Cloning and nucleotide sequence of the gene for dihydrolipoamide acetyltransferase from *Saccharomyces cerevisiae*

(multidomain structure/sequence homology/pyruvate dehydrogenase complex)

Xiao-da Niu*[†], Karen S. Browning*, Robert H. Behal*[†], and Lester J. Reed*[†]

*Clayton Foundation Biochemical Institute and [†]Department of Chemistry, The University of Texas at Austin, Austin, TX 78712

Contributed by Lester J. Reed, July 29, 1988

ABSTRACT A 537-base cDNA encoding a portion of Saccharomyces cerevisiae dihydrolipoamide acetyltransferase (acetyl-CoA:dihydrolipoamide S-acetyltransferase, EC 2.3.1.12) was isolated from a λ gt11 yeast cDNA library by immunoscreening. This cDNA was subcloned and used as a probe to screen a λ gt11 yeast genomic DNA library. Two overlapping clones were used to determine the complete sequence of the acetyltransferase gene. The composite sequence has an open reading frame of 1446 nucleotides encoding a presequence of 28 amino acids and a mature protein of 454 amino acids ($M_r = 48,546$). The deduced amino acid sequence contains the experimentally determined amino acid sequences of the amino terminus and two internal peptide fragments of the acetyltransferase. Hybridization analysis of yeast genomic DNA showed that the gene has a single copy. A 915-base segment of the acetyltransferase gene hybridized to a yeast mRNA of \approx 1.6 kilobases. Analysis of the deduced amino acid sequence of the dihydrolipoamide acetyltransferase revealed a multidomain structure similar to those reported for the corresponding acetyltransferases from Escherichia coli and rat liver, and extensive sequence similarity among the three enzymes. However, the yeast enzyme contains only one lipoyl domain, in contrast to three lipoyl domains reported for the E. coli enzyme and apparently two for the rat liver enzyme.

Pyruvate dehydrogenase complexes from prokaryotic and eukaryotic sources are composed of multiple copies of three enzymes: pyruvate dehydrogenase (E_1) , dihydrolipoamide acetyltransferase (E2; acetyl-CoA dihydrolipoamide Sacetyltransferase, EC 2.3.1.12), and dihydrolipoamide dehydrogenase (E_3). The oligometric E_2 component comprises a symmetrical core around which are arranged multiple copies of E_1 and E_3 (1). Analyses of the E_2 components of the Escherichia coli pyruvate and α -ketoglutarate dehydrogenase complexes by controlled proteolysis (2-4), molecular genetics (5-7), and ¹H-NMR spectroscopy (8-11) revealed that these enzymes have a multidomain structure. The amino-terminal segment of the polypeptide chain contains the lipoyl domain(s), followed by an E_3 -binding domain, and then the catalytic inner-core domain. The domains are linked to each other by segments that are rich in proline and alanine residues. These interdomain linker segments are thought to provide flexibility to the lipoyl domains, facilitating activesite coupling within these multienzyme complexes (2, 9, 10).

In eukaryotic cells, the pyruvate dehydrogenase complex is located in mitochondria, within the inner membrane/ matrix compartment. To gain further understanding of the structure, function, and regulation of eukaryotic pyruvate dehydrogenase complexes, we have undertaken isolation and expression of the genes encoding E_1 , E_2 , and E_3 from *Saccharomyces cerevisiae*. In this report, we present the cloning and sequencing of the gene for yeast E_2 and make comparisons with the corresponding enzymes from rat liver and *E. coli.*[‡]

MATERIALS AND METHODS

Materials. Restriction endonucleases and DNA-modifying enzymes were purchased from Bethesda Research Laboratories, New England Biolabs, and Promega Biotec (Madison, WI). The DNA sequencing reagents were purchased from United States Biochemical. Horseradish peroxidase-labeled goat anti-rabbit IgG was obtained from Kirkegaard and Perry Laboratories (Gaithersburg, MD). $[\gamma^{-32}P]ATP$, $[\alpha^{-32}P]dCTP$, and $\left[\alpha\right]^{35}$ SlthioldATP were purchased from New England Nuclear. The λ gt11 yeast cDNA library (12) was obtained from Hans Trachsel and Michael Altmann (Universität Bern, Bern, Switzerland), and the λ gt11 yeast genomic DNA library was provided by Richard A. Young and Ronald W. Davis (Stanford University, Palo Alto, CA). Immobilon polyvinylidene difluoride membrane was obtained from Millipore. Specialty agaroses were obtained from FMC (Rockland, ME). The plasmid vector Bluescript was obtained from Stratagene (San Diego, CA). E. coli strains Y1090 and TB-1 were used to grow the λ phage library and plasmids, respectively.

Preparation of Antiserum. Highly purified pyruvate dehydrogenase complex from bakers' yeast was subjected to $NaDodSO_4$ /polyacrylamide gel electrophoresis (13). The gel was stained with Coomassie brilliant blue and then destained, and the E_2 band was excised with a razor blade and soaked in deionized water. The gel pieces were frozen in liquid nitrogen, crushed in a mortar and pestle, and stored at -20° C (14). Crushed gel containing about 200 μ g of E₂ was suspended in 1.5 ml of sterile 0.14 M NaCl. The suspension was then mixed with 2 ml of Freund's complete adjuvant, and the emulsion was injected subcutaneously into a female New Zealand White rabbit. Booster injections were given at 20-day intervals with Freund's incomplete adjuvant. Blood was collected 10 days after the fourth booster injection, and the serum was separated and stored at -70° C. Immunoblot analysis showed that the antiserum was specific for E_2 (15). Antibodies reacting with E. coli and phage proteins were removed from the serum by incubation with E. coli and phage lysates immobilized on nitrocellulose (16).

Amino-Terminal and Peptide Sequence Analysis. Highly purified pyruvate dehydrogenase complex was subjected to NaDodSO₄/polyacrylamide gel electrophoresis in a slab gel (12.5% acrylamide) as described (17). The gel was soaked in 2 M sodium acetate, and the protein bands were visualized with side illumination. The E_2 band was excised with a razor

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. \$1734 solely to indicate this fact.

Abbreviations: E_1 , pyruvate dehydrogenase; E_2 , dihydrolipoamide acetyltransferase; E_3 , dihydrolipoamide dehydrogenase.

[‡]The sequence reported in this paper is being deposited in the EMBL/GenBank data base (IntelliGenetics, Mountain View, CA, and Eur. Mol. Biol. Lab., Heidelberg) (accession no. J04096).

blade, crushed, and extracted overnight with 100 mM NH_4 - HCO_3 . The extract was dialyzed against 100 mM NH_4 - $HCO_3/20\%$ methanol and then against 50 mM NH_4HCO_3 . The solvent was removed on a vacuum centrifuge, and the residue was subjected to automated sequence analysis with an Applied Biosystems model 470A gas-phase sequenator equipped with a model 120A on-line phenylthiohydantoin amino acid analyzer.

To obtain internal peptides of E_2 for sequence analysis, a gel slice containing about 40 μ g of E_2 was applied to a second NaDodSO₄/polyacrylamide slab gel in the presence of *Staphylococcus aureus* V8 protease (0.2 μ g) for 30 min as described by Cleveland *et al.* (18). After electrophoresis, the peptides were electroblotted onto a polyvinylidene difluoride membrane (19). The membrane was stained with Coomassie brilliant blue, destained, rinsed in deionized water, and air-dried. The peptide bands were cut out with a razor blade and subjected to automated sequence analysis.

Preparation of Oligonucleotides. Oligonucleotide primers for sequencing were synthesized on an Applied Biosystems model 381A DNA synthesizer and were used without further purification.

Screening of cDNA and Genomic DNA Libraries. The $\lambda gt11$ yeast cDNA library was screened with rabbit antiserum against yeast E_2 essentially as described by Huynh et al. (16). The λ gt11 yeast cDNA and genomic DNA libraries were also screened by plaque hybridization using a DNA probe made from a positive clone identified by screening with antibody against E_2 (20). Positive clones were plaque-purified and phage DNA was prepared from plate lysates (20). In brief, the top agarose was removed from three plates (150 \times 15 mm) with confluent lysis and soaked in 20 ml of SM (50 mM Tris HCl, pH 7.5/100 mM NaCl/10 mM MgSO₄/0.01% gelatin) overnight with shaking at 4°C. The debris was removed by centrifugation; and the supernatant fluid was mixed with 10 ml of a slurry of DEAE-cellulose in SM on a rotatory shaker for 30 min. The DEAE-cellulose was removed by centrifugation, and 0.2 volume of 3 M NaCl and 0.7 volume of 2-propanol were added to the supernatant fluid. The precipitate was collected by centrifugation and resuspended in 2 ml of TE (10 mM Tris-HCl, pH 7.6/1 mM EDTA). A stock solution was added to the suspension to give 0.5% NaDodSO₄, 10 mM NaCl, 2 mM EDTA, and 0.05 mg of proteinase K per ml (final concentrations), and the mixture was incubated at 37°C for 1 hr. The mixture was extracted twice with phenol/chloroform (1:1), and the phage DNA was precipitated with ethanol and dissolved in 20 μ l of TE

Subcloning of DNA for Sequencing. The λ phage DNA containing the insert was digested with *Eco*RI or when the insert contained internal *Eco*RI sites, with a combination of *Kpn* I and *Sst* I. The fragments were resolved in a 0.8% low-melting agarose gel. The bands containing the inserts were excised, melted at 65°C, and extracted with phenol/chloroform, and the DNA was precipitated with ethanol. The fragments were ligated into the plasmid vector Bluescript, which had been previously digested with *Eco*RI or with *Kpn* I and *Sst* I and treated with bacterial alkaline phosphatase. Plasmids containing inserts were prepared as described (21).

DNA Sequencing. The double-stranded plasmid DNA was sequenced with Sequenase (United States Biochemical) according to the supplier's instructions except that the plasmid was first denatured in 0.2 M NaOH, precipitated with ethanol, and hybridized to an oligonucleotide primer for 15 min at 37°C.

