Highly Reactive, General and Long-Lived Catalysts for Palladium-Catalyzed Amination of Heteroaryl and Aryl Chlorides, Bromides and Iodides: Scope and Structure-Activity Relationships

Qilong Shen, Tokutaro Ogata and John F. Hartwig*

Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, and Department of Chemistry, University of Illinois, Box 58-6, 600 South Mathews Avenue, Urbana, Illinois 61801

Supporting Information

General Methods. Unless otherwise noted, all manipulation were conducted inside an inert atmosphere glovebox, but procedures for conducting reations without a glovebox are provided below. ¹H and ¹³C NMR spectra were recorded on a Bruker DPX 400 or 500 MHz Spectrometer and ³¹P {¹H} NMR spectra were recorded on a General Electric QE 300 MHz spectrometer with tetramethylsilane or residual protiated solvent as a reference. All ³¹P {¹H} NMR chemical shifts are reported in parts per million relative to an 85% H₃PO₄ external standard. Shifts downfield of the standard are reported as positive. Elemental analyses were performed by Atlantic Microlabs Inc., Norcross, GA or Robertson Microlab, Inc., Madison, NJ. GC and GC/MS analyses were conducted with an HP-1 methyl silicone column. CyPF-*t*-Bu (CyPF-*t*-Bu = 1-dicyclohexylphosphino-2-di-*t*-butylphosphinoethylferrocene) was obtained from Solvias AG and Strem Chemicals and used without further purification. Ethylene glycol dimethyl ether (DME, 99.9% purity, HPLC grade) was purchased and used without further purification. All other chemicals were used as received from commercial sources.

Table S1. Optimization of Palladium-catalyzed Coupling Reaction of 3-Chloropyridine with 1-Octylamine Catalyzed by Palladium Precursors and CyPF-*t*-Bu (1:1).^{*a*}

- -

	CI + OctyINH ₂	Pd s L (1 Base/So	source :1) lvent/90 ^o C	NH N	octyl L:	Fe PCy ₂
Entry	Palladium	Base	Solvent	Loading (mol %)	Time (h)	Conversion [%] (Yield) ^b
1 2 3 4 5 6 7 8 9 10 11 12 13	$\begin{array}{c} Pd(dba)_2\\ PdCl_2(PhCN)_2\\ Pd_2(dba)_3\\ Pd(OAc)_2\\ Pd(OAc)_$	NaOtBu NaOtBu NaOtBu NaOtBu K ₃ PO ₄ Cs ₂ CO ₃ K ₂ CO ₃ NaOtBu NaOtBu NaOtBu NaOtBu NaOtBu	DME DME DME DME DME DME DME Toluene THF 1,4-dioxane DME Toluene	1 1 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05	10 10 10 1 24 24 24 24 5 1 5 5 48	100 96 100 100 (99) 100 trace NR NR 100 100 100 100 (99) 81
14 15 16	Pd(OAc) ₂ Pd(OAc) ₂ Pd(OAc) ₂	NaO <i>t</i> Bu NaO <i>t</i> Bu NaO <i>t</i> Bu	THF 1,4-dioxane DME	0.01 0.01 0.005	48 48 24	97 87 100 (93)

^{*a*} All the experiments were conducted with a 1:1 ratio of metal to ligand, 1 mmol of 3-chloropyridine and 1.2 equiv 1-octylamine, and 1.4 equiv base in 1.0 mL solvent. ^{*c*} Determined by GC analysis. Isolated yields are indicated in parentheses.

Stability of Josiphos CyPF-*t***-Bu.** The Josiphos ligand CyPF-*t*-Bu (11.0 mg, 2.00×10^{-5} mmol) was

dissolved in C_6D_6 (0.5 mL) in an uncapped NMR tube in air. The ¹H NMR and ³¹P NMR spectra of CyPF-*t*-Bu were unchanged after 24 h. Alternatively, CyPF-*t*-Bu (11.0 mg, 2.00 × 10⁻⁵ mmol) was weighed into an open vial in air. The solid was dissolved in C_6D_6 (0.5 mL) after 24 h. The ¹H NMR and ³¹P NMR spectra of Josiphos CyPF-*t*-Bu also were unchanged.

General Procedure A for Catalytic Amination of Heteroaryl and Aryl Halides in DME. The reaction conditions and average yields for each reaction are shown in Table 1 and 2. A typical procedure is given for the eleventh entry in Table 1.

Stock Solution A (1.0×10^{-2} M): DME (1.0 mL) was added to the mixture of Pd(OAc)₂ (2.2 mg, 1.0×10^{-2} mmol) and CyPF-*t*-Bu (5.5 mg, 1.0×10^{-2} mmol). The resulting orange colored solution was stirred at room temperature for one minute before using.

Stock Solution B (1.0×10^{-4} M): 10.0 µL of the stock solution A was diluted to 1.0 mL with DME. The resulting pale yellow colored solution was stirred at room temperature for one minute before using.

N-Octyl-3-aminopyridine. (Table 1, entry 11). A solution of Pd(OAc)₂ and CyPF-*t*-Bu (5.0 μ L from stock solution **A**, 5.0 × 10⁻⁵ mmol) was added to a 4 mL vial containing 3-chloropyridine (0.114 g, 1.00 mmol) and sodium *tert*-butoxide (0.135 g, 1.40 mmol) in 1.0 mL of DME. Octylamine (0.155 g, 1.20 mmol) was then added by syringe. The vial was sealed with a cap containing a PTFE septum, and the reaction mixture was stirred at 90 °C until 3-chloropyridine was consumed, as determined by GC. The reaction solution was directly adsorbed onto silica gel, and the product was isolated by eluting with hexane/ethyl acetate (85/15) to give 197.2 mg (93%) of *N*-octyl-3-aminopyridine as a yellow solid. ¹H NMR (CDCl₃) δ 8.02 (d, *J* = 2.8 Hz, 1 H), 7.93 (dd, *J* = 4.4, 1.6 Hz, 1 H), 7.07 (dd, *J* = 8.4, 4.6 Hz, 1 H), 6.86 (ddd, *J* = 8.8, 3.2, 1.6 Hz, 1 H), 3.72 (s, b, 1 H), 3.11 (t, *J* = 7.2 Hz, 2 H), 1.63 (quint, *J* = 7.2 Hz, 2 H), 1.26-1.42 (m, 10 H), 0.89 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃) δ 144.37, 138.0, 135.69, 123.49, 118.01, 43.35, 31.63, 29.19, 29.16, 29.06, 26.92, 22.47, 13.91; Anal. Calcd. For C₁₃H₂₂N₂: C, 75.68; H, 10.75; N, 13.58. Found: C, 75.74; H, 10.94; N, 13.79.

N-Octyl-2-aminopyridine. (Table 1, entry 1). The general procedure A conducted with 2chloropyridine (0.114 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (100.0 μL from stock solution **B**, 1.0×10^{-5} mmol) gave 176.3 mg (86%) of *N*-benzyl-2-aminopyridine as a colorless liquid. ¹H NMR (CDCl₃) δ 8.07 (d, *J* = 4.8 Hz, 1 H), 7.42 (dd, *J* = 8.6, 7.2 Hz, 1 H), 6.38 (d, *J* = 8.4 Hz, 1 H), 6.55 (dd, *J* = 7.0, 4.8 Hz, 1 H), 4.55 (s, b, 1 H), 3.24 (q, *J* = 6.8 Hz, 2 H), 1.62 (quint, *J* = 7.2 Hz, 2 H), 1.20-1.42 (m, 10 H), 0.89 (t, *J* = 6.8 Hz, 3 H); ¹³C NMR (CDCl₃) δ 158.88, 148.14, 137.19, 12.32, 106.1, 42.32, 31.68, 29.59, 29.42, 29.24, 27.11, 22.51, 13.95; Anal. Calcd. For C₁₃H₂₂N₂: C, 75.68; H, 10.75; N, 13.58. Found: C, 75.71; H, 10.67; N, 13.74.

N-Octyl-2-aminopyridine. (Table 1, entry 2). The general procedure A conducted with 2iodopyridine (0.205 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), $Pd(OAc)_2$ and CyPF-*t*-Bu (5.0 μ L from stock solution A, 5.0 \times 10⁻⁵ mmol) gave 12.2 mg (84%) of *N*-octyl-2-aminopyridine as a yellow solid of *N*-octyl-2-aminopyridine as a yellow solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 1, entry 1.)

N-Octyl-2-aminopyridine. (Table 1, entry 3). The general procedure A conducted with 2bromopyridine (0.158 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), $Pd(OAc)_2$ and CyPF-*t*-Bu (50.0 µL from stock solution **B**, 5.0 × 10⁻⁶ mmol) gave 196.8 mg (96%) of *N*-octyl-2-aminopyridine as a yellow solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 1, entry 1.)

N-benzyl-2-aminopyridine.¹ (Table 1, entry 4). The general procedure A conducted with 2chloropyridine (0.114 g, 1.00 mmol), benzylamine (0.129 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (100.0 μ L from stock solution **B**, 1.0 × 10⁻⁵ mmol) gave 173.6 mg (85%) of *N*-benzyl-2-aminopyridine as a colorless liquid. ¹H NMR (CDCl₃) δ 7.95 (dt, *J* = 4.8 1.0 Hz, 1 H), 7.26 (td, *J* = 8.0, 1.2 Hz, 1 H), 7.24 (d, *J* = 8.0 Hz, 2 H), 7.21 (t, *J* = 8.0 Hz, 2 H), 7.15 (t, *J* = 7.2 Hz, 1 H), 6.45 (dd, *J* = 7.2, 4.8 Hz, 1 H), 6.23 (dd, *J* = 8.0, 0.8 Hz, 1 H), 5.13 (s, 1 H), 4.38 (d, *J* = 5.6 Hz, 2 H); ¹³C NMR (CDCl₃) δ 158.63, 148.08, 139.14, 137.31, 128.49, 127.28, 127.06, 112.92, 106.60, 46.17.

N-Benzyl-2-aminopyridine.¹ (Table 1, entry 5). The general procedure A conducted with 2bromopyridine (0.158 g, 1.00 mmol), benzylamine (0.129 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution **B**, 5.0 × 10⁻⁶ mmol) gave 152.7 mg (83%) of *N*-benzyl-2-aminopyridine as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 1, entry 4.)

N-Cyclohexyl-2-aminopyridine.¹ (Table 1, entry 6). The general procedure A conducted with 2chloropyridine (0.114 g, 1.00 mmol), cyclohexylamine (0.119 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (10.0 μ L from stock solution **A**, 1.0 × 10⁻⁴ mmol) gave 173.1 mg (98%) of *N*-cyclonexyl-2aminopyridine as a white solid. ¹H NMR (CDCl₃) δ 7.97 (dt, *J* = 5.0, 0.8 Hz, 1 H), 7.28 (ddd, *J* = 8.4, 6.8, 1.6 Hz, 1 H), 6.42 (dd, *J* = 6.8, 5.0 Hz, 1 H), 6.26 (d, *J* = 8.0 Hz, 1 H), 4.48 (d, *J* = 6.4 Hz, 1 H), 3.41-3.49 (m, 1 H), 1.93-1.97 (m, 2 H), 1.66 (dt, *J* = 13.2, 3.6 Hz, 2 H), 1.55 (dt, *J* = 12.4, 4.0 Hz, 1 H), 1.25-1.36 (m, 2 H), 1.06-1.19 (m, 3 H); ¹³C NMR (CDCl₃) δ 158.03, 148.13, 137.11, 112.14, 106.57, 49.95, 33.23, 25.67, 24.78.

N-Cyclohexyl-2-aminopyridine.¹ (Table 1, entry 7). The general procedure A conducted with 2bromopyridine (0.158 g, 1.00 mmol), cyclohexylamine (0.119 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 μ L from stock solution **A**, 5.0 × 10⁻⁵ mmol) gave 168.4 mg (96%) of *N*-cyclonexyl-2-

aminopyridine as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 2, entry 4.)

N-sec-Butyl-2-aminopyridine. (Table 1, entry 8). The general procedure conducted with 2iodopyridine (0.125 g, 1.00 mmol), *sec*-butylamine (87.8 mg, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 µL from stock solution **A**, 5.0×10^{-5} mmol) and sodium *tert*-butoxide (0.135 g, 1.40 mmol) gave 146.8 mg (98%) of *N-sec*-butyl-2-aminopyridine as a colorless liquid. ¹H NMR (CDCl₃) δ 7.98 (dt, *J* = 5.0, 0.8 Hz, 1 H), 7.30 (ddd, *J* = 8.8, 7.6, 2.0 Hz, 1 H), 6.43 (ddd, *J* = 7.2, 4.8, 0.8 Hz, 1 H), 6.26 (d, *J* = 8.4 Hz, 1 H), 4.37 (d, *J* = 4.8 Hz, 1 H), 3.57-3.62 (m, 1 H), 1.42-1.52 (m, 2 H), 1.11 (d, *J* = 6.4 Hz, 3 H), 0.87 (t, *J* = 7.6 Hz, 3 H); ¹³C NMR (CDCl₃) δ 158.37, 148.17, 137.23, 112.20, 106.52, 48.38, 29.69, 20.28, 10.27. Anal. Calcd. For C₉H₁₄N₂: C, 71.96; H, 9.39; N, 18.65. Found: C, 72.01; H, 9.58; N, 18.51.

