Supplementary Information

for: "PRIMO/PRIMONA: A coarse-grained model for proteins and nucleic acids that preserves near-atomistic accuracy"

Srinivasa M. Gopal, Shayantani Mukherjee, Yi-Ming Cheng, Michael Feig

Construction of local coordinate system for scheme 1

In scheme 1, an atomic site A (\vec{r}_A) is constructed based on the distance A-B (b), the angle A-B-C (θ), and the dihedral A-B-C-D (ϕ). Let \vec{r}_B , \vec{r}_C , \vec{r}_D be the position vectors of known atoms B, C and D respectively. Using the above information, the position of Atom in a local coordinate system (\vec{r}_A^l) can be represented in a local coordinate system (where b is the radius, θ is the polar angle and ϕ is the azimuthal angle) by the spherical coordinate transformation as

$$\vec{r}_{A}^{\ l} = \begin{bmatrix} b\sin(\theta)\sin(\phi) \\ b\sin(\theta)\cos(\phi) \\ b\cos(\theta) \end{bmatrix}$$
(1)

The local coordinate system is constructed as follows. First the local z-axis (\hat{w}) is defined as

$$\hat{w} = \frac{\vec{r}_{C} - \bar{r}_{B}}{|\vec{r}_{C} - \bar{r}_{B}|}$$
(2)

Local X-axis (\hat{u}) is defined as the unit normal to plane defined by \hat{w} , \vec{r}_{B} and \vec{r}_{D} vectors as

$$\hat{u} = \frac{\vec{r}_{BD} \times \hat{w}}{|\vec{r}_{BD} \times \hat{w}|}$$
(3)

Since X and Z axis are defined, there is a unique Y-axis which is

$$\hat{v} = \hat{w} \times \hat{u} \qquad (4$$

The transformation^{1,2} (\mathbf{T}) which maps atoms B, C and D to a local coordinate system such that where B is placed at origin, C on Z-axis and D in Y-Z plane is given by

$$T = \begin{bmatrix} u^{x} & v^{x} & w^{x} & 0\\ u^{y} & v^{y} & w^{y} & 0\\ u^{z} & v^{z} & w^{z} & 0\\ -\hat{u}.\hat{r}_{B} & -\hat{v}.\hat{r}_{B} & -\hat{w}.\hat{r}_{B} & 1 \end{bmatrix}$$
(5)

We need the inverse of above transformation (**I**) to express local position of atom A \vec{r}_A^l in terms of global coordinates.

$$I = \begin{bmatrix} u^{x} & u^{y} & u^{z} & 0 \\ v^{x} & v^{y} & v^{z} & 0 \\ w^{x} & w^{y} & w^{z} & 0 \\ r_{B}^{x} & r_{B}^{y} & r_{B}^{z} & 1 \end{bmatrix}$$
(6)
$$\vec{r}_{A} = I \cdot \vec{r}_{A}^{l}$$

Residue/Type	RMSD (σ _{RMSD}) in Å				
	PRIMO	SICHO/CA	SICHO	BB	CA
All	0.083 (0.01)	1.183 (0.11)	1.498 (0.10)	1.503 (0.20)	1.978 (0.18)
Back	0.064 (0.02)	0.753 (0.07)	1.191 (0.13)	0.000 (0)	0.647 (0.10)
Side	0.095 (0.02)	1.480 (0.16)	1.739 (0.13)	2.104 (0.28)	2.695 (0.25)
C_{α}	0 (0)	0 (0)	0.863 (0.13)	0.000 (0)	0.000 (0)
$C_{\alpha}+C_{\beta}$	0.065 (0.01)	0.501(0.05)	1.060 (0.11)	0.047 (0.01)	0.403 (0.09)
Arg	0.047 (0.02)	1.086 (0.39)	1.345 (0.41)	2.853 (1.82)	3.671 (1.82)
Asn	0.007 (0.00)	1.013 (0.37)	1.414 (0.32)	2.032 (0.74)	2.383 (0.52)
Asp	0.012 (0.00)	0.735 (0.23)	1.103 (0.34)	1.945 (0.64)	2.123 (0.43)
Gln	0.056 (0.02)	0.975 (0.29)	1.301 (0.28)	2.277 (0.77)	2.245 (0.78)
Glu	0.055 (0.02)	0.742 (0.21)	1.265 (0.280)	2.021 (0.70)	2.280 (0.69)
Leu	0.139 (0.06)	0.888 (0.26)	1.345 (0.23)	1.093 (0.35)	1.512 (0.44)
Lys	0.045 (0.01)	0.848 (0.20)	1.356 (0.22)	2.255 (0.53)	2.477 (0.53)
Met	0.051 (0.01)	2.405 (0.70)	2.259 (0.51)	1.875 (0.68)	2.891 (1.10)
Phe	0.097 (0.02)	2.581 (0.46)	2.683 (0.34)	1.470 (1.02)	3.267 (0.81)
Pro	0.144 (0.08)	0.264 (0.19)	0.914 (0.43)	0.297 (0.30)	0.460 (0.31)
Ser	0.094 (0.01)	0.295 (0.20)	0.945 (0.29)	1.025 (0.46)	1.267 (0.39)
Thr	0.124 (0.02)	0.894 (0.55)	1.297 (0.51)	0.520 (0.57)	1.279 (0.68)
Trp	0.105 (0.01)	0.704 (0.59)	1.510 (0.87)	3.259 (1.60)	3.627 (1.76)
Val	0.251 (0.14)	0.557 (0.38)	1.007 (0.45)	0.313 (0.41)	0.812 (0.53)

Comparison of reconstruction methods for villin decoy set

References

1. Newman, W. M.; Sproul, R. F. Principles of Interactive Computer Graphics; McGraw-Hill: New York, 1979.

2. Bower, M. J.; Cohen, F. E.; Dunbrack, R. L. Journal of Molecular Biology 1997, 267(5), 1268-1282.