RNA Blot Analysis. A 10- μ g sample of poly(A)⁺ RNA from *S. cerevisiae* strain 20B-12 was denatured with glyoxal, fractionated in a 0.8% agarose gel, and blotted onto nitro-cellulose as described (22). The probe, a 915-base DNA fragment designated E2-G2, was labeled with [α -³²P]dCTP by

random priming with a mixture of oligonucleotides. Hybridization conditions were as described (23).

Southern Blot Analysis of Total Yeast Genomic DNA. Yeast genomic DNA was prepared as described (24). Tenmicrogram DNA samples were digested with various restriction endonucleases overnight at 37°C. The digests were resolved in a 0.8% agarose gel and blotted onto nitrocellulose by capillary transfer in $10 \times SSC$ (1 $\times SSC$ is 0.15 M NaCl/15 mM sodium citrate, pH 7.0). Blots were prehybridized for 10 hr at 42°C in 6× SSC containing 0.1% Ficoll, 0.1% polyvinylpyrrolidone, 0.1% bovine serum albumin, 0.1% NaDod-SO₄, and 0.1 mg of sonicated and denatured salmon testes DNA per ml. The blots were hybridized for 12 hr at 65°C in the same solution with the 915-base DNA probe E2-G2 radiolabeled as described above. The blots were washed twice in $2 \times SSC/0.1\%$ NaDodSO₄ for a total of 20 min and once in $0.1 \times SSC/0.1\%$ NaDodSO₄ for 2 hr at 68°C. Autoradiography was performed at -70°C with Kodak XAR-5 film and an intensifying screen.

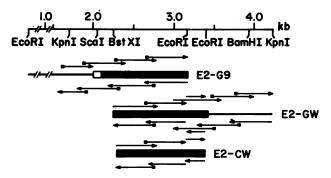
Chromosome Analysis. A dried gel containing the yeast chromosomes resolved by pulsed-field gel electrophoresis was purchased from Clontech Laboratories (Palo Alto, CA). The gel was hybridized with the 915-base DNA probe E2-G2 according to the manufacturer's instructions.

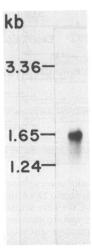
Computer Analysis. Computer analysis was performed with the Beckman Microgenie program, version 4.

RESULTS

Amino Acid Sequence Analysis. The amino-terminal sequence of E_2 isolated from the yeast pyruvate dehydrogenase complex was determined to be (Ala?)-Ser-Tyr-Pro-Glu-His-Xaa-Ile-Ile-Gly-Met-Xaa-Ala-Leu-Ser-, where Xaa indicates residues that could not be identified. A sample of E_2 was digested with *S. aureus* V8 protease, and the resulting peptides were separated by NaDodSO₄/polyacrylamide gel electrophoresis and then electroblotted onto Immobilon polyvinylidene difluoride membrane. The amino-terminal sequences of two fragments were determined by automated Edman degradation to be Thr-Lys-Thr-Ser-Ala-Xaa-Glu-Ala-Lys-Lys-Ser-Asp-Val- and Xaa-Xaa-Gln-Glu-Ala-(Pro?)-Ala-Glu-Xaa-Thr-(Lys or Gly).

Isolation of the Gene for E_2 . Two positive clones were initially identified by screening a yeast cDNA λ gt11 library with antibody against yeast E_2 . Both inserts, designated E21-1 and E21-2, were subcloned and their nucleotide sequences were determined. E21-1 contained an insert of 537




FIG. 1. Restriction endonuclease map and sequencing strategy for yeast E_2 gene. Two genomic DNA inserts (E2-G9 and E2-GW) and one cDNA insert (E2-CW) were sequenced. Solid bars represent the coding regions for the mature enzyme. Open bar represents the coding region for the putative presequence. Arrows show the direction and extent of the nucleotide sequencing. Arrows beginning with solid boxes represent sequences determined with synthetic primers based on previously obtained sequences. Other arrows represent sequences determined with universal or reverse sequencing primers. kb, Kilobases.

AGG	AAG	AGG	CTO	GAG	AACO	CTA	GA1	TAAT	TGG	TAC	CGG	TGA	TCA	CCT	CCA	GTT	TCC	ACA	TAC	1740
TAT	ATA	тст	TC	TG	TAA1	TOAT	ACA	TAT	GTC	ATA	ACT	TCA	ATA	ACT	CAT	ACA	AGT	CAT	CTC	1800
CTA	CTA	TOC	TT	TGC	CGTI	тот	ACT	TATO	CGT	GAA	GCG	TGA	cco	GCC	стт	CTO	ACC	ccc	CGT	1860
CTT				AC		ACA	661	CGA	GAC	AAC	CAA	cco	GAA	CGA	CTA	GAA	GAG	AGG	CTG	1920
TT.	CC 1	-	CT	TT	TOTI		661		CAT	CTT	CCA	TTC	сто	-	ACT	CCA	TCC	AGT		1980
						LORC				***	CTC		CTC	стт				TCC	ACA	2040
	***	AC1	14	114	666	ACI		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									·	s		- 16
							M	S	•	- F	v	ĸ	v	v	r	ĸ		3	ĸ	- 10
							28													
AGT	TCA	GTA	CTO	CAC																2100
S	S	v	L	Т	R	s	L	R	L	Q	L	R	С	Y		<u>s</u>	Y	_ <u>P</u>	E	5
															1					
CAC	ACC	ATT	AT	TGG	TAT	CCCG	GC!	CTG	TCT	CCT	ACG	ATG	ACG	CAA	GGT	AAT	CTT	GCT	CCT	2160
						P											L			25
	-		_						_					`						
									· T C T		COT		CTT	• • • •					ACA	2220
			K			D											I	E	т	45
W	т	ĸ	ĸ	5	G	D	ų	Ŀ	3	r	U	E	v		^	6	•			
				-						.										
GAC	AAG	GCI	CA											TTA						2280
D	ĸ	•	Q	H	D	F	E	F	Q	Ε	D	G	Y	L	۸	ĸ	1	L	v	65
CCT	GAA	GGT	AC		GGAG	CATT	CCI	CTO	AAC	AAG	CCT	ATT	GCC	GTC	TAT	GTG	GAG	GAC	AAA	2340
P	E	G	т	ĸ	D	I	P	v	N	ĸ	P	I	A	v	Y	v	Е	D	ĸ	85
-	-	-	-		-	-														
CC.			·cc					****		сто	646	C A 1	TC.	0.01	тст		TCA		ACC	2400
						K							S				S		T	105
•	U	•	r	^	r	ĸ		r	ĸ	-	E		3	U	3	U	3	r		105
_															.					
																				2460
S	Т	ĸ		Q	P	A	E	P	Q	A	E	ĸ	ĸ	<u>Q</u>	<u> </u>		P	Δ.	<u> </u>	125
GAG	ACC	AAG	AC	TTC	TGC/	ACCT	GAA	GCT	AAG		TCT	GAC	GTT	GCT	GCT	CCT	CAA	CGT	AGG	2520
E	т	ĸ	T	S	۸	P	Е	۸	ĸ	ĸ	s	D	v	A	A	P	Q	G	R	145
ATT	***	ccc	TC	tcc.	ACTI	rece		ACT	ATC	666	ттс	GAA		сст	ATT	тст	ттс	AAG	GAT	2580
	F					A 1000									ï		L	ĸ	D	165
1		~	3	r	L	^	ĸ			^	L	E	ĸ	0		3	L	r		103
																			.	
																				2640
v	H	G	Т	G	P	R	G	R	I	Т	ĸ	A	D	I	E	S	Y	L	Е	185
AAG	TCG	тст		CAO	GTCT	TOT	CAA	ACC	AGT	GGT	GCT	CCC	GCC	CCC	ACT	CCT	CCC	GCC	GCT	2700
ĸ	S	S	ĸ	0	s	s	0	т	S	G	۸	A	A	A	Т	P	A	A	A	205
	-	-		*	-	-	`	-	-											
	тс				TCCT	1000	тот	CCT	CC.4	тсе	CCT	тст	тст	ACA	GC.A	TCA	TAT	GAG	GAT	2760
		S	T	T					P			s	s			S			D	225
т	S	2	T,	T,	~	6	3	^	r	3	r	э	3		~	3		E	U	223
															.			.		
																				2820
v	P	1	S	т	M	R	S	I	I	G	Е	R	L	L	Q	S	Ť	Q	G	245