N-(2-Pyridyl)-α-methyl-benzylamine. (Table 1, entry 9).). The general procedure A conducted with 2-chloropyridine (0.114 g, 1.00 mmol), α-methyl-benzylamine (0.145 g, 1.20 mmol, 99 % ee), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 µL from stock solution **A**, 5.0 × 10⁻⁴ mmol) gave 181.3 mg (91%, 94.5% ee) of *N*-(2-pyridyl)-α-methyl-benzylamine. The ee was determined on Chiralcel OD-H column with hexane/2-propanol = 90/10, flow = 1.0 ml/min, wavelength = 254 nm. Retention time 5.71 mins (S-isomer), 9.28 mins (R-isomer). ¹H NMR (CDCl₃) δ 7.97 (ddd, *J* = 5.0, 2.0, 1.0 Hz, 1 H), 7.28 (dd, *J* = 7.5, 1.0 Hz, 2 H), 7.22 (d, *J* = 7.5 Hz, 1 H), 7.17-7.21 (m, 2 H), 7.12 (t, *J* = 7.0 Hz, 1 H), 6.42 (ddd, *J* = 7.5, 5.0, 1.0 Hz, 1 H), 6.08 (d, *J* = 8.0 Hz, 1 H), 5.19 (d, *J* = 5.5 Hz, 1 H), 4.62 (quint, *J* = 6.5 Hz, 1 H), 1.44 (d, *J* = 6.5 Hz, 3 H); ¹³C NMR (CDCl₃) 158.03, 148.08, 144.63, 137.33, 128.52, 126.87, 127.45, 112.87, 106.51, 51.81, 24.30. Anal. Calcd. For C₁₃H₁₄N₂: C, 78.75; H, 7.12; N, 14.13. Found: C, 78.67; H, 7.11; N, 14.13.

N-Octyl-2-amino-3-methylpyridine. (Table 1, entry 10). The general procedure A conducted with 2chloro-3-methylpyridine (0.126 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ and CyPF*t*-Bu (5.0 µL from stock solution **A**, 5.0×10^{-5} mmol) gave 211.6 mg (96%) of *N*-octyl-2-amino-3methylpyridine as a pale yellow liquid. ¹H NMR (CDCl₃) δ 7.98 (d, *J* = 4.2 Hz, 1 H), 7.14 (d, *J* = 7.2 Hz, 1 H), 6.44 (dd, *J* = 6.8, 5.2 Hz, 1 H), 4.03 (s, b, 1 H), 3.41 (q, *J* = 6.5 Hz, 2 H), 2.02 (s, 3 H), 1.60 (quint, *J* = 7.2 Hz, 2 H), 1.19-1.40 (m, 10 H), 0.84 (t, *J* = 6.8 Hz, 3 H); ¹³C NMR (CDCl₃) δ 156.90, 145.38, 136.44, 116.18, 112.10, 41.68, 31.75, 29.81, 29.35, 29.19, 27.11, 22.57, 16.86, 14.00. Anal. Calcd. For C₁₄H₂₄N₂: C, 76.31; H, 10.98; N, 12.71. Found: C, 76.25; H, 10.99; N, 12.41.

N NHoctyl

N-Octyl-3-aminopyridine. (Table 1, entry 11). The general procedure A conducted with 3-chloropyridine (0.114 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 μ L from stock solution **A**, 5.0 × 10⁻⁵ mmol) gave 197.2 mg (93%) of *N*-octyl-3-aminopyridine as a yellow solid. ¹H NMR (CDCl₃) δ 8.02 (d, *J* = 2.8 Hz, 1 H), 7.93 (dd, *J* = 4.4, 1.6 Hz, 1 H), 7.07 (dd, *J* = 8.4, 4.6 Hz, 1 H), 6.86 (ddd, *J* = 8.8, 3.2, 1.6 Hz, 1 H), 3.72 (s, b, 1 H), 3.11 (t, *J* = 7.2 Hz, 2 H), 1.63 (quint, *J* = 7.2 Hz, 2 H), 1.26-1.42 (m, 10 H), 0.89 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃) δ 144.37, 138.0, 135.69, 123.49, 118.01, 43.35, 31.63, 29.19, 29.16, 29.06, 26.92, 22.47, 13.91; Anal. Calcd. For C₁₃H₂₂N₂: C, 75.68; H, 10.75; N, 13.58. Found: C, 75.74; H, 10.94; N, 13.79.

N-Octyl-3-aminopyridine. (Table 1, entry 12). The following procedure was performed without a drybox. An oven-dried resealable Schlenk flask capped with a rubber septum was evacuated and backfilled with N₂. To the flask was added NaOtBu (0.135 g, 1.40 mmol) and a stir bar. The flask was evacuated and backfilled with N₂ three times. To the flask was then added 3-chloropyridine (0.114 g, 1.00 mmol, 95.0 μ L), DME (1.0 mL), a stock solution (5.0 μ L) containing Pd(OAc)₂ (5.0 × 10⁻⁵ mmol) and CyPF-*t*-Bu (5.0 × 10⁻⁵ mmol) and octylamine (0.155 g, 1.20 mmol). The rubber septum was wrapped with vinyl electrical tape to prevent leaking. The resulting mixture was stirred for 48 h at 100 °C until the 3-chloropyridine was consumed, as determined by GC. The reaction solution was directly adsorbed onto silica gel, and the product was isolated by eluting with hexane/ethyl acetate (85/15) to give 204.3 mg (99%) of *N*-octyl-3-aminopyridine as a yellow solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 1, entry 11.)

N-octyl-3-aminopyridine. (Table 1, entry 13). The general procedure A conducted with 3bromopyridine (0.158 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 μ L from stock solution A, 5.0 \times 10⁻⁵ mmol) gave 207.7 mg (99%) of *N*-octyl-3-aminopyridine as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 1, entry 11.)

N-Benzyl-3-aminopyridine.² (Table 1, entry 14). The general procedure A conducted with 3-chloropyridine (0.114 g, 1.00 mmol), benzylamine (0.129 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (10.0 μ L from stock solution **A**, 1.0 × 10⁻⁴ mmol) gave 174.8 mg (95%) of *N*-benzyl-3-aminopyridine as a yellow solid. ¹H NMR (CDCl₃) δ 7.93 (d, *J* = 2.8 Hz, 1 H), 7.83 (dd, *J* = 4.8, 1.6 Hz, 1 H), 7.23 (d, *J* = 4.4 Hz, 4 H), 7.14-7.19 (m, 1 H), 6.91 (dd, *J* = 8.0, 4.4 Hz, 1 H), 6.72 (ddd, *J* = 8.4, 2.8, 1.2 Hz, 1 H), 4.37 (s, b, 1 H), 4.19 (d, *J* = 6.0 Hz, 2 H); ¹³C NMR (CDCl₃) δ 143.97, 138.51, 138.45, 135.97, 128.54, 127.23, 127.19, 123.52, 118.26, 47.54.

N-Benzyl-3-aminopyridine.² (Table 1, entry 15). The general procedure A conducted with 3bromopyridine (0.158 g, 1.00 mmol), benzylamine (0.129 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 μ L from stock solution A, 5.0 × 10⁻⁵ mmol) gave 183.3 mg (99%) of *N*-benzyl-3-aminopyridine as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 1, entry 14.)

N-sec-Butyl-3-aminopyridine. (Table 1, entry 16). The general procedure A conducted with 3bromopyridine (0.158 g, 1.00 mmol), *sec*-butylamine (0.119 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 μL from stock solution **A**, 5.0×10^{-5} mmol) gave 139.3 mg (93%) of *N-sec*-butyl-3-aminopyridine as a white solid. ¹H NMR (CDCl₃) δ 7.91 (d, *J* = 2.8 Hz, 1 H), 7.80 (dd, *J* = 4.4, 1.2 Hz, 1 H), 6.95 (ddd, *J* = 8.0, 4.4, 0.8 Hz, 1 H), 6.73 (ddd, *J* = 8.4, 2.8, 1.4 Hz, 1 H), 3.74 (s, b, 1 H), 3.28-3.31 (m, 1 H), 1.44-1.55 (m, 1 H), 1.33-1.42 (m, 1 H), 1.07 (d, *J* = 6.4 Hz, 3 H), 0.85 (t, *J* = 7.6 Hz, 3 H); ¹³C NMR (CDCl₃) δ 143.61, 137.62, 135.99, 123.48, 118.32, 49.30, 29.18, 19.76, 10.08; Anal. Calcd. For $C_9H_{14}N_2$: C, 71.96; H, 9.39; N, 18.65. Found: C, 71.69; H, 9.41; N, 18.65.

N-iso-Butyl-2-aminopyridine. (Table 1, entry 17). The general procedure conducted with 3iodopyridine (0.125 g, 1.00 mmol), *iso*-butylamine (87.8 mg, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 µL from stock solution **A**, 5.0×10^{-4} mmol) and sodium *tert*-butoxide (0.135 g, 1.40 mmol) gave 144.0 mg (96%) of *N-iso*-butyl-2-aminopyridine as a colorless liquid. ¹H NMR (CDCl₃) δ 7.93 (d, *J* = 2.8 Hz, 1 H), 7.82 (dd, *J* = 4.8, 1.2 Hz, 1 H), 6.95 (dd, *J* = 8.4, 4.4 Hz, 1 H), 6.75 (ddd, *J* = 8.0, 2.8, 1.2 Hz, 1 H), 4.01 (s, 1 H), 2.82 (t, *J* = 4.8 Hz, 2 H), 1.73-1.84 (m, 1 H), 0.89 (d, *J* = 6.7 Hz, 6 H); ¹³C NMR (CDCl₃) δ 144.44, 137.86, 135.67, 123.47, 117.90, 51.06, 27.74, 20.18. Anal. Calcd. For C₉H₁₄N₂: C, 71.96; H, 9.39; N, 18.65. Found: C, 71.88; H, 9.42; N, 18.54.

N-Cyclohexyl-3-aminopyridine.¹ (Table 1, entry 18). The general procedure A conducted with 3-chloropyridine (0.114 g, 1.00 mmol), cyclohexylamine (0.119 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (10.0 μ L from stock solution A, 1.0 × 10⁻⁴ mmol) gave 138.4 mg (79%) of *N*-cyclohexyl-3-aminopyridine as a white solid. ¹H NMR (CDCl₃) δ 7.91 (d, *J* = 2.4 Hz, 1 H), 7.81 (dd, *J* = 4.8, 1.4 Hz, 1 H), 6.95 (dd, *J* = 8.0, 4.8 Hz, 1 H), 6.75 (ddd, *J* = 8.0, 2.8, 1.2 Hz, 1 H), 3.73 (s, b, 1 H), 3.10-3.21 (m, 1 H), 1.94 (dd, *J* = 13.2, 3.2 Hz, 2 H), 1.67 (dt, *J* = 13.2, 3.6 Hz, 2 H), 1.56 (dd, *J* = 12.4, 3.6 Hz, 1 H), 1.22-1.33 (m, 2 H), 1.02-1.18 (m, 3 H); ¹³C NMR (CDCl₃) δ 143.25, 137.77, 136.09, 123.48, 118.39, 51.16, 32.94, 25.59, 24.68.

N-Cyclohexyl-3-aminopyridine.¹ (Table 1, entry 19). The general procedure conducted with 3iodopyridine (0.205 g, 1.00 mmol), cyclohexylamine (0.119 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution **A**, 5.0 × 10⁻⁴ mmol) and sodium *tert*-butoxide (0.135 g, 1.40 mmol) gave 137.5 mg (78%) of *N*-cyclohexyl-3-aminopyridine as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 1, entry 18.)

N-tert-Butyl-3-aminopyridine.³ (Table 1, entry 20). The general procedure A conducted with 3-chloropyridine (0.114 g, 1.00 mmol), *tert*-butylamine (87.8 mg, 1.20 mmol), Pd(OAc)₂ (2.2 mg, 1.0 × 10^{-2} mmol) and CyPF-*t*-Bu (5.5 mg, 1.0 × 10^{-2} mmol) gave 100.3 mg (67%) of *N-tert*-butyl-3-aminopyridine as a colorless liquid. ¹H NMR (CDCl₃) δ 8.03 (s, 1 H), 7.91 (t, *J* = 3.0 Hz, 1 H), 6.98 (d, *J* = 3.2 Hz, 1 H), 6.97 (d, *J* = 3.6 Hz, 1 H), 3.55 (s, b, 1 H), 1.27 (s, 9 H); ¹³C NMR (CDCl₃) δ 142.89, 139.32, 139.03, 123.21, 122.42, 51.36, 29.66.

