is a scalar representing the growth of the ma-
trix product and v(0) and u(t) are the dominant left and right
eigenvectors of the matrix product, normalized so that
v(0) u(t) = 1. Both v(0) and u(t) geometrically converge to
stationary distributions that are independent of t. In addi-
tion, it is possible to show by using the methods of Tuljapur-
kar and Lee (personal communication), that v(0) = v +
O(E2), where v is the dominant left eigenvector of the aver-
age projection matrix and E measures the size of the devi-
ations of the vital rates from the average matrix. Hence, for
small noise, assuming u(t) is normalized so that 5iui(t) = 1,
the initial total reproductive value in the population, V0 =
v n(0), gives an accurate approximation of the effect of ini-
tial age distribution on the total population size at time t.

Infinitesimal Mean and Variance. For "small" fluctuations
in the vital rates, the analytical framework in Tuljapurkar
(11) can be used to derive approximations for the constant
asymptotic rates of change in mean and variance of the prob-

7418

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked "advertisement"
in accordance with 18 U.S.C. §1734 solely to indicate this fact.

n(t) ==: R(O, t)(v(O) - n(O))u(t),
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ability distribution of the logarithm of population size. We
present for simplicity only the case of serially independent
environments, although his general formulas include terms
describing serial correlation of fluctuations in the vital rates.
The infinitesimal mean, g, also known as the long-run
growth rate of the population, and the infinitesimal variance,
a.2, are

k -InAo-a2/2 [3]

and

with the initial condition p(x, Olxo) = 8(x - xO), the Dirac
delta function located at xO. In the absence of an extinction
boundary (absorbing barrier) Eq. 7 has natural boundaries at
-00 and +00 and the solution is a normal distribution with
mean xO + ,a and variance cat (18), as described by the as-
ymptotic results given above.
More realistically, the imposition of an extinction bound-

ary-i.e., certain extinction below a population size of one
individual, dictates the boundary condition

P(O, tlxo) = 0. [8]

where AO is the dominant eigenvalue of the average projec-
tion matrix A (containing the average vital rates Aij) and 8 is
a column vector (and ST its transpose) of sensitivity coeffi-
cients that can be expressed as aAo/aAij = viau, in which vi
and uj are elements of the dominant left and right eigenvec-
tors of A, normalized as above (16). C is the variance-covari-
ance matrix of fluctuations in the elements of A(t). (,u here is
equivalent to a in refs. 10 and 11 and to In A in refs. 8,9 , and
14).
Another way of obtaining estimates of the infinitesimal

mean and variance in the diffusion approximation for loga-
rithm of population size is by numerical simulation of the
stochastic process. The total population size at time t obeys
the recursion equation N(t + 1) = A(t)N(t) where the values
of the realized geometric growth rate, A(t), are determined
by the projection matrix for the age-structured population
(Eq. 1). Defining x(t) = In N(t) and r(t) = In A(t), the recur-
sion for the natural logarithm of total population size, x(t +
1) = r(t) + x(t), has the solution for a particular sample path
x(t) = x(O) + >Lflr(i). The r(i) have serial correlation caused
by the time lag or "momentum" inherent in age-structured
populations, in addition to possible environmentally induced
autocorrelation in the vital rates. Therefore, as t -X 00

t-'E[x(t) - x(O)] -T = u [5]

and

C'al~)- AO0)] --- o.Ti1 + 2 7=11) = a2, [6]

where the expectation and variance are across sample paths.
7and o'2 are respectively the mean and variance of r(t), and
p(r) is the serial correlation of r(t) with r(t + r) (refs. 8-10,
14, 17).

Alternatively, at and o'2 can be accurately estimated from a
single sufficiently long sample path since the realized growth
rates compose a stationary ergodic time series. However,
because the realized growth rates are autocorrelated (even
with serially independent environments), a'2 must be calcu-
lated over segments of the sample path that are much longer
than the characteristic autocorrelation time. One could also
compute the infinitesimal variance as a'2 = 2(In A0 - A), giv-
en a numerical estimate of At. Either of these methods of esti-
mating o2 is simpler than direct computation of the autocor-
relation function in Eq. 6.