TTATTGACACCAATTGTCAAGAATTGTGAGAGGCCCAAGGGCCTGTGGCGCAATCTCTAAGGAATGGCAA L L T P I V K N C E A K G L S Q I S N E 345 ATCAAGGAACTAGTCAAGGGTGGCCAGAATAAACAAATTGGCACCAGAGGAATTCCAAAGGT 3180 I K E L V K R A R I N K L A P E E F Q G 365 GGGACCATTTGCATATCCAATATGGGCATGAATAATGCTGTTAACATGTTTACTTCGATGT 3240 G T I C I S N M G N N N A V N H F T S I 385 ATCAACCCACGCACGTCTACAATCTGGCCCATCGCTACATGTTGAACAGTGTTTACTTCGATT 3240 G T I C I S N M G N N N A V N H F T S I 385 ATCAACCCACGCCACGTCTACAATCTTGGCCCATCGCTACGTTGGAAAGGGCCGCTGTGGAA 3300 I N P P Q S T I L A I A T V E R V A V E 405 GACGCCCCTGCTGAGAACGGATTCTCCTTTGATAACCAGGTTACCATAACAGGGAACTGTT 34200 D A A A E N G F S F D N Q V T I T G T F 425 GATCATAGAACCATTGATGGCGCCCAAGGTTAGCAGAATTGATGAAGAATGAAACTGTT 3420 D H R T I D G A K G A E F M K E L K T V 445 ATTGAAAATCCTTTGGGAGAAATGCTATTGTGAGGTTAGGAATGAAAATTAAAAATTAAAAATAAAAA3540 AAAAAAAAAAATACTCGAAATGCTATTGTGAGGTTAGGAATGGAAATTAAAAATTAAAAATAAAAAA																							
TCCTTGAACGCTACAGCAAACGACAAGTACAAACTGTCCATTAATGACCTATTAGTAAAAA 2940 S L N A T A N D K Y K L S I N D L L V K 285 GCCATCACTGTTGCGGCTAAGAGGGCTCCCAGAGGCCAATGCCTAATGACGTAAGAAA 2940 A I T V A A K R V P D A N A Y V L P N E 305 AACGTTATCCGTAAATTCAAGAATGTCGATGTCAGTGCCAATGCCTACTGGTTACCTAATGAG 3060 N V I R K F K N V D V S V A V A T P T G 325 TTATTGACACCAATTGTCAAGAATTGTGAGGCCAACGGCCTTGTGCCACACCAACAGGA 3120 L L T P I V K N C E A K G L S Q I S N E 345 ATCAAGGAACTAGTCAAGCGTGCCACGATAAACAAATTGGCACCAAGGCAATTCCAAGGGA 3120 I K E L V K R A R I N K L A P E E F Q G 365 GGGACCATTGCCATATCCAATATGGCCACGCATATGCTAACGGAATTGCAAGGT 3180 G T I C I S N N G N N N A V N H F T S I 385 ATCAACGCACCACGTCTACAATCTTGCCCATGCTGTGAAAGGGTTACCTGTGAAGGT 3160 I N P P Q S T I L A I A T V E R V A V E 405 GACGCCCGTCGCGAGACGGGATTCCCTTTGGTAACAGGGTTACCATAACAGGGACTTGT 340 D A A A E N G F S F D N Q V T I T G T F 425 GATCATAGAACCATTGGACGGCGCCCAAGGTGCGAGAATTCGAGAAGTGT 3420 D H R T I D G A K G A E F M K E L K T V 445 ATTGAAATCCTTTGGAAATAGCTATTGTGAGATTGAAAATTAAAAATTAAAAAATTAAAAAA	ATT	CCA	TCA	TAC	ATC	GTT	тсс	тсс		GAT	ATC	CAT	гст	cc	***	стт	TT	GAI	\ A 1	TG	GA		
S L N A T A N D K Y K L S I N D L L V K 285 GCCATCACTGTTGCGGCTAAGAGGGGTCCCAGATGCCAATGCCTACTGGTTACCTAATGAG A I T V A A K R V P D A N A Y W L P N E 305 AACGTTATCCGTAAATTCAAGAATGTCGATGTCCAATGCCTACTGCTACCAACAGGA 3060 N V I R K F K N V D V S V A V A T P T G 325 TTATTGACACCAATTGTCAAGAATTGTGAGGCCAAGGGCTTGTCGCAAATCTCTAAGGA 3120 L L T P I V K N C E A K G L S Q I S N E 345 ATCAAGGAACTAGTCAAGCGTGCCCAGAATAAACAAATTGGCACCAAGGGAATTCCAAGGT 3180 I K E L V K R A R I N K L A P E E F Q G 365 GGGACCATTTGCATATCGAATAGTGGCCATGGAATAATGCTGTTAACATGTTTACTTCGATT 3240 G T I C I S N M G M N N A V N M F T S I 385 ATCAACCCACCACGACTACAATCTGGCCATGCTGCTGAACAGGTTGTGAAAGGGACCTT 3400 I N P P Q S T I L A I A T V E R V A V E 405 GAGGGCCGTGGTGGGAAGGGATTCTCCTTTGGTAACCAGGTTACCATGGGACCTT 3400 I N P P Q S T I L A I A T V E R V A V E 405 GAGGCCCGTGCTGGGAACGGGATTCTCCTTTGGTAACGGTTCGAAGGGACCTT 3400 D A A A E N G F S F D N Q V T I T G T F 425 GATCAAGAACCATTGTGCGCGCCAAAGGTCGCAGAATTCATGAAGGGAACTGTT 3420 D H R T I D G A K G A E F M K E L K T V 445 ATTGAAAATCCTTTGGGAAATGCTATTGTGAGGTTGAATGAA	I	P	S	Y	I	v	S	S	ĸ	I	S	1	1	S	к	L	L	1	¢	L	R	Q	265
S L N A T A N D K Y K L S I N D L L V K 285 GCCATCACTGTTGCGGCTAAGAGGGGTCCCAGATGCCAATGCCTACTGGTTACCTAATGAG A I T V A A K R V P D A N A Y W L P N E 305 AACGTTATCCGTAAATTCAAGAATGTCGATGTCCAATGCCTACTGCTACCAACAGGA 3060 N V I R K F K N V D V S V A V A T P T G 325 TTATTGACACCAATTGTCAAGAATTGTGAGGCCAAGGGCTTGTCGCAAATCTCTAAGGA 3120 L L T P I V K N C E A K G L S Q I S N E 345 ATCAAGGAACTAGTCAAGCGTGCCCAGAATAAACAAATTGGCACCAAGGGAATTCCAAGGT 3180 I K E L V K R A R I N K L A P E E F Q G 365 GGGACCATTTGCATATCGAATAGTGGCCATGGAATAATGCTGTTAACATGTTTACTTCGATT 3240 G T I C I S N M G M N N A V N M F T S I 385 ATCAACCCACCACGACTACAATCTGGCCATGCTGCTGAACAGGTTGTGAAAGGGACCTT 3400 I N P P Q S T I L A I A T V E R V A V E 405 GAGGGCCGTGGTGGGAAGGGATTCTCCTTTGGTAACCAGGTTACCATGGGACCTT 3400 I N P P Q S T I L A I A T V E R V A V E 405 GAGGCCCGTGCTGGGAACGGGATTCTCCTTTGGTAACGGTTCGAAGGGACCTT 3400 D A A A E N G F S F D N Q V T I T G T F 425 GATCAAGAACCATTGTGCGCGCCAAAGGTCGCAGAATTCATGAAGGGAACTGTT 3420 D H R T I D G A K G A E F M K E L K T V 445 ATTGAAAATCCTTTGGGAAATGCTATTGTGAGGTTGAATGAA	TCC	TTC		сст.		664		GAC		TA		AC1	r G T	cc	ATT		C G A	cct		TA	GTA.	***	2940
A I T V A A K R V P D A N A Y V L P N E 305 AACGTTATCCGTAAATTCAAGAATGTCGATGTCGATGTCGCAGTGTGCCACACGAACAGGA 3060 N V I R K F K N V D V S V A V A T P T C 325 TTATTGACACCAATTGTCAAGAATGTCGAGGCCAAGGGCTTGTCGCAAACTGTAACGAA 3120 L T P I V K N C E A K G L S Q I S N E 345 ATCAAGGAACTAGTCAAGCGTGCCAGAATAAACAAATTGGCACCAGGGCAATTCCAAGGGT 31800 I K E L V K R A R I N K L A P E E F Q G 365 GGGACCATTTGCATGCGATGCCAGAATAAGGAATATGGCACGAGGGCAATTCCAAGGT 3240 G T I C I S N H G M N N A V N H F T S I 385 ATCAACCCACCACAGTCTACAATCTTGGCCATCGCTACGTTTGAACAGGGTCGCCGTGTGGAA 33000 I N P P Q S T I L A I A T V E R V A V E 405 GACCCCCCGTGGCGAGACGGCTTCTCCTTTGATAACCAGGTTACCATAACAGGGACCTTT 3400 D A A A E N G F S F D N Q V T I T G T F 425 GATCATAGAACCATTGATGGCGCGCAAAGGTGCGAGATTCATAAAAATTAAAAAATTGGCAGGAATTGGAAAATTGGCAGGATTGGAAAGGGACCTTT 3420 D H R T I D G A K G A E F M K E L K T V 445 ATTGAAAATCCTTTGGAAATGCTATTGTGAGGTTAGGATTGAAAAATTAAAAATTGGCCAGTAA 3480 I E N P L E M L L ATGCGATCTTAGGAGAAAATATCAATTTGTTATTTGTGTGAAATTAAAAATTAAAAAATTAAAAAA																							285