N-(3-Pyridyl)-α-methyl-benzylamine. (Table 1, entry 21).). The general procedure A conducted with 3-chloropyridine (0.114 g, 1.00 mmol), α-methyl-benzylamine (0.145 g, 1.20 mmol, 99 % ee), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 µL from stock solution **A**, 5.0×10^{-4} mmol) gave 181.3 mg (91%, 94.5% ee) of *N*-(3-pyridyl)-α-methyl-benzylamine. The ee was determined on Chiralcel OD-H column with hexane/2-propanol = 90/10, flow = 1.0 ml/min, wavelength = 254 nm. Retention time 15.83 mins (S-isomer), 33.17 mins (R-isomer). ¹H NMR (CDCl₃) δ 7.90 (d, *J* = 2.8 Hz, 1 H), 7.78 (dd, *J* = 4.8, 1.2 Hz, 1 H), 7.09-7.24 (m, 5 H), 6.83 (dd, *J* = 8.4, 4.8 Hz, 1 H), 6.58 (ddd, *J* = 8.4, 2.8, 1.2 Hz, 1 H), 4.39 (s, b, 1 H), 4.30-4.38 (m, 1 H), 1.40 (d, *J* = 6.8 Hz, 3 H); ¹³C NMR (CDCl₃) 144.15, 143.18, 138.16, 136.33, 128.58, 126.93, 125.57, 123.41, 118.71, 53.03, 24.75. Anal. Calcd. For C₁₃H₁₄N₂: C, 78.75; H, 7.12; N, 14.13. Found: C, 78.44; H, 7.35; N, 13.84.

N-Octyl-4-aminopyridine. (Table 1, entry 22). The general procedure A conducted with 4chloropyridine hydrochloride (0.150 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (10.0 μL from stock solution **A**, 1.0 × 10⁻⁴ mmol) gave 171.5 mg (83%) of *N*-octyl-4aminopyridine as a yellow solid. ¹H NMR (CDCl₃) δ 8.11 (d, J = 4.8 Hz, 2 H), 6.37 (d, J = 4.8 Hz, 2 H), 4.44 (s, b, 1 H), 3.08 (q, J = 7.2 Hz, 2 H), 1.55 (quint, J = 7.2 Hz, 2 H), 1.19-1.39 (m, 10 H), 0.84 (t, J = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃) δ 153.50, 149.48, 107.18, 42.38, 31.59, 29.12, 29.02, 28.84, 26.85, 22.44, 13.89; Anal. Calcd. For C₁₃H₂₂N₂: C, 75.68; H, 10.75; N, 13.58. Found: C, 75.45; H, 10.80; N, 13.62.

N-Octyl-4-aminopyridine. (Table 1, entry 23). The general procedure A conducted with 4bromopyridine hydrochloride (0.195 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 μ L from stock solution A, 5.0 × 10⁻⁵ mmol) gave 192.3 mg (93%) of *N*-octyl-4aminopyridine as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 1, entry 22.)

N-Octyl-4-aminopyridine. (Table 1, entry 24). The general procedure A conducted with 4 - iodopyridine (0.205 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), $Pd(OAc)_2$ and CyPF-*t*-Bu (50.0 μ L from stock solution A, 5.0 × 10⁻⁴ mmol) and sodium *tert*-butoxide (0.135 g, 1.40 mmol) gave 164.6 mg (80%) of *N*-octyl-4-aminopyridine as a yellow solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 1, entry 22.)

4-Benzamidopyridine.⁴ (**Table 1, entry 25).** The same procedure A conducted with 4-chloropyridine hydrochloride (0.150 g, 1.00 mmol), benzamide (0.145 g, 1.20 mmol), Pd(OAc)₂ (2.2 mg, 1.0×10^{-2} mmol) and CyPF-*t*-Bu (5.5 mg, 1.0×10^{-2} mmol) gave 148.5 mg (75%) of 4-benzamidopyridine as a white solid. ¹H NMR (CD₃COCD₃) δ 9.82 (s, b, 1 H), 8.48 (d, *J* = 6.4 Hz, 2 H), 8.00 (dt, *J* = 7.2, 2.0 Hz, 2 H), 7.81 (dd, *J* = 6.8, 2.0 Hz, 2 H), 7.60 (tt, *J* = 7.2, 1.4 Hz, 1 H), 7.52 (tt, *J* = 7.6, 1.2 Hz, 2 H); ¹³C NMR (CD₃COCD₃) δ 166.95, 151.20, 146.76, 135.36, 132.74, 129.24, 128.34, 114.54.

N-Octylaminopyrazine. (Table 1, entry 26). The general procedure A conducted with chloropyrazine (0.115 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 μL from stock solution **A**, 5.0 × 10⁻⁵ mmol) gave 170.0 mg (82%) of *N*-octylaminopyrazine as a pale yellow solid. ¹H NMR (CDCl₃) δ 7.89 (dd, J = 2.8, 1.6 Hz, 1 H), 7.80 (d, J = 1.6 Hz, 1 H), 7.69 (d, J = 2.8 Hz, 1 H), 4.94 (s, b, 1 H), 3.24 (q, J = 6.7 Hz, 2 H), 1.54 (quint, J = 7.3 Hz, 2 H), 1.20-1.42 (m, 10 H), 0.80 (t, J = 6.8 Hz, 3 H); ¹³C NMR (CDCl₃) δ 154.70, 141.83, 132.16, 131.72, 41.40, 31.65, 29.28, 29.17, 29.09, 26.87, 22.50, 13.96; Anal. Calcd. For C₁₂H₂₁N₃: C, 69.52; H, 10.21; N, 20.27. Found: C, 69.58; H, 10.26; N, 20.45.

N-Octylaminopyrazine. (Table 1, entry 27). The general procedure A conducted with iodopyrazine (0.206 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), $Pd(OAc)_2$ and CyPF-*t*-Bu (50.0 μ L from stock

solution A, 5.0×10^{-45} mmol) gave 172.1 mg (83%) of *N*-octylaminopyrazine as a pale yellow solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 1, entry 26.)

5-(Cyclohexylamino)pyrimidine.⁵ (**Table 1, entry 28).** The general procedure A conducted with 5bromopyrimidine (0.158 g, 1.00 mmol), cyclohexylamine (0.119 g, 1.20 mmol), Pd(OAc)₂ (2.2 mg, 1.0 mmol) and CyPF-*t*-Bu (5.5 mg, 1.0 mmol) gave 141.2 mg (80%) of 5-(cyclohexylamino)pyrimidine as a pale yellow plate. ¹H NMR (CDCl₃) δ 8.53 (s, 1 H), 8.07 (s, 2 H), 3.63 (s, b, 1 H), 3.23-3.30 (m, 1 H), 2.03-2.06 (m, 2 H), 1.65-1.80 (m, 3 H), 1.15-1.43 (m, 5 H); ¹³C NMR (CDCl₃) δ 148.01, 140.96, 105.28, 51.12, 32.94, 25.58, 24.66.

N-Cyclohexyl-2-aminoquinoline. (Table 1, entry 29). The general procedure A conducted with 2-chloroquinoline (0.163 g, 1.00 mmol), cyclohexylamine (0.119 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (10.0 µL from stock solution A, 1.0×10^{-4} mmol) gave 138.4 mg (79%) of *N*-cyclohexyl-2-aminoquinoline as a white solid. ¹H NMR (CDCl₃) δ 7.67 (d, *J* = 9.2 Hz, 1 H), 7.56 (dd, *J* = 8.4, 0.4 Hz, 1 H), 7.45 (dd, *J* = 8.4, 1.2 Hz, 1 H), 7.40 (d, *J* = 8.8 Hz, 1 H), 7.07 (ddd, *J* = 8.0, 7.0, 1.2 Hz, 1 H), 6.50 (d, *J* = 8.8 Hz, 1 H), 4. 66 (d, *J* = 8.0 Hz, 1 H), 3.71-3.78 (m, 1 H), 1.97-2.01 (m, 2 H), 1.66 (dt, *J* = 13.6, 4.9 Hz, 2 H), 1.55 (dt, *J* = 13.2, 4.9 Hz, 1 H), 1.27-1.38 (m, 2 H), 1.06-1.17 (m, 3 H); ¹³C NMR (CDCl₃) δ 156.26, 148.15, 137.14, 129.34, 127.28, 125.85, 123.17, 121.60, 111.02, 49.70, 33.38, 25.66, 24.82; Anal. Calcd. For C₁₅H₁₈N₂: C, 79.61; H, 8.02; N, 12.38. Found: C, 79.49; H, 8.03; N, 12.23.

N-Octyl-1-aminoisoquinoline. (Table 1, entry 30). The general procedure A conducted with 1-chloroisoquinoline (0.164 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 μL from stock solution **A**, 5.0×10^{-5} mmol) gave 233.8 mg (91%) of *N*-octyl-1-aminoisoquinoline as a pale yellow liquid. ¹H NMR (CDCl₃) δ 7.98 (d, *J* = 6.0 Hz, 1 H), 7.72 (d, *J* = 7.6 Hz, 1 H), 7.65 (d, *J* = 8.4 Hz, 1 H), 7.56 (dd, *J* = 8.0, 6.8 Hz, 1 H), 7.43 (dd, *J* = 8.2, 6.8 Hz, 1 H), 6.89 (d, *J* = 5.6 Hz, 1 H), 5.16 (s, b, 1 H), 3.58 (q, *J* = 7.6 Hz, 2 H), 1.72 (quint, *J* = 7.6 Hz, 2 H), 1.45 (quint, *J* = 7.6 Hz, 2 H), 1.23-1.37 (m, 8 H), 0.86 (t, *J* = 6.8 Hz, 3 H); ¹³C NMR (CDCl₃) δ 155.07, 141.22, 136.82, 129.32, 126.87, 125.49, 121.25, 117.96, 110.32, 41.77, 31.66, 29.43, 29.27, 29.11, 27.09, 22.49, 13.95; Anal. Calcd. For C₁₇H₂₄N₂: C, 79.64; H, 9.44; N, 10.93. Found: C, 79.56; H, 9.57; N, 10.90.

N-Octyl-4-amino-*iso***quinoline. (Table 1, entry 31).** The general procedure A conducted with 4-bromo-*iso***quinoline** (0.208 g, 1.00 mmol), cyclohexylamine (0.155 g, 1.20 mmol), $Pd(OAc)_2$ and

CyPF-*t*-Bu (5.0 µL from stock solution **A**, 5.0×10^{-5} mmol) gave 237.0 mg (93%) of *N*-Octyl-4amino-*iso*quinoline as a white solid. ¹H NMR (CDCl₃) δ 8.65 (s, 1 H), 7.86 (d, *J* = 8.0 Hz, 1 H), 7.84 (s, 1 H), 7.75 (d, *J* = 8.5 Hz, 1 H), 7.60 (t, *J* = 8.0 Hz, 1 H), 7.53 (t, *J* = 7.5 Hz, 1 H), 4.19 (s, 1 H), 3.27 (q, *J* = 7.0 Hz, 2 H), 1.74 (quint, *J* = 8.0 Hz, 2 H), 1.45 (quint, *J* = 7.0 Hz, 2 H), 1.27-1.36 (m, 8 H), 0.87 (t, *J* = 7.0 Hz, 3 H); ¹³C NMR (CDCl₃) δ 141.70, 137.84, 128.73, 128.38, 127.93, 126.76, 125.64, 123.26, 119.04, 43.87, 31.75, 29.35, 29.32, 29.19, 27.18, 22.59, 14.05. Anal. Calcd. For C₁₇H₂₄N₂: C, 79.64; H, 9.44; N, 10.93. Found: C, 79.52; H, 9.82; N, 10.90.

N-(**Phenyl**)cyclohexylamime.⁶ (**Table 3, entry 1**). The general procedure A conducted with phenylchloride (0.113 g, 1.00 mmol), cyclohexylamine (0.119 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 μ L from stock solution **A**, 5.0 × 10⁻⁵ mmol) gave 174.7 mg (99%) of *N*-(phenyl)cyclohexylamine as a pale yellow liquid. ¹H NMR (CDCl₃) δ 7.05 (t, *J* = 7.6 Hz, 2 H), 6.56 (td, *J* = 7.2, 1.2 Hz, 1 H), 6.48 (dd, *J* = 7.6, 0.8 Hz, 2 H), 3.38 (s, b, 1 H), 3.11-3.18 (m, 1 H), 1.94-1.97 (m, 2 H), 1.66 (dt, *J* = 13.2, 4.0 Hz, 2 H), 1.55 (dt, *J* = 12.0, 3.6 Hz, 1 H), 1.22-1.32 (m, 2 H), 0.99-1.18 (m, 3 H); ¹³C NMR (CDCl₃) δ 147.31, 129.16, 116.71, 113.02, 51.56, 33.39, 25.88, 24.96.