Diffusion Equation. Let x represent the natural logarithm
of total population size, and x0 = In VO be its adjusted initial
value at time t = 0. The probability that log population size
will be x at time t, starting from x0, is defined as p p(x,
tlxo), which for most life histories quickly approaches the so-
lution of the diffusion equation for the Wiener process (18,
19)

Quantities pertaining to a population declining to any thresh-
old can be obtained by taking xO to be the distance from the
adjusted initial size to the threshold on the log scale (3). Pre-
viously known solutions for the Wiener process with an ab-
sorbing barrier (18) merely require a linear transformation of
coordinates to apply to the present problem (Eqs. 9-12). The
solution to Eqs. 7 and 8 is

p(x, tlxo) = (21ror2t)-"2[exp-(x - xO - Lt)2/2cr2t}

-exp{-2pLxo/o2 - (x + Xo - ,ut)2/2a'2t}]. [9]

The probability of extinction in the interval t to t + dt, denot-
ed as g(tlxo)dt, is derived from the rate of decrease of the
total probability that the population exists at time t,

d x

g(tlxo) = -(dldt)J p(x, tlxo)dx [1Oal

= xO(2Xcr2t3)f-1/2exp{- (xO + At)2/2a2t}. [lOb]

The cumulative probability that the population becomes ex-
tinct before time t is, from Eqs. 9 and 1Oa,

G(tlxo)= f g(t'lxo)dt'

, f-XO- jUt

+ exp{-2MxO//o2}(1 - ¢{xo / ]) [11]

where F [y] is the standard normal probability integral

¢[y] = (2r)-f"2 exp{-z2/2}dz.

The chance of ultimate extinction is

1 for /.L 0
G(oIxo) = '~ exp{-2pxoo/a2} for a > 0.

Conditional Diffusion Process. When u > 0 the probability
distribution of extinction times, g(tlxo), is improper because
the chance of ultimate extinction is less than one. A proper
probability distribution of extinction times can be construct-
ed by dividing the original improper distribution by the
chance of ultimate extinction, g*(tlxo) = g(tjxo)/G(oojxo).
This represents the conditional probability distribution of ex-
tinction times, considering only those sample paths in which
the population eventually becomes extinct and excluding
sample paths in which extinction never occurs,

g*(tlxo) = xo(2ircr2t3)-1/2exp{-(xo - lplIt)2/2a'2t}. [13]
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[12]

OV-1at = -Aaplax + (0-'12)a2plaX2, [7]
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Remarkably, the conditional distribution of extinction times
when u > 0 is exactly the same as the distribution of extinc-
tion times when ,u < 0. Hence, the proper distribution of
extinction times depends only on the magnitude and not on
the sign of 1.

This result can also be derived directly from the theory of
conditional diffusion processes (19), by showing that the in-
finitesimal mean and variance for the conditional process are
the same as those for the unconditional process, since these
functions (along with the boundary conditions) completely
characterize the behavior of a diffusion process. The infini-
tesimal variance of the conditional process with tk > 0 is the
same as that for the unconditional process with A < 0 (for
which eventual extinction is certain), .2* = 02 and the in-
finitesimal mean of the conditional process with t > 0 is

,*= + or2aln G(oix)/ax
- AL, [14]

which is also the same as that for the unconditional process
with tk < 0. Hence, the entire behavior of the conditional
diffusion process with ti positive is identical to that of the
unconditional process with tL negative. In particular, the dis-
tribution of extinction times in Eq. 13 is the same for the two
processes.
Moments of Extinction Time Distribution. The distribution

of extinction time is of the form known as an inverse Gauss-
ian distribution (20). Its mean and variance are

t= x0/1JA and o = xocr2/0I3. [15]

The mean time to extinction is equal to the logarithm of the
adjusted initial population size, divided by the absolute value
of the long-run growth rate. It depends on the infinitesimal
variance, r2, only through its effect on the long-run growth
rate of the population, A (Eq. 3). The distribution of extinc-
tion times is positively skewed, with third central moment
3xRoo4/1I I5, so that the mode (the most probable extinction
time) is less than the mean. When A = 0 the moments do not
exist, but the mode is at x6/3o-2 (5).