A I T V A A K R V P D A N A Y V L P N E 305 AACGTTATCCGTAAATTCAAGAATGTCGATGTCGATGTCGCAGTGTGCCACACGAACAGGA 3060 N V I R K F K N V D V S V A V A T P T C 325 TTATTGACACCAATTGTCAAGAATGTCGAGGCCAAGGGCTTGTCGCAAACTGTAACGAA 3120 L T P I V K N C E A K G L S Q I S N E 345 ATCAAGGAACTAGTCAAGCGTGCCAGAATAAACAAATTGGCACCAGGGCAATTCCAAGGGT 31800 I K E L V K R A R I N K L A P E E F Q G 365 GGGACCATTTGCATGCGATGCCAGAATAAGGAATATGGCACGAGGGCAATTCCAAGGT 3240 G T I C I S N H G M N N A V N H F T S I 385 ATCAACCCACCACAGTCTACAATCTTGGCCATCGCTACGTTTGAACAGGGTCGCCGTGTGGAA 33000 I N P P Q S T I L A I A T V E R V A V E 405 GACCCCCCGTGGCGAGACGGCTTCTCCTTTGATAACCAGGTTACCATAACAGGGACCTTT 3400 D A A A E N G F S F D N Q V T I T G T F 425 GATCATAGAACCATTGATGGCGCGCAAAGGTGCGAGATTCATAAAAATTAAAAAATTGGCAGGAATTGGAAAATTGGCAGGATTGGAAAGGGACCTTT 3420 D H R T I D G A K G A E F M K E L K T V 445 ATTGAAAATCCTTTGGAAATGCTATTGTGAGGTTAGGATTGAAAAATTAAAAATTGGCCAGTAA 3480 I E N P L E M L L ATGCGATCTTAGGAGAAAATATCAATTTGTTATTTGTGTGAAATTAAAAATTAAAAAATTAAAAAA																.		_					2000
AACGTTATCCGTAAATTCAAGAATGTCGATGTCGTGTCG																						GAG	
N V I R K F K N V D V S V A V A T P T G 325 TTATTGACACCAATTGTCAAGAATTGTGAGGCCAAGGCCTTGTGGCAAATCTCTAACGAA 3120 L L T P I V K N C E A K G L S Q I S N E 345 ATCAAGGAACTAGTCAAGCGTGCCACAATAAACAAATTGGCACCAGGGCATTCCAAAGGT 3180 I K E L V K R A R I N K L A P E E F Q G 35 GGGACCATTGCATATCCAATATGGCCATGAATAATCGTGTTAACATGTTAACTTGGATT 3240 G T I C I S N M G M N N A V N M F T S I 385 ATCAACCACCACCACAGTCTACAATCTTGGCCATGGCTATGGTTGAAAGGGTCGCTGTGGAA 3300 I N P P Q S T I L A I A T V E R V A V E 405 GACGCCGCTGCTGAGAACGGATTCTCCTTTGATAACCAGGTTACCATAACAGGGACCTTT 3360 D A A A E N G F S F D N Q V T I T G T F 425 GATCATAGAACCATTGATGGCGCGCGCAAAGGTGCAGAATTGAAGAGGAATTGAAAACTGTT 3420 D H R T I D G A K G A E F M K E L K T V 445 ATTGAAAATCCTTTGGAAATATCAATTGTGAATGTATAGATAAAAATTAAAAAATTAAAAAAT AAAAAAAAAA	•	1	т	v	•	•	ĸ	ĸ	v	P	U		•	N	^	1			-	r	I.	Б	,,,,
TTATTGACACCAATTGTCAAGAATTGTGAGGCCAAGGCCATGTGCGCAAATCTCTAACCAA 3120 L T P I V K N C E A K G L S Q I S N E 345 ATGAAGGAACTAGTCAAGGGTGCCAGAATAAACAAATGGCACCAGAGGAATTCCAAGGT 3180 I K E L V K R A R I N K L A P E E F Q G 365 GGGACCATTTGCATATCCAATATGGGCCATGAATAATGGCTGTTAACATGTTTACTTCGATT 3240 G T I C I S N H G H N N A V N H F T S I 385 ATCAACCCACCACGGTCTACAATCTTGGCCATCGCTACGTTTGAACAGGGTCGCCTGTGGAA 3300 I N P P Q S T I L A I A T V E R V A V E 405 GACGCCGCTGCTGAGAACGGATTCTCCTTTGATAACCAGGTTACCATAACAGGGACCTTT 3360 D A A A E N G F S F D N Q V T I T G T F 425 GATCATAGAACCATTGTGGCGCGCAAAGGTGCAGAATTGAAAGAGGAATTGAAAACTGTT 3420 D H R T I D G A K G A E F M K E L K T V 445 ATTGAAAATCCTTTGGAAATGCTATTGTGAGATGAATGATAATAAAATTAAAAATTAAAAAA	AAC	GTT	ATC	CGT	***	ттс	AAG		GTO	GA	тст	сто	AG	TC	сст	GT1	rgc	CAC		CA	ACA.	GCA	3060
L L T P I V K N C E A K G L S Q I S N E 345 ATCAAGGAACTAGTCAAGCGTGCCAGAATAAACAAATTGGCACCAGAGGAATTCCAAGGT 3180 I K E L V K R A R I N K L A P E E F Q G 365 GGGACCATTTGCATATCCAATATGGGCATCAATAATGGCACCGGGGGGGG																					T	C	325
L L T P I V K N C E A K G L S Q I S N E 345 ATCAAGGAACTAGTCAAGCGTGCCAGAATAAACAAATTGGCACCAGAGGAATTCCAAGGT 3180 I K E L V K R A R I N K L A P E E F Q G 365 GGGACCATTTGCATATCCAATATGGGCATCAATAATGGCACCGGGGGGGG	TTA	ттс			. T T	стс			TG	TGA	222	CAA	GG	GC	TTG	тсс	CA		rcı	ст	AAC	GAA	3120
I K E L V K R A R I N K L A P E E F Q G 365 GGGACCATTTGCATATCCAATATGGGCATCAATAATGCTGTTAACATGTTTACTTCGATT 3240 G T I C I S N H G H N N A V N H F T S I 385 ATCAACCCACCACAGTCTACAATCTTGGCCATCGCTACGTTGAAAGGGTCGCCTGTGGAA 3300 I N P P Q S T I L A I A T V E R V A V E 405 GACGCCGCTGCTGAGAACGGATTCTCCTTTGATAACCAGGTTACCATAACAGGGACCTTT 3360 D A A A E N G F S F D N Q V T I T G T F 425 GATCATAGAACCATTGATGGCGCCAAGGTCGAGAATTCATGAAGGGAACTGTT 3420 D H R T I D G A K G A E F M K E L K T V 445 ATTGGAATCTTTGGAAATGCTAATTGTGATATCGATATGATAATAATTAAGAATTGGCAGTA 3480 I E N P L E M L L ATGCGTATCTAGGAGAAATATCAATTGCAATTGTGTGAAATGAAAATTAAAAATTGGCCAGTA 3460 GTTGGAACTATGAACGATATGCAATTGCAATTGCAATGAATG																							345
I K E L V K R A R I N K L A P E E F Q G 365 GGGACCATTTGCATATCCAATATGGGCATCAATAATGCTGTTAACATGTTTACTTCGATT 3240 G T I C I S N H G H N N A V N H F T S I 385 ATCAACCCACCACAGTCTACAATCTTGGCCATCGCTACGTTGAAAGGGTCGCCTGTGGAA 3300 I N P P Q S T I L A I A T V E R V A V E 405 GACGCCGCTGCTGAGAACGGATTCTCCTTTGATAACCAGGTTACCATAACAGGGACCTTT 3360 D A A A E N G F S F D N Q V T I T G T F 425 GATCATAGAACCATTGATGGCGCCAAGGTCGAGAATTCATGAAGGGAACTGTT 3420 D H R T I D G A K G A E F M K E L K T V 445 ATTGGAATCTTTGGAAATGCTAATTGTGATATCGATATGATAATAATTAAGAATTGGCAGTA 3480 I E N P L E M L L ATGCGTATCTAGGAGAAATATCAATTGCAATTGTGTGAAATGAAAATTAAAAATTGGCCAGTA 3460 GTTGGAACTATGAACGATATGCAATTGCAATTGCAATGAATG	-	-	-																				
GGGGCCATTTGCATATCCAATATGGCCATGAATAATGCGTTAACATGTTAACTATGGATT 3240 G T I C I S N N G N N A V N N F T S I 385 ATCAACCCACCACAGTCTACAATCTTGGCCATGGCTGGCT	ATC	AAG	GAA	CTA	GTC	AAG																	
G T I C I S N H G H N N A V N H F T S I 385 ATCAACCCACCACAGTCTACAATCTTGGCCATCGCTACGTTGAAAGGGTCGCCTGTGGAA 3300 I N P P Q S T I L A I A T V E R V A V E 405 GACGCCGCGCGCGGAGAACGGATTCTCCTTTGATAACAGGGTACCATAACAGGGACCTTT 3360 D A A A E N G F S F D N Q V T I T G T F 425 GATCATACAACCATTGATGGCGCCAAAGGTGCAGAATTCATGAAGAACTGTT 3420 D H R T I D G A K G A E F M K E L K T V 445 ATTGAAAATCCTTTGGAAATGCAATTGTTGTTGTATATGAAAATTAAAAATTCGCCAGTAA 3480 I E N P L E M L L ATGCGTATCTAGGGAAATGCAATGCAATGAATGAAAATTAAAAATTAAAAAATTAAAAAATGCGTCTGGCGTCAAGATGAAATGAATAATAATAATTAACAAGTGCAAT GGGGTGGGATATAGGAAAATATCAATTGCTATTGTGTGGAATTAAAAAATTAAAAATTAACAAATTAACAATGCGTTA AAAAAAAAAA	I	ĸ	E	L	v	ĸ	R	A	R	1	N		¢	L	۸	P	E	1	Ε	F	Q	G	365