N-cyclohexyl-aniline.⁶ (Table 3, entry 2). The general procedure A conducted with phenyl bromide (0.157 g, 1.00 mmol), cyclohexylamine (0.119 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (10.0 μ L from stock solution A, 1.0 × 10⁻⁴ mmol) gave 168.9 mg (96%) of N-cyclohexyl-aniline as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 3, entry 1.)

N-(**Phenyl)benzylamine.**⁶ (**Table 3, entry 3).** The general procedure A conducted with phenyl chloride (0.113 g, 1.00 mmol), benzylamine (0.129 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 μ L from stock solution **A**, 5.0 × 10⁻⁵ mmol) gave 183.0 mg (99%) of *N*-(Phenyl)benzylamine as a pale yellow liquid. ¹H NMR (CDCl₃) δ 7.49 (d, *J* = 6.0 Hz, 2 H), 7.46 (d, *J* = 7.2 Hz, 2 H), 7.38-7.41 (m, 1 H), 7.30 (t, *J* = 7.2 Hz, 2 H), 6.86 (td, *J* = 7.2, 1.2 Hz, 1 H), 6.74 (dd, *J* = 7.6, 1.2 Hz, 2 H), 4.42 (s, 2 H), 4.09 (s, b, 1 H); ¹³C NMR (CDCl₃) δ 148.04, 139.36, 129.15, 128.51, 127.37, 127.09, 117.41, 112.73, 48.13.

N-Benzylaniline.⁶ (**Table 3, entry 4).** The general procedure A conducted with phenyl bromide (0.157 g, 1.00 mmol), benzylamine (0.129 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (100.0 μ L from stock

solution **B**, 1.0×10^{-5} mmol) gave 178.1 mg (97%) of *N*-Benzylaniline as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 3, entry 3.)

N-(*o*-Tolyl)octylamine. (Table 3, entry 5). The general procedure A conducted with 2-chlorotoluene (0.127 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (10.0 μL from stock solution **A**, 1.0 × 10⁻⁴ mmol) gave 214.1 mg (98%) of *N*-(*o*-tolyl)octylamine as a yellow solid. ¹H NMR (CDCl₃) δ 7.20 (t, *J* = 7.6 Hz, 1 H), 7.12 (d, *J* = 7.2 Hz, 1 H), 6.72 (d, *J* = 7.4 Hz, 1 H), 6.69 (d, *J* = 8.0 Hz, 1 H), 3.50 (s, b, 1 H), 3.22 (t, *J* = 7.2 Hz, 2 H), 2.21 (s, 3 H), 1.74 (quint, *J* = 7.3 Hz, 2 H), 1.38-1.52 (m, 10 H), 0.99 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃) δ 146.35, 129.92, 127.07, 121.55, 116.53, 109.52, 43.91, 31.82, 29.59, 29.42, 29.26, 27.23, 22.65, 17.38, 14.00; Anal. Calcd. For C₁₅H₂₅N: C, 82.13; H, 11.94; N, 6.39. Found: C, 82.23; H, 11.67; N, 6.10.

N-(*o*-Tolyl)octylamine. (Table 3, entry 6). The general procedure A conducted with 2-bromotoluene (0.171 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 μ L from stock solution A, 5.0 × 10⁻⁵ mmol) gave 218.4 mg (99%) of *N*-(*o*-tolyl)octylamine as a yellow solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 3, entry 5.)

Moctyl

N-(*o*-Tolyl)octylamine. (Table 3, entry 7). The general procedure conducted with 2-iodotoluene (0.218 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution **A**, 5.0 × 10⁻⁴ mmol) and sodium *tert*-butoxide (0.135 g, 1.40 mmol) gave 203.7 mg (93%) of *N*-(*o*-tolyl)octylamine as a yellow solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 3, entry 5.)

N-(Cyclohexylamino)-*o*-anisidine. (Table 3, entry 8). The general procedure A conducted with 2bromoanisole (0.187 g, 1.00 mmol), cyclohexylamine (0.119 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μL from stock solution **A**, 5.0 × 10⁻⁴ mmol) gave 192.0 mg (94%) of *N*-(cyclohexylamino)-*o*anisidine as a pale yellow liquid. ¹H NMR (CDCl₃) δ 6.88 (td, J = 8.0, 1.6 Hz, 1 H), 6.78 (dd, J = 8.4,1.2 Hz, 1 H), 6.23-6.67 (m, 2 H), 4.17 (s, b, 1 H), 3.86 (s, 3 H), 3.28 (tt, J = 10.0, 3.8 Hz, 1 H), 2.10 (dd, J = 12.0, 3.0 Hz, 2 H), 1.80 (dt, J = 12.8, 3.6 Hz, 2 H), 1.68 (dt, J = 12.8, 4.0 Hz, 1 H), 1.35-1.46 (m, 2 H), 1.18-1.31 (m, 3 H); ¹³C NMR (CDCl₃) δ 146.62, 137.19, 121.16, 115.67, 110.09, 109.47, 55.28, 51.25, 33.37, 25.96, 25.03; Anal. Calcd. For $C_{13}H_{19}N_2O$: C, 76.06; H, 9.33; N, 6.82. Found: C, 76.04; H, 9.32; N, 6.71.

N-p-Tolyl-*iso*-butylamine.⁷ (Table 3, entry 9). The general procedure A conducted with 4chlorotoluene (0.127 g, 1.00 mmol), *iso*-butylamine (87.8 mg, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μL from stock solution A, 5.0×10^{-4} mmol) gave 135.5 mg (83%) of *N*-*p*-tolyl-*iso*-butylamine as a pale yellow liquid. ¹H NMR (CDCl₃) δ 6.99 (d, *J* = 8.0 Hz, 2 H), 6.54 (d, *J* = 7.8 Hz, 2 H), 3.47 (s, b, 1 H), 2.92 (d, *J* = 6.8 Hz, 2 H), 2.25 (s, 3 H), 1.78 (nonet, *J* = 6.8 Hz, 1 H), 0.99 (d, *J* = 6.8 Hz, 6 H); ¹³C NMR (CDCl₃) δ 146.29, 129.66, 126.11, 112.83, 52.20, 27.97, 20.46, 20.33.

*N-p-***Tolyl-***iso-***butylamine. (Table 3, entry 10).** The general procedure A conducted with 4bromotoluene (0.171 g, 1.00 mmol), *iso-*butylamine (87.8 mg, 1.20 mmol), $Pd(OAc)_2$ and CyPF-*t*-Bu (50.0 µL from stock solution **A**, 5.0×10^{-4} mmol) gave 147.1 mg (90%) of *N-p*-tolyl-*iso-*butylamine as a pale yellow liquid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 3, entry 9.)

*N-p-***Tolyl-***iso-***butylamine. (Table 3, entry 11).** The general procedure conducted with 4-iodotoluene (0.218 g, 1.00 mmol), *iso-*butylamine (87.8 mg, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution **A**, 5.0 × 10⁻⁴ mmol) and sodium *tert-*butoxide (0.135 g, 1.40 mmol) gave 122.5 mg (75%) of *N-p-*tolyl-*iso-*butylamine as a pale yellow liquid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 3, entry 9.)

*N-p-***Tolyl-***iso-***butylamine. (Table 3, entry 12).** The general procedure conducted with 4-iodotoluene (5.50 g, 25.0 mmol), *iso-*butylamine (2.20 g, 30.0 mmol), $Pd(OAc)_2$ (1.1 mg, 0.50 mmol) and CyPF-*t*-Bu (2.7 mg, 0.50 mmol) and sodium *tert-*butoxide (3.38 g, 35.0 mmol) gave 3.30 g (81%) of *N-p-*tolyl-*iso-*butylamine as a pale yellow liquid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 3, entry 9.)

S13

N-(*p*-Tolyl)-*sec*-butylamine. (Table 3, entry 13). The general procedure A conducted with 4bromotoluene (0.171 g, 1.00 mmol), *sec*-butylamine (87.8 mg, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 µL from stock solution **A**, 5.0×10^{-4} mmol) gave 142.2 mg (87%) of *N*-(*p*-tolyl)-*sec*-butylamine as a colorless liquid. ¹H NMR (CDCl₃) δ 7.01 (d, *J* = 8.4 Hz, 2 H), 6.65 (dd, *J* = 8.4 Hz, 2 H), 3.40 (sext, *J* = 6.0 Hz, 1 H), 3.22 (s, b, 1 H), 2.27 (s, 3 H), 1.63 (sept, *J* = 6.0 Hz, 1 H), 1.49 (sept, *J* = 7.0 Hz, 1 H), 1.19 (d, *J* = 6.4 Hz, 3 H), 0.98 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃) δ 145.40, 129.70, 125.91, 113.33, 50.04, 29.59, 20.30, 20.22, 10.32; Anal. Calcd. For C₁₁H₁₇N: C, 80.93; H, 10.50; N, 8.58. Found: C, 80.71; H, 10.24; N, 8.66.

N-(*p*-Tolyl)-*sec*-butylamine. (Table 3, entry 14). The general procedure conducted with 4iodotoluene (0.218 g, 1.00 mmol), *sec*-butylamine (87.8 mg, 1.20 mmol), $Pd(OAc)_2$ (1.1 mg, 0.50 mmol%) and CyPF-*t*-Bu (2.7 mg, 0.50 mmol%) and sodium *tert*-butoxide (0.135 g, 1.40 mmol) gave 133.8 mg (82%) of *N*-(*p*-tolyl)-*sec*-butylamine as a colorless liquid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 3, entry 13.)

N-(4-Methoxyphenyl)octylamine. (Table 3, entry 15). The general procedure A conducted with 4chloroanisole (0.143 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (100.0 µL from stock solution **A**, 1.0 × 10⁻³ mmol) gave 217.2 mg (92%) of *N*-(4-methoxyphenyl)octylamine as a pale yellow liquid. ¹H NMR (CDCl₃) δ 6.68 (d, J = 6.4 Hz, 2 H), 6.47 (d, J = 6.8 Hz, 2 H), 3.63 (s, 3 H), 3.17 (s, b, 1 H), 2.94 (t, J = 7.0 Hz, 2 H), 1.49 (quint, J = 7.0 Hz, 2 H), 1.20-1.28 (m, 10 H), 0.80 (t, J = 6.8 Hz, 3 H); ¹³C NMR (CDCl₃) δ 151.77, 142.76, 114.71, 113.83, 55.60, 44.88, 31.75, 29.58, 29.37, 29.20, 27.13, 22.58, 14.02. Anal. Calcd. For C₁₅H₂₅NO: C, 76.55; H, 10.71; N, 5.95. Found: C, 76.46; H, 10.41; N, 6.04.

N-(4-Methoxyphenyl)octylamine. (Table 3, entry 16). The general procedure conducted with 4iodoanisole (0.234 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), $Pd(OAc)_2$ (2.2 mg, 1.0 mmol%) and CyPF-*t*-Bu (5.5 mg, 1.0 mmol%) and sodium *tert*-butoxide (0.135 g, 1.40 mmol) gave 158.3 mg (67%) of *N*-(4-methoxyphenyl)octylamine as a pale yellow liquid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 3, entry 15.)

N-(4-Cyanophenyl)-*iso*-butylamine. (Table 3, entry 17). The general procedure A conducted with 4cyano-1-chlorobenzene (0.138 g, 1.00 mmol), *iso*-butylamine (87.8 mg, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 μ L from stock solution A, 5.0 × 10⁻⁵ mmol) gave 156.0 mg (90%) of *N*-(4cyanoxyphenyl)-*iso*-butylamine as a pale yellow liquid. ¹H NMR (CDCl₃) δ 7.27 (d, *J* = 8.8 Hz, 2 H), 7.46 (d, *J* = 8.8 Hz, 2 H), 4.32 (s, b, 1 H), 2.87 (d, *J* = 6.8 Hz, 2 H), 1.80 (nonet, *J* = 6.8 Hz, 1 H), 0.89 (d, J = 6.8 Hz, 6 H); ¹³C NMR (CDCl₃) δ 151.74, 133.43, 120.38, 112.01, 98.00, 50.86, 27.90, 20.12; Anal. Calcd. For C₁₁H₁₄N₂: C, 75.82; H, 8.10; N, 16.08. Found: C, 75.96; H, 8.03; N, 16.01.