COMPUTER SIMULATIONS
Scalar Case. To test the accuracy of the diffusion approxi-

mation, apart from complications of age structure, a popula-
tion with discrete nonoverlapping generations was simulat-
ed. The multiplicative growth'rate of the population, A(t),
was assumed to be a stationary random variable with a log-
normal distribution and no serial correlation. Exact values of
the infinitesimal mean and variance can then be derived from
Eq. 3 with the additional formula o2 - ln(1 + c2), where c is
the coefficient of variation of A (20). Eq. 4 in the scalar case,

is accurate only for small or moderate coefficients
of variation in the multiplicative growth rates. Since Tulja-
purkar's formulas overestimate oa and underestimate /i, the
diffusion approximation employing them overestimates cu-
mulative extinction probabilities given by the simulations
(Fig. 1).
The diffusion approximation using exact values of the in-

finitesimal mean and variance is closer to the simulated ex-
tinction probabilities but still slightly overestimates them be-
cause the sample paths' in the diffusion process are continu-
ous, whereas those in the simulations are discrete: extinction
of a continuous sample path occurs at the time the popula-
tion size first reaches one individual, which generally will
not happen at an integer value of elapsed time. There is some
chance that a continuous sample path will reach the extinc-
tion boundary, but if continued will attain a population size
greater than one at the next integer value of time, and persist
until the end of the simulation. Such a sample path would be

1.0
I,

- 0.8

o 0.60

* analytical
o exact
c simulation p-0.0I

X X 0.00

g 9 0.01

0 40 80 120 160 200
time

FIG. 1. Cumulative extinction probabilities for a population
without age structure. The initial size is 10 individuals, and succes-
sive multiplicative growth rates are independent and lognormally
distributed, with a mean of 1.033153 and coefficient of variation
equal to 0.298275, 0.261828, or 0.215103, corresponding to analytical
values of Ai = -0.01, 0.00, and 0.01. Each point for the stochastic
simulations is based on 10,000 sample paths generated independent-
ly for each timespan considered; any particular simulated extinction
probability, G, has a standard deviation equal to 0.01 [G(1 -G)
which always is less than 0.5%. Also shown are two predictions
from diffusion approximations (Eq. 11), the first using Eqs. 3 and 4
and the second using the exact expressions for the infinitesimal
mean'and variance (see text).

counted as an extinction in the diffusion approximation but
its discrete analog in the simulation would not.

Age-Structured Populations. Cumulative extinction proba-
bilities were estimated by computer simulation for age-struc-
tured populations with different types of life histories with
temporally independent fluctuations in the vital rates. These
were compared with the analytical approximation by using
Eqs. 3, 4, and 11. For all of the life histories we investigated,
the analytical approximation accurately predicted the cumu-
lative extinction probabilities when fluctuations in the vital
rates were small' or moderate. Semianalytical approxima-
tions were also made, using an average of numerical esti-
mates of ju obtained as in Eq. 5, from computer simulation of
five sample paths (totalling 106 time intervals), and setting o.2
= 2(ln A0 - ,). This approximation provides estimates of
extinction probabilities with accuracy matching that of the
exact diffusion results in the scalar case (Fig. 2).

DISCUSSION
Our results show that the extinction dynamics of density-
independent age-structured populations in a fluctuating envi-
ronment can be accurately modeled as a diffusion process
for the natural logarithm of total population size. For this
purpose only three parameters need to be estimated. These
are the initial total reproductive value in the population, ob-
tained from the average life history and the initial age struc-
ture, and the infinitesimal mean and variance, A and ,
which can be calculated analytically for small or moderate
fluctuations in the vital rates (Eqs. 3 and 4). For large fluctu-
ations in the vital rates, when coefficients of variation are on
the order of one or larger, accurate estimates of extinction
dynamics can be obtained semianalytically by first estimat-
ing u from simulation of a single very long sample path and
then solving Eq. 3 for a.2. The semianalytical method pre-
dicts cumulative extinction probabilities that are at most a
few percent greater than those given by the simulations
(Figs. 1 and 2).
The analytical formulas demonstrate that in density-inde-