G T I C I S N H G H N N A V N H F T S I 385 ATCAACCCACCACAGTCTACAATCTTGGCCATCGCTACGTTGAAAGGGTCGCCTGTGGAA 3300 I N P P Q S T I L A I A T V E R V A V E 405 GACGCCGCGCGCGGAGAACGGATTCTCCTTTGATAACAGGGTACCATAACAGGGACCTTT 3360 D A A A E N G F S F D N Q V T I T G T F 425 GATCATACAACCATTGATGGCGCCAAAGGTGCAGAATTCATGAAGAACTGTT 3420 D H R T I D G A K G A E F M K E L K T V 445 ATTGAAAATCCTTTGGAAATGCAATTGTTGTTGTATATGAAAATTAAAAATTCGCCAGTAA 3480 I E N P L E M L L ATGCGTATCTAGGGAAATGCAATGCAATGAATGAAAATTAAAAATTAAAAAATTAAAAAATGCGTCTGGCGTCAAGATGAAATGAATAATAATAATTAACAAGTGCAAT GGGGTGGGATATAGGAAAATATCAATTGCTATTGTGTGGAATTAAAAAATTAAAAATTAACAAATTAACAATGCGTTA AAAAAAAAAA	222	ACC	ATT	тас	A T A	тсс	AAT	ATO			GAA	TAA	TG	ст	GTT		TAC	GTI	ст,	ιст	rcc.	ATT	3240
I N P P Q S T I L A I A T V E R V A V E 405 GACCCCCCTGCTGAGAACGGATTCTCCTTTGATAACCAGGTACCATAACAGGGACCTTT 3360 D A A A E N G F S F D N Q V T I T G T F 425 GATCATAGAACCATTGATGGCGCCAAAGGTGCAGAATTCATGAAGGAATTGAAAACTGTT 3420 D H R T I D G A K G A E F M K E L K T V 445 ATTGAAAATCCTTTGGAAATGCTATTGTGAGGTTAGAATGAAAATTAAAAATTGGCCAGTAA 3480 I E N P L E M L L ATGCGTATCTTGGGAAAATGCTATTGTGAGATTGATATATAAAAATTGGCCAGTAA 3460 GTTGGAACTACTAGAATGCAATTGCAATTGTGTGTAAAAAATTAAAAAATTGGCAAGTGAA AAGAAAAAAAATAGCTCAGTTGCGAATTGCGAGATGAAAATTAAAAAATTAAAAAATTGGCGAGAA GTGGGATGTGAAGTGCCGCTAGGAATGCGAATGAAATTAAAAAATTAAAAAATTGGCGAGAA AGCATCGAACTACTGCAATGCCAATTGCGATATAGGATATAAAAAATTAACAAGTGAA 3640 GTTGGGATGTGGAAAATATCCAATTGCGATATGGCGATATGAATAAAAATTAGCAATGAA 360 GTGGGGATGGCAACATGTTGCTTTGTTTTTGCCTGACATGCGATGGTGAAATTAAACAAATAAAAA AGCATCGAAGTTTCCCACTATTTGCTGCGATATGGTTGAAAATTAACAAAGTAAAA AGCATCGACGTTGCCAATTGCGATATTGCGTGGAAATTAAGCAAATTAACAAAGA AGCATGACGTTGCCAACATGTAGCAACATTATGCGTGGAAATTAAGCTATTTGCGA AGCATGACGACCAACTTCTAATGAAGCAAACTTTGGCGGATGCCAATTTGCCTATTTCGA A900 AATTTAAATGTTGCGGTAACAGCTAACTTGGGTGAAAGGAAGCTAATTGCATTTGCAATT 3900 AATTAAAAACATCAGTTCCGATAATGAACTTGGGTGAGAGGGAAGCCAATTTICCAATT 4080 CGATTGGCACGCACTACTTCTAATAGCAAACTTGGGTGAAAGAAGAAAGTAATTTCCAATTA 4080																							
I N P P Q S T I L A I A T V E R V A V E 405 GACCCCCCTGCTGAGAACGGATTCTCCTTTGATAACCAGGTACCATAACAGGGACCTTT 3360 D A A A E N G F S F D N Q V T I T G T F 425 GATCATAGAACCATTGATGGCGCCAAAGGTGCAGAATTCATGAAGGAATTGAAAACTGTT 3420 D H R T I D G A K G A E F M K E L K T V 445 ATTGAAAATCCTTTGGAAATGCTATTGTGAGGTTAGAATGAAAATTAAAAATTGGCCAGTAA 3480 I E N P L E M L L ATGCGTATCTTGGGAAAATGCTATTGTGAGATTGATATATAAAAATTGGCCAGTAA 3460 GTTGGAACTACTAGAATGCAATTGCAATTGTGTGTAAAAAATTAAAAAATTGGCAAGTGAA AAGAAAAAAAATAGCTCAGTTGCGAATTGCGAGATGAAAATTAAAAAATTAAAAAATTGGCGAGAA GTGGGATGTGAAGTGCCGCTAGGAATGCGAATGAAATTAAAAAATTAAAAAATTGGCGAGAA AGCATCGAACTACTGCAATGCCAATTGCGATATAGGATATAAAAAATTAACAAGTGAA 3640 GTTGGGATGTGGAAAATATCCAATTGCGATATGGCGATATGAATAAAAATTAGCAATGAA 360 GTGGGGATGGCAACATGTTGCTTTGTTTTTGCCTGACATGCGATGGTGAAATTAAACAAATAAAAA AGCATCGAAGTTTCCCACTATTTGCTGCGATATGGTTGAAAATTAACAAAGTAAAA AGCATCGACGTTGCCAATTGCGATATTGCGTGGAAATTAAGCAAATTAACAAAGA AGCATGACGTTGCCAACATGTAGCAACATTATGCGTGGAAATTAAGCTATTTGCGA AGCATGACGACCAACTTCTAATGAAGCAAACTTTGGCGGATGCCAATTTGCCTATTTCGA A900 AATTTAAATGTTGCGGTAACAGCTAACTTGGGTGAAAGGAAGCTAATTGCATTTGCAATT 3900 AATTAAAAACATCAGTTCCGATAATGAACTTGGGTGAGAGGGAAGCCAATTTICCAATT 4080 CGATTGGCACGCACTACTTCTAATAGCAAACTTGGGTGAAAGAAGAAAGTAATTTCCAATTA 4080	A.T.C					тст		A.T.C			.		Т.	ст	стт	GAA			r	ст	сто	GAA	3300
GAGGCCGCTGCTGAGAACGGATTCTCCTTTGATAACCAGGTTACCATAACAGGGACCTTT 3360 D A A A E N G F S F D N Q V T I T G T F 425 GATCATAGAACCATTGATGGCGCCCAAAGGTGCAGAATTCATGAAGGGAATTGAAAACTGTT 3420 D H R T I D G A K G A E F N K E L K T V 445 ATTGAAAATCCTTTGGAGAATGCTATTGTGAGGTTAGAATGAAAAATTAAAAATTGGCCAGTAA 3480 I E N P L E M L L ATGCGTATCTTGGAGAAATGCTATTCATGTGAGTATGAAAATTAAAAATTAAAAAATTAAAAAAT AAAAAAAA																							405
DAAAA AE N G F S F D N Q V T I T G T F 425 GATCATAGAACCATTGATGGGGGCGCAAAGGTGCAGAATTCATGAAAGCATTGAAAACTGTT 3420 D H R T I D G A K G A E F M K E L K T V 445 ATTGAAAATCCTTTGGAAATGCTATTGTGAGGTTAGAATGAAAAATTAAAAATTGGCCAGTAA 3480 I E N P L E M L L ATGCGTATCTTGGAGAAAATGCAATTGAAATGAATGAAAATTAAAAAATTAAAAAATGGCCAGTAA 3460 GTTGGAATCTAAATGCTGTGTGTGTGTGTGAATGAATGAA	•	••	•	•	*		-	-	-		-												
GATCATAGAACCATTGATGGCCCAAAGGTGCAGGATTCATGAAGGGATTGAAAACTGTT 3420 D H R T I D G A K G A E F H K E L K T V 445 ATTGAAAATCCTTTGGAAATGCTATTGTGAGGTTAGAATGAAAAATTGGCCAGTAA 3480 I E N P L E H L L ATGGGATCTTAGGAGAAAATACTGAATTGGTATGTATATAAAAATTGGCCAGTAA 3540 GATAGGATCTAAATCCTCAATTCGAATTGGTATAGGTTAAAAAATTGGCCAGTAA 3660 GTTCGGATCTTAGGAGAAAATACTGAATTGGTGCAATGGTGAAATAGTGGCCTGAA 3660 GTTCGGATCTAAATCCTCGTCTCTCTCTGTGTGCAATGGTGAAATAATAAAAATTAACAAGGTGAA 3660 GTTGGGATGTAAGGTATAAGGCAAAATTGGCAATGGTGGAATTAGCTGAAATTAACAAAGGA 3720 GTGGGGATATAGGATATAAGCGATAAAGTTAGCGATGCAATTGGCTGAAATTAACAAAGGA 3720 GTGGGATGTGCGTCTGACCACTTTTGCTCTAATTGGTGGAAATTAACAAAGGA 3720 GTGGGATGTGCGTCTTACCTCTCAATATTGCCAAATTAGCTTAAAGAAACGATATTCGCAAAT AGCATGAGTTTCGACCAACTTTTGCTCTAATGTTGGCATAATTAAGCTAATTAACAAAAGA 3900 AATTTAAATGTACGCGATATAGCAAACTTGGGGTGGGAAGCGCATTTTCCAATTT 3960 GGGCTGGGCACACACTTCTAATGTAAGCAAACTTTTTGACTGAATTAACGTAATTTACGAATT 3900 AATTAAAAACATGAGTTGCGATAAAGATTAGAAATTGGGAGGGA	GAC	GCC	GCT	GCT	GAG	AAC	GGA	TTC															3360