N-(4-Cyanophenyl)-cyclohexylamine. (Table 3, entry 18). The general procedure A conducted with 4-cyano-1-bromobenzene (0.182 g, 1.00 mmol), cyclohexylamine (0.119 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 µL from stock solution **A**, 5.0×10^{-5} mmol) gave 184.2 mg (92%) of *N*-(4-Cyanophenyl)-cyclohexylamine as a pale yellow liquid. ¹H NMR (CDCl₃) δ 7.34 (d, *J* = 8.4 Hz, 2 H), 6.49 (d, *J* = 8.4 Hz, 2 H), 4.21 (d, *J* = 7.6 Hz, 1 H), 3.21-3.29 (m, 1 H), 1.97-2.01 (m, 2 H), 1.74 (dt, *J* = 13.2, 4.0 Hz, 2 H), 1.63 (dt, *J* = 12.8, 4.0 Hz, 1 H), 1.29-1.40 (m, 2 H), 1.11-1.26 (m, 3 H); ¹³C NMR (CDCl₃) δ 150.42, 133.58, 120.66, 112.19, 97.47, 51.08, 32.80, 25.54, 24.70. Anal. Calcd. For C₁₃H₁₆N₂: C, 77.96; H, 8.05; N, 13.99. Found: C, 77.85; H, 8.08; N, 13.78.

N-(**Benzylamino**)-*m*-anisidine. (**Table 3, entry 19**). The general procedure A conducted with 3chloroanisole (0.143 g, 1.00 mmol), benzylamine (0.129 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 μ L from stock solution **A**, 5.0 × 10⁻⁵ mmol) gave 208.0 mg (98%) of *N*-(benzylamino)-*m*-anisidine as a pale yellow liquid. ¹H NMR (CDCl₃) δ 7.45 (dd, *J* = 8.4, 2.0 Hz, 2 H), 7.42 (t, *J* = 7.6 Hz, 2 H), 7.36 (tt, *J* = 6.4, 2.0 Hz, 1 H), 7.17 (t, *J* = 8.0 Hz, 1 H), 6.39 (dd, *J* = 8.0, 1.6 Hz, 1 H), 6.34 (dd, *J* = 8.0, 1.6 Hz, 1 H), 6.28 (t, *J* = 1.6 Hz, 1 H), 4.37 (s, 2 H), 4.13 (s, b, 1 H), 3.81 (s, 3 H); ¹³C NMR (CDCl₃) δ 160.65, 149.42, 139.23, 129.84, 128.46, 127.33, 127.05, 105.80, 102.45, 98.70, 54.85, 48.06. Anal. Calcd. For C₁₄H₁₅NO: C, 78.84; H, 7.09; N, 6.57. Found: C, 78.83; H, 7.13; N, 6.54.

N-(**Benzylamino**)-*m*-anisidine. (**Table 3, entry 20**). The general procedure conducted with 3iodoanisole (0.234 g, 1.00 mmol), benzylamine (0.129 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 μ L from stock solution **A**, 5.0 × 10⁻⁵ mmol) and sodium *tert*-butoxide (0.135 g, 1.40 mmol) gave 211.6 mg (99%) of *N*-(benzylamino)-*m*-anisidine as a pale yellow liquid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 3, entry 19.)

N-(Cyclohexylamino)-*m*-anisidine.⁸ (Table 3, entry 21). The general procedure A conducted with 3bromoanisole (0.143 g, 1.00 mmol), cyclohexylamine (0.119 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (10.0 µL from stock solution A, 1.0×10^{-4} mmol) gave 207.2 mg (99%) of *N*-(cyclohexylamino)-*m*anisidine as a pale yellow liquid. ¹H NMR (CDCl₃) δ 7.08 (t, *J* = 8.4 Hz, 1 H), 6.26 (dd, *J* = 8.4, 2.0 Hz, 1 H), 6.23 (dd, *J* = 8.0, 2.0 Hz, 1 H), 6.18 (7, *J* = 2.0 Hz, 1 H), 3.78 (s, 3 H), 3.52 (s, b, 1 H), 3.28 (tt, *J* = 10.0, 3.8 Hz, 1 H), 2.08 (dd, *J* = 12.6, 3.0 Hz, 2 H), 1.78 (dt, *J* = 13.2, 3.6 Hz, 2 H), 1.67 (dt, *J* = 12.4, 3.6 Hz, 1 H), 1.33-1.44 (m, 2 H), 1.25 (tt, J = 12.0, 3.6 Hz, 1 H), 1.11-1.21 (m, 2 H); ¹³C NMR (CDCl₃) δ 160.74, 148.67, 129.82, 106.24, 101.61, 98.98, 54.90, 51.57, 33.32, 25.82, 24.92.

N-(Cyclohexylamino)-*m*-anisidine.⁸ (Table 3, entry 22). The general procedure conducted with 3iodoanisole (0.234 g, 1.00 mmol), cyclohexylamine (0.119 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution **A**, 5.0 × 10⁻⁴ mmol) and sodium *tert*-butoxide (0.135 g, 1.40 mmol) gave 196.7 mg (94%) of *N*-(cyclohexylamino)-*m*-anisidine as a pale yellow liquid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 3, entry 21.)

N-Octyl-1-aminonaphathlene.⁹ (Table 3, entry 23). The general procedure conducted with 1iodonaphathlene (0.254 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μL from stock solution **A**, 5.0×10^{-4} mmol) and sodium *tert*-butoxide (0.135 g, 1.40 mmol) gave 249.9 mg (98%) of *N*-octyl-1-aminonaphathlene as a pale yellow solid. ¹H NMR (CDCl₃) δ 7.81-7.84 (m, 2 H), 7.42-7.50 (m, 2 H), 7.39 (t, *J* = 8.0 Hz, 1 H), 7.26 (d, *J* = 8.4 Hz, 1 H), 6.64 (d, *J* = 7.6 Hz, 1 H), 4.33 (s, br, 1 H), 3.28 (t, *J* = 7.2 Hz, 2 H), 1.78 (quint, *J* = 7.6 Hz, 2 H), 1.35-1.55 (m, 10 H), 0.95 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃) δ 143.60, 134.26, 128.62, 126.65, 125.59, 124.52, 123.27, 119.74, 116.98, 104.11, 44.20, 31.85, 29.47, 29.41, 29.28, 27.36, 22.68, 14.12.

N-(*iso***butyl**)-2-*iso***propylaniline.** (**Table 3, entry 24**). The general procedure A conducted with 1bromo-2-*iso***propylbenzene** (0.199 g, 1.00 mmol), *iso*-butylamine (87.8 mg, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution **A**, 5.0 × 10⁻⁴ mmol) gave 181.2 mg (95%) of N-(isobutyl)-2isopropylaniline as a pale yellow liquid. ¹H NMR (CDCl₃) δ 7.21 (dd, *J* = 7.5, 1.5 Hz, 1 H), 7.17 (td, *J* = 7.5, 1.5 Hz, 1 H), 6.78 (td, *J* = 7.5, 1.0 Hz, 1 H), 6.62 (d, *J* = 7.5 Hz, 1 H), 3.79 (s, b, 1 H), 3.03 (d, *J* = 6.5 Hz, 2 H), 2.92 (hept, *J* = 7.0 Hz, 1 H), 2.01 (hept, *J* = 6.5 Hz, 1 H), 1.33 (d, *J* = 7.0 Hz, 6 H), 1.08 (d, *J* = 6.5 Hz, 6 H); ¹³C NMR (CDCl₃) δ 145.05, 131.67, 126.70, 124.80, 116.76, 110.15, 51.83, 27.89, 27.18, 22.18, 20.58.

N-(2, 6-Xylyl)octylamine. (Table 3, entry 25). The general procedure A conducted with 2, 6dimethyl-1-chloro-benzene (0.141 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), $Pd(OAc)_2$ and CyPF-*t*-Bu (100.0 µL from stock solution A, 1.0×10^{-3} mmol) gave 226.3 mg (97%) of *N*-(2, 6xylyl)octylamine as a yellow liquid. ¹H NMR (CDCl₃) δ 7.10 (d, *J* = 7.6 Hz, 2 H), 6.92 (t, *J* = 7.6 Hz, 1 H), 3.10 (t, *J* = 7.2 Hz, 2 H), 3.07 (s, b, 1 H), 2.41 (s, 6 H), 1.71 (quint, *J* = 7.2 Hz, 2 H), 1.43-1.53 (m, 10 H), 1.04 (t, J = 6.8 Hz, 3 H); ¹³C NMR (CDCl₃) δ 146.34, 128.91, 128.66, 121.41, 48.56, 31.77, 31.16, 29.46, 29.24, 27.13, 22.60, 18.43, 14.01; Anal. Calcd. For C₁₆H₂₇N: C, 82.34; H, 11.66; N, 6.00. Found: C, 82.16; H, 11.78; N, 5.94.

N-(2, 6-Xylyl)octylamine. (Table 3, entry 26). The general procedure A conducted with 2, 6-dimethyl-1-chloro-benzene (0.185 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), $Pd(OAc)_2$ and CyPF-*t*-Bu (50.0 µL from stock solution A, 5.0×10^{-4} mmol) gave 228.3 mg (98%) of *N*-(2, 6-xylyl)octylamine as a yellow liquid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 3, entry 25.)

N-(2, 6-Xylyl)-*sec*butylamine. (Table 3, entry 27). The general procedure A conducted with 2, 6dimethyl-1-chloro-benzene (0.185 g, 1.00 mmol), *sec*-butylamine (87.8 mg, 1.20 mmol), Pd(OAc)₂ (1.1 mg, 5.0×10^{-3} mmol) and CyPF-*t*-Bu (2.8 mg, 5.0×10^{-3} mmol) gave 172.7 mg (97%) of *N*-(2, 6-Xylyl)-*sec*butylamine as a yellow liquid. ¹H NMR (CDCl₃) δ 7.01 (d, *J* = 7.2 Hz, 2 H), 6.82 (t, *J* = 7.2 Hz, 1 H), 3.24 (sext, *J* = 6.4 Hz, 1 H), 2.82 (s, 1 H), 2.30 (s, 6 H), 1.58-1.68 (m, 1 H), 1.37-1.48 (m, 1 H), 1.10 (d, *J* = 6.8 Hz, 3 H), 1.00 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃) δ 145.17, 128.86, 128.78,121.02, 53.52, 30.90, 20.80, 19.03, 10.78. Anal. Calcd. For C₁₂H₁₉N: C, 81.30; H, 10.80; N, 7.90. Found: C, 81.37; H, 11.09; N, 8.14.

General Procedure B for Catalytic Amination of Heteroaryl and Aryl Halides in Toluene. The reaction conditions and average yields for each reaction are shown in Table 1 and 3. A typical procedure is given for the first entry in Table 5.

N-Octyl-2-aminopyridine. (Table 5, entry 1). A solution of $Pd(OAc)_2$ and CyPF-*t*-Bu (10.0 µL from stock solution **A**, 1.0×10^{-4} mmol) was added to a 4 mL vial containing 2-chloropyridine (0.114 g, 1.00 mmol) and sodium *tert*-butoxide (0.135 g, 1.40 mmol) in 1.0 mL of toluene. Octylamine (0.155 g, 1.20 mmol) was then added by syringe. The vial was sealed with a cap containing a PTFE septum, and the reaction mixture was stirred at 100 °C until 3-chloropyridine was consumed, as determined by GC. The reaction solution was directly adsorbed onto silica gel, and the product was isolated by eluting with hexane/ethyl acetate (85/15) to give 200.9 mg (98%) of *N*-octyl-2-aminopyridine as a yellow solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 1, entry 1.)

N-octyl-3-aminopyridine. (Table 5, entry 2). The general procedure B conducted with 3chloropyridine (0.114 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), $Pd(OAc)_2$ and CyPF-*t*-Bu (50.0 μ L from stock solution **A**, 5.0 × 10⁻⁴ mmol) gave 210.0 mg (98%) of *N*-octyl-3-aminopyridine as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 1, entry 11.)

N-(**3**-**Pyridinyl**)-*p*-toluidine. (Table 5, entry 3). The general procedure B conducted with 3chloropyridine (0.114 g, 1.00 mmol), *p*-toluidine (0.130 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (100.0 μL from stock solution **A**, 1.0×10^{-3} mmol) gave 121.1 mg (66%) of *N*-(3-pyridyl)-*p*-toluidine as a yellow solid. ¹H NMR (CDCl₃) δ 8.34 (s, 1 H), 8.12 (d, *J* = 4.4 Hz, 1 H), 7.35 (t, *J* = 7.6 Hz, 1 H), 7.10-7.19 (m, 3 H), 7.02 (d, *J* = 8.0 Hz, 2 H), 5.75 (s, b, 1 H), 2.33 (s, 3 H); ¹³C NMR (CDCl₃) δ 140.79, 140.42, 139.10, 138.87, 131.46, 129.81, 123.56, 121.97, 119.02, 20.54; Anal. Calcd. For C₁₂H₁₂N₂: C, 78.23; H, 6.57; N, 15.21. Found: C, 78.19; H, 6.61; N, 15.01.