pendent populations the dynamics of extinction, conditional
on the event, depend only on the magnitude and not the sign
of the long-run growth rate, A. For example, the expected
time until extinction, xo/lIpi (which has the same form as for
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FIG. 2. Cumulative extinction probabilities for a population with
two age classes. The survivorship of the first age class was assumed
to be 1.0 at all times, and both age classes had equal fertilities, which
were lognormally distributed and completely cross-correlated in
their fluctuations (but serially independent), with a mean of 0.525
and coefficient of variation 0.381061, corresponding to an analytical
value of ,u = 0. Two initial age structures were investigated, with 10
individuals in the first age class and 0 in the second age class (early),
or vice versa (late). Each point for the stochastic simulations is
based on 10,000 independent sample paths. Two diffusion approxi-
mations are also presented: the first is analytic, using Eqs. 3 and 4
with A = 0; the second is semianalytic, using a numerical estimate of
IL = 0.00231 (see text).

density-independent formulas. Second, if au is positive and of
substantial magnitude, the distribution of extinction times
should be approximately exponential, given that the popula-
tion starts from the modal size (22). In this case the popula-
tion size typically would fluctuate for a very long time
around the modal value, before making a relatively rapid
transition to small sizes and becoming extinct. The expected
duration of the final transition from the modal population
size to extinction (conditional on not exceeding the modal
value) would approximately equal the expected time for the
reverse process of growth from low population size to the
modal value (conditional on not becoming extinct) (21).

In a separate paper we will analyze the implications of sto-
chastic demography for conservation biology policy and dis-
cuss ways of estimating the extinction probabilities from in-
complete information on the life history. We emphasize here
that application of diffusion approximations for estimating
extinction probabilities in density-independent age-struc-
tured populations can result in a great saving of effort in
comparison with purely numerical procedures, which must
involve many thousands of independent simulations.

We thank J. E. Cohen, S. Tuljapurkar, M. Turelli, and K. Wach-
ter for helpful comments and criticisms. This work was supported
by U.S. Public Health Service Grant GM27120 to R.L. and U.S.
Public Health Service National Research Service Award GM11424
to S.H.O.

a declining population in a constant environment, with o2 =
0), depends only on the natural logarithm of the initial total
reproductive value in the population and on the absolute val-
ue of the long-run growth rate [not on o.2 except as this influ-
ences ,u (Eq. 3)]. Invariance of the expected first passage

time to the sign of the deterministic force is a general proper-

ty of conditional diffusion processes (19, 21).
The extinction of a population with high positive pu is ex-

pected to be rapid, when it occurs, although eventual extinc-
tion is a low-probability event (Eq. 12). This result can be
explained as follows. When , is positive there is a determin-
istic force acting to increase the population size. If the popu-

lation goes extinct, it is most likely to happen near the begin-
ning of the sample path (in a series of time intervals with
unusually low population growth), before the population at-
tains a size large enough that the same environmental se-

quence would not cause extinction. The more positive the
long-run growth rate, the more rapid and extreme must be
the intervals of low growth in order to overcome the oppos-

ing deterministic force.
If the long-run growth rate of the population at low densi-

ties is positive, the population may become limited by in-
creased mortality or decreased fecundity. Such density-de-
pendent effects may alter the distribution of age structure in
a fluctuating environment and greatly complicate the dynam-
ics, unless population density affects all elements of the pro-

jection matrix equally (13). It is therefore difficult to derive
general quantitative results about the distribution of extinc-
tion times in density-dependent age-structured populations.
However, two qualitative features are worth noting, assum-

ing that the dynamics can be approximated as a diffusion
process. First, if the initial population size is much smaller
than the modal size and population growth is initially densi-
ty-independent, then for short times the probabilities of ex-

tinction should be closely approximated by the preceding
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