D H R T I D G A K G A E F H K E L K T V 445 ATTGAAAATCCTTTGGAAATGCTATTGTGAGGTTAGAATGAAAATTAAAATTGGCCAGTAA 3480 I E N P L E H L L ATGCGTATCTTGGAGAAAATGCAATAGAATGAATATAAAATTAAAAATTGGCCAGTAA 3460 GTTGGAATCTAAATGCTCTGTGTGTGTAAATAGATATAATAAAATTAAAAAATTAAAAAA	D	A	۸	۸	E	N	G	F	S	F	D	Ņ	1	Q	v	т	I	1	r	G	T	F	425
D H R T I D G A K G A E F H K E L K T V 445 ATTGAAAATCCTTTGGAAATGCTATTGTGAGGTTAGAATGAAAATTAAAATTGGCCAGTAA 3480 I E N P L E H L L ATGCGTATCTTGGAGAAAATGCAATAGAATGAATATAAAATTAAAAATTGGCCAGTAA 3460 GTTGGAATCTAAATGCTCTGTGTGTGTAAATAGATATAATAAAATTAAAAAATTAAAAAA	GAT	CAT	AGA	ACC	ATT	GAT	GGC	GCC		AGG'	тсс	AGA		тс	ATG		GGA	AT	r G A		ACT	GTT	3420
I E N P L E M L L ATGCGTATCTTGGAGAAAATATCAATTTGTATATTTGTATATATA																							445
I E N P L E M L L ATGCGTATCTTGGAGAAAATATCAATTTGTATATTTGTATATATA												- - -										.	34.80
ATGCGTATCTTGGGGAAAATATCAATTTGTATATTTGTATATAAAAAATTAAAAAAAA										516	AGG	114	164	AI	GAA			n n .			LAG	144	3480
AAAAAAAAAAAATACTCAAATACTCAAATACGTATACATTATACTGAAATACTTCGCTTGT 3600 GTTCGAATCTAAATCCTCATCTCTCTCTCTCTCTCAAAATGATATAAATAA	1	E	n	r	L	E	п	L															
GTTCGAATCTAAATCGTCTCTCTCTCTCTCTGTCTCAAAATGATATAATAATCAGGTCAAA 3660 CGGTGCGTAACATCTTTGTTTTTTCACCTCATGTGGAATTGGTTGAAATTAACGAAAAGA 3720 GTGGGATATAGGATATAAGCATAAAGTTTAGCATACTATGTTTGGAATTAATGTTCGG 3780 TGAAAGAACTAGTTCCCTCTTATCTCTCAGATATTTCCCAAAATTAAGCTTTTAGGTTTGGAA AACCATCAGTTTCCTACCATCATTTTCTTAAGCGATCGAACTAAAGAAGGTATTTCCAA AACCATCAGTTTCCTAAGCACAATAATGGCGATCGATCTAAAGAAGGTATTTCCAA GGGCTGGGGCACACACTATGAGCAAACTTTGGCGGCGGCGCCCCATTTTCCAATT 360 GGGCTGGGGCACACACTTAATGTAAGCAAACTTTGGGTGAGGGAAGCGCAATTTTCCAATT 4080 TGTTTAAAAACATCAGTTCGATACACTTGGGGGGGGGGG	ATG	CGT	ATC	TTG	GAG	***	ATA	TCA	ATT	TG	TTA	ттт	TG	TA	TAT	AT A			\ Τ1				3540
COGTGCGTCAACATCTTTGTTTTTCACCTCATGTGGAATTGGTTGAAATTAACAAAGGA 3720 GTGGGGATATAGGATATAACGCATAAAGTTTAGCATACTACTTTGCTATATTATGTTGG 3780 TGAAAGAAACTAGTTCCCTCTTTTCTCTCAAATTTGCCTAAATTAGCTTTTAACAAATA AACCATGAGTTTCCTACGATCTTTTATCTTAAGCGATGAATCTAAAGAACGTATTTCCAA 3900 AATTTTAACTTTGACTGATAATGTAGCAACATTATGCCTGGATCGCATTGTTTTGTTTTG GGGCTGGGCACGACATTCTAAAGACCAAACTTTTTTGAACTACTGCTTTCGCGTTACCAAG GGGCTGGGCACGACATTCTATAAGCAACTATTGCCTGACGCAGCGCATCTCCCGTTACCAAC GGGTTGGCACGACTTCTAATAGAACCAAACTTTTTGACAGCGACGCCATATTTCCCATTT 4080 TGTTTAAAAACATCAGTTCGCATATAATAAAAATTGACAATGTACATAAACTATATATA					ACT	CAA	ATA	стс		TA	сст	ATA	CA	TT	ATA	сто	-	AT/	101	TC	GCT	TGT	3600
GTGGGATATAGGATATAACGCATAAAGTTTAGCATACTACTTTCGTATATTATTGTTCGG 3780 TGAAAGAACTAGTTCCCTGTTATCTTAGCATATTTGCCAAAATTAGCTTTTAAGAAATA 3840 AACGATCAGTTTCCTACCTTATTTACTTAAGCGATGAATCTAAAGAAGGTATTTCCAA 3900 AATTTTAACTTTGACTGATAATGTAGCAACATTATGGCTGGATCGCATTGCTTTTGTATTT 3960 GGGCTGGGCACACACTTCTAATAGACCAAACTTTTTCTAATTACTTCTCGTTTGCATT GGGCTGGGCACACACTTCTAATAGACCAACTTTTTTCAACTTACTGTCTCCGTTACCAACT 4080 TGATTAAAAACATCAGTTCGATACAACTTGGGTGAGAGGAGGCACTAATTTCCAATTT 4180 AATTAAATAAAATAAAATTAATTATTATTTATCATTAGCGCTTGTATTTGAATTATAT 4160 AATAAAATAAAATAAAATTAATTATTTTCTACGGCTTGGCTTTTCATATGAT 4200	GTT	CGA	ATC		TC	стс	тст	стс	TTO	TG	гст	CAA		TG	ATA	TA/	AT.		١T	AC	GTC.		3660
TGAAAGAAACTAGTTGCCTCTTATCTCTCAATATTTGCCAAAATTAGCTTTTAACAAATA 3840 AACCATGAGTTTGCTACCATCTTTATCTTTAGCGATGGAATCTAAAGAAGGTATTTGCAA 3900 AATTTTAACTTTGACTGATAATGTAGCACATATGGGTGGATCGCATTTGTTTTGTATTT 3960 GGGCTGGGCACACACTTCTAATAGACCAAACTTTTTGAACTTACTGTCTCCGCTTACCAAG 4020 TGTTTAAAAACATCAGTTCGATACAACTTGGGTGACAAGAGGCAAGCCCATATTTGCCATTT 4080 TGATTAACTAGCTGACGGTACGAACTATAGTAAAAATTGACATGTACGATAAGTATATATA	CCC	TGC	GTC		TC	TTT	GTT	ттт	TCA	CC:	TCA	TGT	GG	AA	TTG	GTI	GA		T7	AC		GGA	3720
AACCATGAGTTTCCTACCATCTTTATCTTAAGCGATGAATCTAAAGAACGTATTTCCAA 3900 AATTTTAACTTTGACTGATAATGTAGCAGATTATGCCTGGATCCCATTTGTTTTGTATT 3960 GGCGTGGGCAGCACACTTCTAATAGCCAAACTTTTTCTAACTTCTACTGCTCTCCGTTACCAAG 4020 TGTTTAAAAACATGAGTTCGATACAACTTGGGTGAGAAGAGGAAGCGCATATTTCCACATT 4080 TGATTACTTGCGCGTTACTGCAAATAATAAAAATTGACAATGTACATAAAGTAATATAAT 4140 AATAAAATATAAAATTCATTTGCATATTGTTACTATCGGCTTGGCTTTTGATATGGT 4200	GTG	GGA	TAT	\GG/	TA	TAA	CGC	ATA	AAC	TT	TAG	CAT	AC	TA	CTT	тсс	TA	TA1	TT/	TT	TT	CGG	3780
AATTTTAACTTTGACTCATAATGTAGCACATTATGGCTGGATCCCATTTGTTTTGTATTT 3960 GGGCTGGGCACACACTTCTAATAGACCAAACTTTTTGAACTTACTGTCTCCGTTACCAAC 4020 TGTTTAAAAACATCAGTTCGATACAACTTGGGTGAGGAGGCAAGCCCATATTTCCAATT 4020 TGAATTACTTGACCGTTACTGCAAATAATAAAAATTGACATGTACATAAAGTATATAATA 4140 AATAAAATATAAAATTCATTTGTGATATTGTTATTCTTTCACGCTTTGTTTTGATATGGT 4200	TGA	AAG		CTAC	GTT (CCC	тст	TAT	CTO	TC/	AAT.	ATT	TG	cci	***	AT1	[AG	СТІ	TT 1		CAA	ATA	3840
GGGCTGGGCACACACTTCTAATAGACCAAACTTTTTGAACTTACTGTCTCCGTTACCAAC 4020 TGTTTAAAAACATCAGTTCGATACAACTTGGGTGAGAGAGGAAGGCCATATTTCCAATT 4080 TGAATTACTTGACCGTTACTGCAAATAATAAAAATTGACATGTACATAAAGTAATATAATAT AATAAAATATAAAATTCATTTGATATTGTTATTCTTCAGCGCTTGTTTTGATATGGT 4200	AAC	CAT	GAG	TT	ст	ACC	ATC	TTT	TAT	CT	TAA	GCG	AT	GA	AT C	TAA	AG	AA	C G 1	AT	гтс	CAA	3900
TGTTTAAAAAGATCAGTTCGATACAACTTGGGTGAGAGAGGAGGGAG																							3960
TGAATTACTTGACCGTTACTGCAAATAATAAAAATTGACATGTACATAAAGTATATATA	GGG	CTG	GGCI	CAC	CAC	TTC	TAA	TAG	ACC		A C T	TTT	TG	AA	CTT	ACI	GT	сто	cco	TT	ACC.	AAG	4020
AATAAAATATAAAATTCATTTTGCATATTGTTATTCTTTCACGCTTTGTTTTGATATGGT 4200																							4080
																							4140
GAAAATTCGAAGTCTCTAGAATGTCCTTTAGGTACC														TTO	CAC	GCI	TT	GTI	[T]	GA	TAT	GGT	4200
	GAA	AAT	ICC!	AGI	CT	CTA	GAA	TGT	сст	TT/	A G G	TAC	С										