N-Phenyloctylamine.¹⁰ (Table 5, entry 4). The general procedure B conducted with phenyl chloride (0.113 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution **A**, 5.0 × 10⁻⁴ mmol) gave 203.8 mg (99%) of *N*-phenyloctylamine as a colorless liquid. ¹H NMR (CDCl₃) δ 7.09 (tt, *J* = 7.2, 2.0 Hz, 2 H), 6.60 (tt, *J* = 7.2, 1.0 Hz, 1 H), 6.50 (dd, *J* = 7.2, 2.0 Hz, 2 H), 3.47 (s, b, 1 H), 3.00 (t, *J* = 7.2 Hz, 2 H), 1.52 (quint, *J* = 7.2 Hz, 2 H), 1.21-1.32 (m, 10 H), 0.82 (t, *J* = 6.8 Hz, 3 H); ¹³C NMR (CDCl₃) δ 148.45, 129.11, 116.94, 112.57, 43.90, 31.79, 29.51, 29.39, 29.23, 27.14, 22.62, 14.07.

*N-p-***Tolyl-***iso-***butylamine.**⁷ (**Table 5, entry 5**). The general procedure B conducted with 4chlorotoluene (0.127 g, 1.00 mmol), *iso-*butylamine (87.8 mg, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (20.0 μ L from stock solution **A**, 2.0 × 10⁻⁴ mmol) gave 161.6 mg (99%) of *N-p*-tolyl-*iso-*butylamine as a pale yellow liquid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 3, entry 9.)

N-Octyl-2-aminopyridine. (Table 5, entry 6). The general procedure B conducted with 2bromopyridine (0.158 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), $Pd(OAc)_2$ and CyPF-*t*-Bu (10.0 µL from stock solution **A**, 1.0×10^{-4} mmol) gave 188.6 mg (92%) of *N*-octyl-2-aminopyridine as a yellow solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 1, entry 1.)

N-Benzyl-3-aminopyridine. (Table 5, entry 7). The general procedure B conducted with 3chloropyridine (0.114 g, 1.00 mmol), benzylamine (0.129 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (10.0 μ L from stock solution A, 1.0 × 10⁻⁴ mmol) gave 182.2 mg (99%) of *N*-benzyl-3-aminopyridine as a yellow solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 1, entry 14.)

N-Benzylaniline. (Table 5, entry 8). The general procedure B conducted with phenyl bromide (0.157 g, 1.00 mmol), benzylamine (0.129 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 μ L from stock solution **B**, 5.0 × 10⁻⁵ mmol) gave 181.8 mg (99%) of *N*-Benzylaniline as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 3, entry 3.)

N-iso-Butyl-2-aminopyridine. (Table 5, entry 9). The general procedure B conducted with 3iodopyridine (0.125 g, 1.00 mmol), *iso*-butylamine (87.8 mg, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (200.0 μ L from stock solution A, 2.0 × 10⁻³ mmol) and sodium *tert*-butoxide (0.135 g, 1.40 mmol) gave 148.5 mg (99%) of *N-iso*-butyl-2-aminopyridine as a colorless liquid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 1, entry 17.)

N-(Cyclohexylamino)-*o*-toluidine.¹¹ (Table 5, entry 10). The general procedure B conducted with 2iodotoluene (0.218 g, 1.00 mmol), cyclohexylamine (0.119 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μL from stock solution **A**, 5.0×10^{-4} mmol) and sodium *tert*-butoxide (0.135 g, 1.40 mmol) gave 175.0 mg (93%) of *N*-(cyclohexylamino)-*o*-toluidine as a yellow solid. ¹H NMR (CDCl₃) δ 6.95-7.04 (m, 2 H), 6.52-6.56 (m, 2 H), 3.21-3.26 (m, 2 H), 2.04 (s, 3 H), 1.97-2.04 (m, 2 H), 1.56-1.71 (m, 3 H), 1.08-1.34 (m, 5 H); ¹³C NMR (CDCl₃) δ 145.18, 135.16, 126.96, 121.46, 116.17, 110.07, 51.38, 33.53, 25.93, 24.95, 17.46.

N-2-pyridyl-*p*-toluidine. (Table 6, entry 1). The general procedure A conducted with 2chloropyridine (0.114 g, 1.00 mmol), *p*-toluidine (0.129 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (100.0 μ L from stock solution A, 1.0 × 10⁻³ mmol) gave 158.8 mg (86%) of *N*-2-pyridyl-*p*-toluidine as

S19

a white solid. ¹H NMR (CDCl₃) δ 8.18 (dd, J = 5.2, 1.2 Hz, 1 H), 7.47 (ddd, J = 8.6, 6.6, 1.6 Hz, 1 H), 7.21 (d, J = 8.4 Hz, 2 H), 7.15 (d, J = 8.4 Hz, 2 H), 6.83 (d, J = 8.4 Hz, 1 H), 6.70 (dd, J = 6.6, 5.4 Hz, 1 H), 6.85 (s, br, 1 H), 2.34 (s, 3 H); ¹³C NMR (CDCl₃) δ 156.73, 148.02, 137.83, 137.59, 132.47, 129.68, 121.21, 114.14, 107.45, 20.71. Anal. Calcd. For C₁₂H₁₂N₂: C, 78.23; H, 6.57; N, 15.21. Found: C, 73.08; H, 6.50; N, 15.14.

N-2-pyridyl-*p*-toluidine. (Table 6, entry 2). The general procedure A conducted with 2bromopyridine (0.158 g, 1.00 mmol), *p*-toluidine (0.129 g, 1.20 mmol), $Pd(OAc)_2$ and CyPF-*t*-Bu (50.0 μ L from stock solution A, 5.0 × 10⁻⁴ mmol) gave 175.4 mg (95%) of *N*-2-pyridyl-*p*-toluidine as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 6, entry 1.)

2-\alpha-Naphthylaminopyridine.¹² (**Table 6, entry 3).** The general procedure A conducted with 2chloropyridine (0.114 g, 1.00 mmol), 1-naphthylamine (0.172 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution **A**, 5.0 × 10⁻⁴ mmol) gave 214.9 mg (98%) of 2- α naphthylaminopyridine as a colorless solid. ¹H NMR (CDCl₃) δ 8.17 (d, *J* = 5.0 Hz, 1 H), 8.10 (d, *J* = 8.5 Hz, 1 H), 7.90 (d, *J* = 7.0 Hz, 1 H), 7.72 (d, *J* = 8.5 Hz, 1 H), 7.58 (d, *J* = 7.5 Hz, 1 H), 7.39-7.54 (m, 4 H), 7.35 (s, b, 1 H), 6.69 (t, *J* = 5.0 Hz, 1 H), 6.62 (d, *J* = 8.0 Hz, 1 H); ¹³C NMR (CDCl₃) δ 157.85, 148.48, 137.73, 136.11, 134.69, 129.28, 128.46, 126.29, 126.16, 125.89, 125.28, 122.43, 120, 52, 114.59, 107.63.

N-(**3**-**Pyridinyl**)-*p*-toluidine. (Table 6, entry 4). The general procedure A conducted with 3chloropyridine (0.114 g, 1.00 mmol), *p*-toluidine (0.130 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution **A**, 5.0 × 10⁻⁴ mmol) gave 181.6 mg (93%) of *N*-(3-pyridyl)-*p*-toluidine as a yellow solid. ¹H NMR (CDCl₃) δ 8.34 (s, 1 H), 8.12 (d, *J* = 4.4 Hz, 1 H), 7.35 (t, *J* = 7.6 Hz, 1 H), 7.10-7.19 (m, 3 H), 7.02 (d, *J* = 8.0 Hz, 2 H), 5.75 (s, b, 1 H), 2.33 (s, 3 H); ¹³C NMR (CDCl₃) δ 140.79, 140.42, 139.10, 138.87, 131.46, 129.81, 123.56, 121.97, 119.02, 20.54; Anal. Calcd. For C₁₂H₁₂N₂: C, 78.23; H, 6.57; N, 15.21. Found: C, 78.19; H, 6.61; N, 15.01.

N-3-pyridyl-*o*-anisidine. (Table 6, entry 5). The general procedure A conducted with 3chloropyridine (0.114 g, 1.00 mmol), *o*-anisidine (0.148 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 μ L from stock solution A, 5.0 \times 10⁻⁴ mmol) gave 197.1 mg (99%) of *N*-3-pyridyl-*o*-anisidine as colorless needles. ¹H NMR (CDCl₃) δ 8.44 (d, *J* = 2.5 Hz, 1 H), 8.17 (dd, *J* = 4.5, 1.5 Hz, 1 H), 7.48 (ddd, J = 8.0, 2.5, 1.5 Hz, 1 H), 7.16-7.26 (m, 1 H), 7.17 (dd, J = 8.0, 4.5 Hz, 1 H), 6.88-6.93 (m, 3 H), 6.16 (s, b, 1 H), 3.89 (s, 3 H); ¹³C NMR (CDCl₃) δ 148.67, 142.03, 140.85, 139.31, 131.63, 123.97, 123.58, 121.06, 120.77, 115.03, 110.67, 55.53; Anal. Calcd. For C₁₂H₁₂N₂O: C, 71.98; H, 6.04; N, 13.99. Found: C, 72.05; H, 6.09; N, 13.89.

2,3'-Dipyridylamine.¹³ (**Table 6, entry 6).** The general procedure A conducted with 3-chloropyridine (0.114 g, 1.00 mmol), 2-aminopyridine (0.113 g, 1.20 mmol), Pd(OAc)₂ (1.1 mg, 5.0×10^{-3} mmol) and CyPF-*t*-Bu (2.8 mg, 5.0×10^{-3} mmol) gave 165.0 mg (97%) of 2,3'-dipyridylamine as a colorless solid. ¹H NMR (CDCl₃) δ 8.69 (d, J = 2.5 Hz, 1 H), 8.25 (dd, J = 4.5, 1.5 Hz, 1 H), 8.23 (dd, J = 5.0, 1.0 Hz, 1 H), 8.00 (ddd, J = 8.0, 2.5, 1.5 Hz, 1 H), 7.50-7.54 (m, 1 H), 7.32 (s, b, 1 H), 7.23-7.27 (m, 1 H), 6.81 (d, J = 8.0 Hz, 1 H), 6.77-6.80 (m, 1 H); ¹³C NMR (CDCl₃) δ 155.33, 148.12, 143.09, 141.48, 137.83, 137.56, 126.18, 123.66, 115.70, 109.30.

N-3-pyridyl-*p*-anisidine. (Table 6, entry 7). The general procedure A conducted with 3bromopyridine (0.158 g, 1.00 mmol), *p*-anisidine (0.148 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μL from stock solution A, 5.0×10^4 mmol) gave 161.0 mg (80%) of *N*-3-pyridyl-*p*-anisidine as a white solid. ¹H NMR (CDCl₃) δ 8.22 (d, *J* = 2.8 Hz, 1 H), 8.03 (dd, *J* = 4.4, 1.0 Hz, 1 H), 7.18 (ddd, *J* = 8.0, 2.4, 1.4 Hz, 1 H), 7.05-7.09 (m, 1 H), 7.05 (d, *J* = 8.8 Hz, 2 H), 6.85 (d, *J* = 8.8 Hz, 2 H), 5.84 (s, br, 1 H), 3.77 (s, 3 H); ¹³C NMR (CDCl₃) δ 155.73, 141.70, 140.33, 138.17, 134.32, 123.64, 122.55, 121.02, 114.74, 55.49. Anal. Calcd. For C₁₂H₁₂N₂O: C, 71.98; H, 6.04; N, 13.99. Found: C, 71.93; H, 6.08; N, 14.03.

N-3-pyridyl-*p*-anisidine. (Table 6, entry 8). The general procedure A conducted with 3-iodopyridine (0.205 g, 1.00 mmol), *p*-anisidine (0.148 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution A, 5.0 × 10⁻⁴ mmol) gave 195.2 mg (97%) of *N*-3-pyridyl-*p*-anisidine as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 6, entry 7.)

N-3-pyridyl-2-pyrimidinamine.¹⁴ (Table 6, entry 9). The general procedure A conducted with 3bromopyridine (0.158 g, 1.00 mmol), 2-aminopyrimidine (0.113 g, 1.20 mmol), $Pd(OAc)_2$ (2.2 mg, 1.0 × 10⁻² mmol) and CyPF-*t*-Bu (5.5 mg, 1.0 × 10⁻² mmol) gave 165.1 mg (96%) of *N*-3-pyridyl-2pyrimidinamine as a white solid. ¹H NMR (CDCl₃) δ 8.70 (d, *J* = 2.0 Hz, 1 H), 8.42 (d, *J* = 4.5 Hz, 2 H), 8.26 (d, J = 4.5 Hz, 1 H), 8.24 (ddd, J = 8.5, 2.5, 1.5 Hz, 2 H), 7.24 (dd, J = 8.0, 5.0 Hz, 1 H), 6.74 (t, J = 5.0 Hz, 1 H); ¹³C NMR (CDCl₃) δ 160.01, 158.01, 143.48, 141.18, 136.40, 126.26, 123.41, 113.12.