FIG. 2. Nucleotide sequence of the yeast E_2 gene and the deduced amino acid sequence (one-letter amino acid symbols). The experimentally determined amino acid sequences are underlined. A putative polyadenylylation signal is overlined.

bases and had an open reading frame that contained the experimentally determined amino acid sequences of two internal peptides of E_2 . E21-1 was used as a probe to identify two additional clones, E2-GW and E2-CW, containing inserts of 1985 and 1065 bases, respectively. The latter insert was isolated from the same cDNA library and the former from a yeast genomic DNA library. Both inserts contained internal *Eco*RI sites, requiring that *Kpn* I and *Sst* I be used for subcloning. Sequencing results showed that E2-GW contains the entire nucleotide sequence of E21-1 and brought the open reading frame to a stop codon. To identify the missing portion of the 5' end of the open reading frame, $\approx 2 \times 10^6$ recombinants from the yeast genomic DNA library were screened with a 915-base DNA fragment from E2-GW, designated E2-G2 (Fig. 1, nucleotides 2256–3171). By sizing of the DNA

fragments after digestion with EcoRI, one of the resulting positive clones was identified as having the 5' upstream sequence of the open reading frame. This insert, designated E2-G9, was subcloned and sequenced.

Sequence Analysis of cDNA and Genomic DNA Inserts. The restriction map and sequencing strategy for the cDNA and genomic DNA inserts are shown in Fig. 1. Two genomic DNA inserts, E2-G9 and E2-GW, with a 915-base overlap, contained the nucleotide sequence encoding the precursor of E_2 as well as 5' and 3' flanking regions. The nucleotide sequence and the deduced amino acid sequence of the protein are shown in Fig. 2. The genomic DNA sequenced comprised ≈ 4.2 kb. However, only the sequence of the E_2 gene and its flanking regions are presented in Fig. 2. The remainder of the

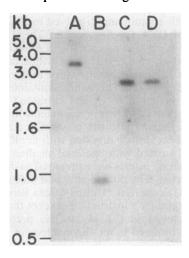


FIG. 3. RNA blot analysis of yeast $poly(A)^+$ RNA with E2-G2. The positions of satellite tobacco necrosis virus RNA (1.24 kb) and yeast 18S (1.65 kb) and 25S (3.36 kb) rRNA are indicated.

FIG. 4. Southern blot analysis of yeast genomic DNA. DNA samples $(10 \mu g)$ were digested with restriction enzymes, blotted, and hybridized with E2-G2. Lane A, *Eco*RI; lane B, *Eco*RI and *BstXI*; lane C, *Kpn* I; lane D, *Kpn* I and *Pst* I. Molecular size markers are as indicated.

Ec A I E I K V P D 8	ECATVVKEAIK
I G A D E V E I T E I L V K V G D K V E 28 A E Q S L I T V E G D K A S M E V P S P 48	$\begin{array}{c} \textbf{P} \textbf{A} \textbf{A} \textbf{T} \textbf{G} \textbf{G} \textbf{G} \textbf{I} \textbf{P} \textbf{G} \textbf{M} \textbf{L} \textbf{P} \textbf{W} \textbf{P} \textbf{K} \textbf{V} \textbf{D} \textbf{F} 393 \\ \textbf{P} \textbf{A} \textbf{A} \textbf{A} \textbf{T} \textbf{S} \textbf{S} \textbf{T} \textbf{T} \textbf{A} \textbf{G} \textbf{S} \textbf{A} \textbf{P} \\ \textbf{A} \textbf{A} \textbf{A} \textbf{A} \textbf{A} \textbf{P} \textbf{P} \textbf{G} \textbf{P} \textbf{R} \textbf{V} \textbf{A} \textbf{P} \textbf{T} \textbf{P} \textbf{G} \textbf{F} \textbf{A} \textbf{P} \\ \textbf{A} \textbf{A} \textbf{A} \textbf{A} \textbf{A} \textbf{P} \textbf{P} \textbf{G} \textbf{F} \textbf{R} \textbf{V} \textbf{A} \textbf{P} \textbf{T} \textbf{F} \textbf{G} \textbf{G} \textbf{S} \textbf{A} \textbf{P} \\ \textbf{A} \textbf{P} \textbf{C} C$
QAGIVKEIKVSVGDKTQTGA 68	
LIMIFDSADGAADAAPAQAE88	
еккелараларала коv n 108 V P D 1 G S D E V E V T E I L V K V G D 128	$ \begin{array}{c} \textbf{N} \textbf{L} \textbf{S} \textbf{R} \textbf{N} \textbf{V} \textbf{M} \textbf{I} \textbf{P} \textbf{H} \textbf{V} \textbf{T} \textbf{H} \textbf{F} \textbf{D} \textbf{K} \textbf{T} \textbf{D} \textbf{I} \textbf{433} \\ \textbf{R} \textbf{L} \textbf{L} \textbf{Q} \textbf{S} \textbf{K} \textbf{Q} \textbf{G} \textbf{I} \textbf{P} \textbf{S} \textbf{Y} \textbf{I} \textbf{V} \textbf{S} \textbf{S} \textbf{K} \textbf{I} \textbf{S} \textbf{I} \textbf{257} \\ \textbf{R} \textbf{L} \textbf{H} \textbf{Q} \textbf{S} \textbf{K} \textbf{Q} \textbf{T} \textbf{I} \textbf{P} \textbf{H} \textbf{Y} \textbf{Y} \textbf{S} \textbf{V} \textbf{V} \textbf{N} \textbf{M} \textbf{277} \\ \end{array} $
KVEAEQSLITVEGDŘASNEV 148	TELEAFRKQQNEEAAKKRKL452 SKLLKLRQSLNATANDKYKL277 GEVLLVRKELNKMLEGKGK1297
ECPAPFAGTVKEIKVNVGDKVS168 Rt	$\begin{array}{c} \hline \\ \textbf{D} \textbf{V} \textbf{K} \textbf{I} \textbf{T} \textbf{P} \textbf{V} \textbf{V} \textbf{F} \textbf{I} \textbf{H} \textbf{K} \textbf{A} \textbf{V} \textbf{A} \textbf{A} \textbf{L} \textbf{E} \textbf{Q} \textbf{472} \\ \hline \textbf{S} \textbf{I} \textbf{N} \textbf{D} \textbf{L} \textbf{L} \textbf{V} \textbf{K} \textbf{A} \textbf{I} \textbf{I} \textbf{T} \textbf{V} \textbf{A} \textbf{A} \textbf{L} \textbf{K} \textbf{R} \textbf{293} \\ \hline \textbf{S} \textbf{V} \textbf{N} \textbf{D} \textbf{F} \textbf{I} \textbf{I} \textbf{K} \textbf{A} \textbf{S} \textbf{-} \textbf{A} \textbf{L} \textbf{A} \textbf{C} \textbf{C} \textbf{K} \textbf{K} \textbf{131} \\ \hline \textbf{S} \textbf{V} \textbf{N} \textbf{D} \textbf{F} \textbf{I} \textbf{I} \textbf{K} \textbf{A} \textbf{S} \textbf{S} \textbf{K} \textbf{R} \textbf{C} \textbf{K} \textbf{K} \textbf{131} \\ \hline \textbf{K} \textbf{K} \textbf{S} \textbf{K} K$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MPRFNSLSEDGQRLTLKKY492 VPDANAYWLPNENVIRKFKN313 VPEANSSWMDTVIRQNHV331
Ec · · A K Q E A A P A A A P A A A C · · 204 Yt P A A A P A A P A A P A A P S A S A P C S S 42	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
V T E V H V K V G D K V A A E Q S L I T 239 L A A V T K K E G D Q L S P G E V I A E 42 V Q R V E K K V G E K L S E G D L L A E 82	V N K K G I I E L S R E L M T I S K K A 532 C E A K C L S Q I S N E I K E L V K R A 353 A H I K C L E T I A S D V V S L A S K 371
VECDKASKEVPAPFAG-VVK258 IETDKASMPFEFQEDGYLAK62 IETDKATGFEVQEEGYLAK102	R D G K L T A G E H Q G C F T I S I 552 R I N K L A P E F Q G G T I S N M 373 R E G K L Q P H E F Q G T F T I S N L 391
ELIKVIN VGDIKIVKT GSLIMIFE278	G G.L.G.T.T.H.F.A.P.I.V.N.A.P
	V A I L C V S K S A M E P V W N C K E F 588 L A I A T V E R V A V E D A A A E N C F 413 L A I G A S E D K L I P A D N E K C F 429
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* * *
L K P Q A P P V P P V A A V P P I P 161	V P R L H L P I S L S F D H R V I D C A 608 S F D N Q V T I T G T F D H R T I D C A 433 D V A S V H S V T L S C D H R V V D C A 449
A P A A P A A K A - E - G K S E F A E 321 A P A E E T K T S A P E A K K S D V A A 141 Q P L A P T P S A A P A G 174	D G A R F I T I I N N T L S D I 624 K G A E F H K E L K T V I E N F L E H L 453 V G V L A 456
	R R L V M 639 L 454
$ \begin{array}{c} N \\ P \\ Q \\ G \\ R \\ I \\ P \\ C \\ C \\ R \\ V \\ P \\ V \\ C \\ R \\ V \\ P \\ V \\ S \\ P \\ L \\ A \\ K \\ C \\ R \\ V \\ S \\ P \\ L \\ A \\ K \\ C \\ R \\ V \\ S \\ P \\ L \\ A \\ K \\ C \\ R \\ V \\ S \\ C \\ C \\ R \\ V \\ S \\ C \\ C$	
N L A K V K C T G R K C R I L R E D V Q 361 S L K D V H G T G P R G R I T K A D I E 181 D L T Q V K G T G P E G R I T K K D I D 214	

FIG. 5. Comparison of E_2 amino acid sequences. The deduced sequences of the *E. coli* (Ec), yeast (Yt), and putative rat liver (Rt) enzymes are aligned for maximal homology. Identical residues are boxed. The lipoyl domains (amino-terminal), E_3 -binding domains, and catalytic inner-core domains (carboxyl-terminal) are represented by solid lines, and the putative interdomain linker segments are represented by dashed lines. The lipoyllysine residues in the lipoyl domains are indicated by solid circles, and residues in the putative site are denoted by stars.

sequence contained one complete open reading frame and a portion of another. These sequences will be reported elsewhere. There is a 1-base mismatch at position 3279, where a thymine in the genomic insert is replaced with a cytosine in the cDNA insert. This mismatch is in the wobble position of the codon.