N-3-pyridyl-2-pyrazinamine. (Table 6, entry 10). The general procedure A conducted with 3bromopyridine (0.158 g, 1.00 mmol), 2-aminopyrazine (0.113 g, 1.20 mmol), $Pd(OAc)_2$ (2.2 mg, 1.0 × 10^{-2} mmol) and CyPF-*t*-Bu (5.5 mg, 1.0 × 10^{-2} mmol) gave 158.1 mg (92%) of *N*-3-pyridyl-2pyrazinamine as a white solid. ¹H NMR (CD₃OD) δ 8.75 (d, *J* = 2.5 Hz, 1 H), 8.42 (ddd, *J* = 8.0, 2.5, 1.0 Hz, 1 H), 8.07-8.08 (m, 2 H), 8.04 (dd, *J* = 4.5, 1.0 Hz, 1 H), 7.84 (d, *J* = 4.5 Hz, 1 H), 7.27 (dd, *J* = 8.5, 4.5Hz, 1 H); ¹³C NMR (CD₃OD) δ 153.92, 142.80, 142.69, 140.70, 139.47, 135.77, 135.08, 127.24, 125.15.

N-pyrimidyl-*p*-toluidine. (Table 6, entry 11). The general procedure A conducted with 5bromopyrimidine (0.158 g, 1.00 mmol), *p*-toluidine (0.128 g, 1.20 mmol), potassium phosphate (0.254 g, 1.40 mmol), Pd(OAc)₂ (2.2 mg, 1.0 mmol) and CyPF-*t*-Bu (5.5 mg, 1.0 mmol) gave 96.5 mg (52%) of *N*-pyrimidyl-*p*-toluidine as a colorless powder. ¹H NMR (CDCl₃) δ 8.72 (s, 1 H), 8.45 (s, 2 H), 7.15 (d, *J* = 8.5 Hz, 2 H), 7.03 (d, *J* = 8.5 Hz, 2 H), 5.68 (s, b, 1 H), 2.33 (s, 3 H); ¹³C NMR (CDCl₃) δ 150.45, 143.99, 138.99, 133.39, 130.33, 120.04, 105.29, 20.76; Anal. Calcd. For C₁₁H₁₁N₃: C, 71.33; H, 5.99; N, 22.69. Found: C, 71.11; H, 5.96; N, 22.23.

N-(4-*iso*quinolinyl)-*p*-toluidine. (Table 6, entry 12). The general procedure A conducted with 4bromoisoquinoline (0.104 g, 0.500 mmol), p-toluidine (65.0 mg, 0.600 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (25.0 μL from stock solution A, 2.5×10^{-4} mmol) gave 98.9 mg (84%) of *N*-(4-*iso*quinolinyl)-*p*toluidine as a white solid. ¹H NMR (CDCl₃) δ 8.91(s, 1 H), 8.41 (S, 1 H), 7.94 (d, *J* = 8.4 Hz, 2 H), 7.56-7.65 (m, 2 H), 7.07 (d, *J* = 8.4 Hz, 2 H), 6.93 (d, *J* = 8.4 Hz, 2 H), 6.04 (S, 1 H), 2.30 (S, 3 H); ¹³C NMR (CDCl₃) δ 146.14, 141.02, 134.39, 132.42, 130.99, 129.91, 129.63, 129.57, 128.97, 127.88, 127.24, 120.96, 118.42, 20.64. Anal. Calcd. For C₁₆H₁₄N₂: C, 82.02; H, 6.02; N, 11.96. Found: C, 81.69; H, 6.13; N, 11.88.

S22

N-Phenyl-*p*-toluidine¹⁵. (Table 6, entry 13). The general procedure A conducted with phenyl chloride (0.113 g, 1.00 mmol), *p*-toluidine (0.129 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μL from stock solution **A**, 5.0×10^{-4} mmol) gave 182.3 mg (99%) of *N*-phenyl-*p*-toluidine as a white solid. ¹H NMR (CDCl₃) δ 7.28 (t, *J* = 8.4 Hz, 2 H), 7.13(d, *J* = 8.0 Hz, 2 H), 7.03-7.06 (m, 4 H), 6.92 (t, *J* = 7.2 Hz, 1 H), 5.62 (s, br, 1 H), 2.35 (s, 3 H); ¹³C NMR (CDCl₃) δ 143.84, 140.18, 130.83, 129.79, 129.24, 120.21, 118.82, 116.76, 20.65.

N-Phenyl-*p*-toluidine¹⁵. (Table 6, entry 14). The general procedure A conducted with phenyl bromide (0.157 g, 1.00 mmol), *p*-toluidine (0.129 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (5.0 μ L from stock solution **A**, 5.0 × 10⁻⁵ mmol) gave 174.9 mg (95%) of *N*-phenyl-*p*-toluidine as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 6, entry 13.)

N-(2-Pyridyl)-aniline¹⁶. (Table 6, entry 15). The general procedure A conducted with phenyl bromide (0.157 g, 1.00 mmol), 2-aminopyridine (0.113 g, 1.20 mmol), Pd(OAc)₂ (2.2 mg, 1.0×10^{-2} mmol) and CyPF-*t*-Bu (5.5 mg, 1.0×10^{-2} mmol) gave 138.0 mg (81%) of *N*-(2-pyridyl)-aniline as a white solid. ¹H NMR (CDCl₃) δ 8.19 (d, *J* = 8.0 Hz, 1 H), 7.44-7.50 (m, 1 H), 7.33-7.34 (m, 2 H), 7.30-7.32 (m, 2 H), 7.02-7.07 (m, 2 H), 6.88 (d, *J* = 8.0 Hz, 1 H), 6.71 (t, *J* = 7.0 Hz, 1 H); ¹³C NMR (CDCl₃) δ 155.99, 148.32, 140.42, 137.70, 129.26, 122.78, 120.34, 114.95, 108.14.

N-Phenylaminobenzothiazole. (Table 6, entry 16). The general procedure A conducted with phenyl bromide (0.157 g, 1.00 mmol), 2-aminobenzothiazole (0.180 g, 1.20 mmol), $Pd(OAc)_2$ (2.2 mg, 1.0 × 10^{-2} mmol) and CyPF-*t*-Bu (5.5 mg, 1.0 × 10^{-2} mmol) gave 139.6 mg (62%) of *N*-phenylaminobenzothiazole. as a white solid. ¹H NMR (CDCl₃) δ 7.58 (dd, *J* = 8.0, 1.5 Hz, 1 H), 7.49 (td, *J* = 8.0, 1.5 Hz, 1 H), 7.34 (dd, *J* = 8.0, 1.0 Hz, 1 H), 7.25 (t, *J* = 7.5 Hz, 2 H), 7.17 (t, *J* = 7.5 Hz, 1 H), 7.12 (td, *J* = 8.0, 1.0 Hz, 1 H), 7.03 (d, *J* = 7.5 Hz, 2 H), 6.95-7.05 (s, br, 1 H); ¹³C NMR (CDCl₃) δ 139.67, 137.51, 134.87, 131.73, 129.38, 126.85, 126.46, 124.09, 117.24, 115.17, 110.04. Anal. Calcd. For C₁₃H₁₀N₂S: C, 69.00; H, 4.45; N, 12.38. Found: C, 69.02; H, 4.49; N, 12.38.

*N-p-*tolyl*-p-*anisidine.¹⁷ (Table 6, entry 17). The general procedure A conducted with *p*-tolyl chloride (0.127 g, 1.00 mmol), *p*-anisidine (0.148 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 µL from stock solution A, 5.0×10^{-4} mmol) gave 210.6 mg (99%) of *N-p*-tolyl*-p*-anisidine as a white solid. ¹H NMR (CDCl₃) δ 7.05 (d, *J* = 8.4 Hz, 2 H), 7.03 (d, *J* = 7.6 Hz, 2 H), 6.84-6.88 (m, 4 H), 5.40 (s, br, 1 H),

3.80 (s, 3 H), 2.27 (s, 3 H); ¹³C NMR (CDCl₃) δ 154.64, 142.27, 136.50, 129.72, 129.17, 120.95, 116.43, 114.55, 55.48, 20.49.

N-p-tolyl-*p*-anisidine. (Table 6, entry 18). The general procedure A conducted with *p*-tolyl bromide (0.171 g, 1.00 mmol), *p*-anisidine (0.148 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution A, 5.0 × 10⁻⁴ mmol) gave 206.3 mg (97%) of *N-p*-tolyl-*p*-anisidine as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 6, entry 18.)

3,4'-Dimethoxydiphenylamine.¹⁸(**Table 6, entry 19).** The general procedure A conducted with 3chloroanisole (0.143 g, 1.00 mmol), *p*-anisidine (0.148 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution **A**, 5.0 × 10⁻⁴ mmol) gave 227.9 mg (99%) of 3,4'-Dimethoxydiphenylamine as a white solid. ¹H NMR (CDCl₃) δ 7.13 (t, *J* = 8.0 Hz, 1 H), 7.09 (d, *J* = 8.4 Hz, 2 H), 6.87 (d, *J* = 8.4 Hz, 2 H), 6.48-6.51 (m, 2 H), 6.41 (d, *J* = 8.4 Hz, 1 H), 5.54(s, br, 1 H), 3.80 (s, 3 H), 3.76 (s, 3 H); ¹³C NMR (CDCl₃) δ 160.66, 155.30, 146.60, 135.33, 129.97, 122.57, 114.55, 108.21, 104.59, 101.19, 55.45, 55.03.

3,4'-Dimethoxydiphenylamine. (Table 6, entry 20). The general procedure A conducted with 3bromoanisole (0.187 g, 1.00 mmol), *p*-anisidine (0.148 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution **A**, 5.0 × 10⁻⁴ mmol) gave 216.4 mg (94%) of 3,4'-Dimethoxydiphenylamine as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 6, entry 19.)

N-(*o*-Tolyl)-*p*-toluidine¹⁸. (Table 6, entry 21). The general procedure A conducted with *o*-tolyl bromide (0.171 g, 1.00 mmol), *p*-toluidine (0.129 g, 1.20 mmol), $Pd(OAc)_2$ and CyPF-*t*-Bu (50.0 µL from stock solution A, 5.0×10^4 mmol) gave 189.8 mg (96%) of *N*-(*o*-Tolyl)-*p*-toluidine as a white solid. ¹H NMR (CDCl₃) δ 7.05 (d, *J* = 8.0 Hz, 2 H), 6.99 (t, *J* = 6.8 Hz, 1 H), 6.95 (d, *J* = 8.0 Hz, 2 H), 6.74-6.79 (m, 3 H), 5.14 (s, br, 1 H), 2.18 (s, 3 H), 2.11 (s, 3 H); ¹³C NMR (CDCl₃) δ 141.97, 140.99, 130.76, 130.29, 129.75, 126.98, 126.67, 121.03, 118.54, 117.25, 20.59, 17.77.

N-(*o*-Tolyl)-*p*-toluidine¹⁸. (Table 6, entry 22). The general procedure A conducted with *o*-tolyl iodide (0.219 g, 1.00 mmol), *p*-toluidine (0.129 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution A, 5.0 × 10⁴ mmol) gave 195.7 mg (99%) of *N*-(*o*-Tolyl)-*p*-toluidine as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 6, entry 21.)

2-N-(*p***-Tolyl)-1,3-xylidine. (Table 6, entry 23).** The general procedure A conducted with 2-bromo-1,2-dimethylbenzene (0.185 g, 1.00 mmol), *p*-toluidine (0.129 g, 1.20 mmol), $Pd(OAc)_2$ (1.1 mg, 5.0 × 10^{-3} mmol) and CyPF-*t*-Bu (2.8 mg, 5.0 × 10^{-3} mmol) gave 188.4 mg (89%) of 2-*N*-(*p*-Tolyl)-1,3xylidine as a white solid. ¹H NMR (CDCl₃) δ 6.92-7.00 (m, 3 H), 6.85 (d, *J* = 8.4 Hz, 2 H), 6.31 (d, *J* = 8.0 Hz, 2 H), 4.95 (s, br, 1 H), 2.12 (s, 3 H), 2.09 (s, 6 H); ¹³C NMR (CDCl₃) δ 143.85, 138.65, 135.50, 129.71, 128.51, 127.38, 125.39, 113.73, 20.43, 18.34. Anal. Calcd. For C₁₅H₁₇N: C, 85.26; H, 8.11; N, 6.63. Found: C, 85.53; H, 8.03; N, 6.76.