The open reading frame of 1446 nucleotides encodes a putative presequence of 28 amino acid residues and a mature protein of 454 amino acid residues, which has a calculated M_r = 48,546. The presequence is rich in basic and hydroxylated amino acid residues and is devoid of acidic amino acid residues. This feature, similar to the putative presequence of yeast E₃ (25), is characteristic of presequences of mitochon-

drial matrix/inner membrane proteins (26). The deduced amino acid sequence of the mature protein contains the experimentally determined sequences of the amino terminus and two internal peptides of the purified E_2 (underlined).

RNA Blot Analysis. RNA blot analysis of yeast $poly(A)^+$ RNA shows that the size of the mRNA is ≈ 1.6 kb (Fig. 3).

Southern Blot Analysis. To identify genomic DNA fragments carrying the gene of E_2 , yeast DNA was digested with various restriction endonucleases and the resulting fragments were hybridized to the ³²P-labeled DNA probe E2-G2 (Fig. 4). A single band was hybridized in each digestion. The sizes of the fragments generated by *BstXI/EcoRI* digestion (900 bases) and by *Kpn* I digestion (2500 bases) are in good agreement with the restriction map deduced from the nucleotide sequence of the gene for E_2 . These data indicate that there is a single copy of the gene for E_2 . Additional analysis indicated that the E_2 gene is located on chromosome XIV (data not shown).

Comparison of E_2 Amino Acid Sequences. The deduced amino acid sequences of the E_2 enzymes from E. coli, yeast, and rat liver are compared In Fig. 5. The amino acid sequence of the putative rat liver acetyltransferase was deduced from the nucleotide sequence of a cDNA encoding the 70-kDa mitochondrial autoantigen of primary biliary cirrhosis (27-29). The sequence of the rat liver enzyme is incomplete (28, 29), apparently lacking sequences at the amino and carboxyl termini. The sequence comparisons of the acetyltransferases show that yeast E_2 has a multidomain structure similar to those identified previously for the E_2 components of the E. *coli* pyruvate and α -ketoglutarate dehydrogenase complexes. The yeast and E. coli acetyltransferases exhibit 31% sequence identity for 463 residues, after the introduction of gaps to optimize the alignment. The corresponding value for the yeast and rat liver acetyltransferases is 45% for 440 residues.

DISCUSSION

Amino acid sequence comparisons of the E_2 proteins from yeast, E. coli, and rat liver (Fig. 5) clearly demonstrate that the yeast enzyme has a highly segmented structure similar to that reported for the E. coli acetyltransferase and succinyltransferase (7, 11). The lipsyl domain, comprising the aminoterminal region, is followed by the E_3 -binding domain and the catalytic inner-core domain. These putative domains are connected by interdomain linker segments. Sequence identity of 31% was found between the yeast and E. coli enzymes, and 45% between the yeast and rat liver enzymes. Conservation of sequence is particularly high around the lipoyllysine residues of the lipoyl domains, in the E₃-binding domains, and in the carboxyl-terminal segment of the catalytic innercore domains. The putative catalytic site is thought to include the highly conserved His-Xaa-Xaa-Xaa-Asp-Gly segment near the carboxyl terminus (30).

In contrast to the E. coli acetyltransferase, which contains three lipoyl domains (5), and the putative rat liver acetyltransferase, which apparently has two lipoyl domains (29), the yeast acetyltransferase has only one lipoyl domain. In this respect, the yeast acetyltransferase resembles the E. coli dihydrolipoamide succinyltransferase (6, 31) and the dihydrolipoamide acetyltransferase component of the branchedchain α -keto acid dehydrogenase complex (32, 33).

Although the length and composition of the interdomain linker segment vary among the three acetyltransferases, these segments are similar in that they are rich in the conservatively substituted residues alanine, proline, serine, and threonine and in charged amino acid residues. The linker segments of the E. coli and rat liver acetyltransferases have a higher content of alanine and proline residues than the yeast enzyme, whereas the linker segments of the yeast enzyme have a higher content of threonine and serine residues. The interdomain linker segments are thought to be responsible, at least in part, for the relatively slow migration of E₂ in NaDodSO₄/polyacrylamide gel electrophoresis, resulting in abnormally high apparent molecular weight values (2, 34). Thus, the apparent molecular weight of the yeast acetyltransferase estimated by NaDodSO₄/polyacrylamide gel electrophoresis is $\approx 58,000$ (35), whereas the molecular weight calculated from the deduced amino acid sequence is 48,456.

The availability of the structural gene for E_2 should facilitate investigation into mitochondrial import, selfassembly, and structure-function relationships of this oligomeric enzyme.

We thank Dr. David J. Uhlinger for the rabbit antibody to yeast E_2 and Drs. Robert W. Gracy and K. Ümit Yüksel (North Texas State University/Texas College of Osteopathic Medicine, Fort Worth) and Dr. Alexander Kurosky (University of Texas Medical Branch, Galveston) for amino acid sequence analyses. We thank Drs. Russell F. Doolittle and Dean Appling for critically reading the manuscript. This work was supported in part by Grant GM06590 from the U.S. Public Health Service.

- Reed, L. J. (1974) Acc. Chem. Res. 7, 40-46. 1.
- 2. Bleile, D. M., Munk, P., Oliver, R. M. & Reed, L. J. (1979) Proc. Natl. Acad. Sci. USA 76, 4385-4389.
- Packman, L. C. & Perham, R. M. (1986) FEBS Lett. 206, 193-3. 198.
- 4. Packman, L. C. & Perham, R. N. (1987) Biochem. J. 242, 531-538
- 5. Stephens, P. E., Darlison, M. G., Lewis, H. M. & Guest, J. R. (1983) Eur. J. Biochem. 133, 481-489.
- Spencer, M. E., Darlison, M. G., Stephens, P. E., Duckenfield, 6. I. K. & Guest, J. R. (1984) Eur. J. Biochem. 141, 361-374.
- Miles, J. S. & Guest, J. R. (1988) Biochem. Soc. Symp. 54, 45-7. 65.
- 8. Perham, R. N., Duckworth, H. W. & Roberts, G. C. K. (1981) Nature (London) 292, 474-477.
- Perham, R. N. & Roberts, G. C. K. (1981) Biochem. J. 199, 9. 733-740.
- 10. Radford, S. E., Laue, E. D., Perham, R. N., Miles, J. S. & Guest, J. R. (1987) *Biochem. J.* 247, 641–649. Perham, R. N., Packman, L. C. & Radford, S. E. (1988)
- 11. Biochem. Soc. Symp. 54, 67-81.
- 12. Altmann, M., Handschin, C. & Trachsel, H. (1987) Mol. Cell. Biol. 7, 998-1003.
- Uhlinger, D. J., Yang, C.-Y. & Reed, L. J. (1986) Biochemistry 13. 25, 5673-5677.
- DeMarcucci, O. & Lindsay, J. G. (1985) Eur. J. Biochem. 149, 14. 641-648.
- 15. Uhlinger, D. J. (1986) Dissertation (Univ. of Texas, Austin).
- 16. Huynh, T. V., Young, R. A. & Davis, R. W. (1985) in DNA Cloning: A Practical Approach, ed. Glover, D. M. (IRL, Arlington, VA), Vol. 1, pp. 49-78.
- 17. Laemmli, U. K. (1970) Nature (London) 227, 680-685.
- W. & 18. Cleveland, D. W., Fischer, S. G., Kirschner, M. Laemmli, U. K. (1977) J. Biol. Chem. 252, 1102-1106.
- 19. Matsudaira, P. (1987) J. Biol. Chem. 262, 10035-10038. Mahiatis, T., Fritsch, E. F. & Sambrook, J. (1982) Molecular
- 20. Cloning: A Laboratory Manual (Cold Spring Harbor Lab., Cold Spring Harbor, NY).
- 21. Greene, J. R. & Guarente, L. (1987) Methods Enzymol. 152, 519-522
- Thomas, P. (1980) Proc. Natl. Acad. Sci. USA 77, 5201-5205. 22.
- 23. Feinberg, A. P. & Vogelstein, B. (1983) Anal. Biochem. 132, 6-13.
- Sherman, F., Fink, G. R. & Hicks, J. B. (1986) Laboratory 24. Course Manual for Methods in Yeast Genetics (Cold Spring Harbor Lab., Cold Spring Harbor, NY).
- Browning, K. S., Uhlinger, D. J. & Reed, L. J. (1988) Proc. Natl. Acad. Sci. USA 85, 1831–1834. 25.
- 26. von Heijne, G. (1986) EMBO J. 5, 1335-1342.
- 27. Gershwin, M. E., Mackay, I. R., Sturgess, A. & Coppel, R. L. (1987) J. Immunol. 138, 3525-3531.
- Yeaman, S. J., Fussey, S. P. M., Danner, D. J., James, 28. O. F. W., Mutimer, D. J. & Bassendine, M. R. (1988) Lancet i, 1067-1070.
- 29. Fussey, S. P. M., Guest, J. R., James, O. F. W., Bassendine, M. F. & Yeaman, S. J. (1988) Proc. Natl. Acad. Sci., in press. Guest, J. R. (1987) FEMS Microbiol. Lett. 44, 417-422.
- 30.
- Collins, J. H. & Reed, L. J. (1977) Proc. Natl. Acad. Sci. USA 31. **74,** 4223–4227
- 32. Lau, K. S., Griffin, T. A., Hu, C.-W. C. & Chuang, D. T., (1988) Biochemistry 27, 1972–1981.
- Hummel, K. B., Litwer, S., Bradford, A. P., Aitken, A., 33. Danner, D. J. & Yeaman, S. J. (1988) J. Biol. Chem. 263, 6165-6168.
- 34. Guest, J. R., Lewis, H. M., Graham, L. D., Packman, L. C. & Perham, R. N. (1985) J. Mol. Biol. 185, 743-754.
- 35. Kresze, G.-B. & Ronft, H. (1981) Eur. J. Biochem. 119, 581-587.