N-(*p*-Tolyl)-2-cyclohexylaniline. (Table 6, entry 24). The general procedure A conducted with 1bromo-2-cyclohexylbenzene (0.239 g, 1.00 mmol), *p*-toluidine (0.129 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μL from stock solution A, 5.0×10^{-4} mmol) gave 235.2 mg (89%) of *N*-(*p*-Tolyl)-2cyclohexylaniline as a white solid. ¹H NMR (CDCl₃) δ 7.30 (dd, *J* = 8.0, 1.2 Hz, 1 H), 7.24 (d, *J* = 8.4, 1.2 Hz, 1 H), 7.14 (td, *J* = 7.2, 1.2 Hz, 1 H), 7.10 (d, *J* = 8.0 Hz, 2 H), 7.03 (td, *J* = 7.2, 1.2 Hz, 1 H), 6.90 (d, *J* = 8.4 Hz, 2 H), 5.42 (s, br, 1 H), 2.13-2.78 (m, 1 H), 2.34 (s, 3 H), 1.88-1.92 (m, 4 H), 1.79-1.82 (m, 1 H), 1.13-1.54 (m, 5 H); ¹³C NMR (CDCl₃) δ 140.23, 140.53, 138.08, 129.77, 129.69, 126.46, 126.26, 122.27, 119.98, 117.76, 38.25, 33.39, 27.05, 26.27, 20.57.

2-(N-Methylanilino)pyridine.¹¹ (**Table 7, entry 1).** The general procedure A conducted with 2chloropyridine (0.125 mg, 1.10 mmol), *N*-methylaniline (0.106 mg, 1.00 mmol), Pd(OAc)₂ (2.2 mg, 1.0×10^{-2} mmol) and CyPF-*t*-Bu (5.5 mg, 1.0×10^{-2} mmol) gave 105 mg (57%) of 2-(N-Methylanilino)pyridine as a colorless oil. ¹H NMR (CDCl₃) δ 8.21 (ddd, *J* = 5.2, 1.6, 0.8 Hz, 1 H), 7.38 (tt, *J* = 8.0, 2.0 Hz, 2 H), 7.29 (ddd, *J* = 8.4, 6.8, 2.0 Hz, 1 H), 7.25 (dd, *J* = 8.4, 2.0 Hz, 2 H), 7.19 (tt, *J* = 7.2, 1.2 Hz, 1 H), 6.59 (ddd, *J* = 7.6, 5.2, 0.8 Hz, 1 H), 6.51 (dt, *J* = 8.4, 0.8 Hz, 1 H), 3.46 (s, 3 H); ¹³C NMR (CDCl₃) δ 158.74, 147.70, 146.75, 136.52, 129.64, 126.27, 125.38, 113.05, 109.11, 38.36.

N-(3-Pyridyl)morpholine.¹ (Table 7, entry 2). The general procedure A conducted with 3-chloropyridine (0.114 mg, 1.00 mmol), morpholine (0.105 mg, 1.20 mmol), Pd(OAc)₂ (2.2 mg, 1.0 × 10^{-2} mmol) and CyPF-*t*-Bu (5.5 mg, 1.0 × 10^{-2} mmol) gave 113 mg (69%) of *N*-(3-Pyridyl)morpholine as a colorless oil. ¹H NMR (CDCl₃) δ 8.31 (s, 1 H), 8.13 (t, *J* = 2.8 Hz, 1 H), 7.19 (d, *J* = 2.4 Hz, 1 H), 7.18 (d, *J* = 1.6 Hz, 1 H), 3.88 (t, *J* = 4.8 Hz, 4 H), 3.19 (t, *J* = 4.8 Hz, 4 H); ¹³C NMR (CDCl₃) δ 147.0, 141.2, 138.4, 123.7, 122.3, 66.8, 48.7.

N,*N*-Di-(4'-methoxyphenyl)-4-pyridinamine. (Table 7, entry 3). The general procedure A conducted with 4-chloropyridine hydrochloride 4,4'-dimethoxyphenylamine (0.150 g, 1.00 mmol), (0.275 g, 1.20 mmol), Pd(OAc)₂ (2.2 mg, 1.0×10^{-2} mmol) and CyPF-*t*-Bu (5.5 mg, 1.0×10^{-2} mmol) gave 152.0 mg (50%) of *N*,*N*-Di-(4'-methoxyphenyl)-4-pyridinamine as a white solid. ¹H NMR (CDCl₃) δ 8.16 (s, b, 2 H), 7.13 (d, *J* = 8.8 Hz, 4 H), 7.89 (d, *J* = 8.8 Hz, 4 H), 6.59 (s, b, 2 H), 3.80 (s, 6 H); ¹³C NMR (CDCl₃) δ 157.41, 154.23, 149.52, 137.70, 128.16, 114.96, 110.66, 55.38. Anal. Calcd. For C₁₉H₁₈N₂O₂: C, 74.49; H, 5.92; N, 9.14. Found: C, 74.44; H, 6.02; N, 8.99.

N-methyl-*N*-phenyl-1-isoquinolinamine (Table 7, entry 4). The general procedure A conducted with 1-chloroisoquinoline (0.164 g, 1.00 mmol), *N*-methylaniline (0.214 mg, 2.00 mmol), Pd(OAc)₂ (2.2 mg, 1.0×10^{-2} mmol) and CyPF-*t*-Bu (5.5 mg, 1.0×10^{-2} mmol) gave 150.3 mg (64%) of *N*-methyl-*N*-phenyl-1-isoquinolinamine as a yellow solid. ¹H NMR (CDCl₃) δ 8.20 (d, *J* = 6.0 Hz, 1 H), 7.63 (d, *J* = 7.6 Hz, 1 H), 7.60 (d, *J* = 8.4 Hz, 1 H), 7.42 (td, *J* = 8.2, 0.8 Hz, 1 H), 7.24 (d, *J* = 5.6 Hz, 1 H), 7.15 (td, *J* = 8.0, 1.2 Hz, 1 H), 7.12 (t, *J* = 8.0 Hz, 2 H), 6.87 (tt, *J* = 7.6, 1.2 Hz, 1 H), 6.82 (d, *J* = 8.4 Hz, 2 H), 3.50 (s, 3 H); ¹³C NMR (CDCl₃) δ 158.38, 150.68, 141.11, 138.19, 129.48, 129.18, 126.87, 126.68, 126.09, 122.77, 122.13, 121.15, 116.69, 41.34. Anal. Calcd. For C₁₆H₁₄N₂: C, 82.02; H, 6.02; N, 11.96. Found: C, 82.01; H, 6.10; N, 11.85.

N-Methyldiphenylamine.¹⁹ (Table 7, entry 5). The general procedure A conducted with phenyl bromide (0.157 g, 1.00 mm0l), *N*-methylaniline (0.129 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution A, 5.0 × 10⁻⁴ mmol) gave 102.3 mg (56%) of *N*-Methyldiphenylamine as a pale yellow liquid. ¹H NMR (CDCl₃) δ 7.31 (t, *J* = 8.5 Hz, 4 H), 7.06 (dd, *J* = 8.5, 1.0 Hz, 4 H), 6.99 (tt, *J* = 8.5, 1.0 Hz, 2 H), 3.35 (s, 3 H); ¹³C NMR (CDCl₃) δ 148.97, 129.16, 121.21, 120.39, 40.18.

N, *N*-Di-butylaniline.²⁰ (Table 7, entry 6). The general procedure A conducted with phenyl bromide (0.157 g, 1.00 mm0l), dibutylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu Pd(OAc)₂ (1.1 mg, 5.0×10^{-3} mmol) and CyPF-*t*-Bu (2.8 mg, 5.0×10^{-3} mmol) gave 140.5 mg (69%) of *N*, *N*-Di-butylaniline as a white solid. ¹H NMR (CDCl₃) δ 7.19 (t, *J* = 9.0 Hz, 2 H), 6.64 (d, *J* = 9.5 Hz, 2 H), 6.62 (t, *J* = 9.0 Hz, 1 H), 3.26 (t, *J* = 8.0 Hz, 4 H), 1.53-1.60 (m, 4 H), 1.35 (sext, *J* = 7.5 Hz, 4 H), 0.95 (t, *J* = 7.5 Hz, 6 H); ¹³C NMR (CDCl₃) δ 148.25, 129.17, 115.11, 111.76, 50.79, 29.45, 20.39, 14.02.

Triphenylamine.¹⁹ (**Table 7, entry 7).** The general procedure A conducted with phenyl bromide (0.157 g, 1.00 mm0l), diphenylamine (0.203 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu Pd(OAc)₂ (1.1 mg, 5.0×10^{-3} mmol) and CyPF-*t*-Bu (2.8 mg, 5.0×10^{-3} mmol) gave 211.3 mg (86%) of triphenylamine as a white solid. ¹H NMR (CDCl₃) δ 7.27 (tt, J = 7.5, 2.0 Hz, 6 H), 7.12 (dd, J = 8.5, 1.0 Hz, 6 H), 7.03 (tt, J = 7.5, 1.5 Hz, 3 H), 3.35 (s, 3 H); ¹³C NMR (CDCl₃) δ 147.82, 129.18, 124.13, 122.63.

p-Tolylmorpholine.¹¹ (Table 7, entry 8). The general procedure A conducted with *p*-tolyl bromide (0.171 g, 1.00 mm0l), morpholine (0.105 g, 1.20 mmol), Pd(OAc)₂ (1.1 mg, 5.0×10^{-3} mmol) and CyPF-*t*-Bu (2.8 mg, 5.0×10^{-3} mmol) gave 152.5 mg (86%) of *p*-tolylmorpholine as a pale yellow liquid. ¹H NMR (CDCl₃) δ 7.09 (d, *J* = 8.0 Hz, 2 H), 6.83 (d, *J* = 8.5 Hz, 2 H), 3.85 (t, *J* = 5.0 Hz, 4 H), 3.10 (t, *J* = 5.0 Hz, 4 H), 2.27 (s, 3 H); ¹³C NMR (CDCl₃) δ 149.16, 129.68, 129.53, 115.99, 66.92, 49.84, 20.36.

N-(3-Methoxyphenyl)morpholine.¹¹ (Table 7, entry 9). The general procedure A conducted with 3bromoanisole (0.187 g, 1.00 mm0l), morpholine (0.105 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution A, 5.0 × 10⁻⁴ mmol) gave 158.9 mg (82%) of *N*-(3-methoxyphenyl)morpholine as a pale yellow liquid. ¹H NMR (CDCl₃) δ 7.18 (t, *J* = 8.5 Hz, 1 H), 6.53 (ddd, *J* = 8.0, 2.0, 1.0 Hz, 1 H), 6.42-6.45 (m, 2 H), 3.84 (t, *J* = 5.0 Hz, 4 H), 3.78 (s, 3 H), 3.14 (t, *J* = 5.0 Hz, 4 H); ¹³C NMR (CDCl₃) δ 160.00, 152.67, 129.83, 108.43, 104.68, 102.18, 66.86, 55.15, 49.25.

General Procedure C Using LiN(SiMe₃)₂ as the Base for Catalytic Amination of Functionalized Aryl Chlorides. The reaction conditions and average yields for each reaction are shown in Table 8-10. A typical procedure is given for the first entry in Table 8.

2-Acetamido-5-*N***-benzylaminopyridine (Table 8, entry 1)** 2-Acetamido-5-chloropyridine (0.168 g, 1.00 mmol) was added to a 4 mL vial containing lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) in 1.0 mL of DME. $Pd(OAc)_2$ (1.1 mg, 5.0 × 10⁻³ mmol), CyPF-*t*-Bu (2.8 mg, 5.0 × 10⁻³ mmol) were then added by syringe, followed by octylamine (0.155g, 1.20 mmol). The vial was sealed with a cap containing a PTFE septum, and the reaction mixture was stirred at 100° C for 24 h. The reaction mixture then was allowed to cool to room temperature. To the reaction mixture was added 1 M HCl (0.5-1.0 mL). The mixture was stirred at room temperature for 5 min and was then extracted with CH₂Cl₂ (3 × 30.0 mL). The organic layer was separated and dried over Na₂SO₄. The solvent was evaporated, and the crude product was isolated by eluting with ethyl acetate to give 142.4 mg (59%) of 2-Acetamido-5-*N*-benzylaminopyridine as a white solid. ¹H NMR (CDCl₃) δ 9.12 (s, 1 H), 7.94 (d, *J* = 9.0 Hz, 1 H), 7.60 (d, *J* = 2.5 Hz, 1 H), 7.27 (d, *J* = 4.5 Hz, 4 H), 7.20-7.22 (m, 1 H), 6.93 (dd, *J* = 9.0, 3.0 Hz, 1 H), 4.25 (s, 2 H), 4.10 (s, br, 1 H), 1.98 (s, 3 H); ¹³C NMR (CDCl₃) δ 168.27, 143.19, 141.09, 138.47, 131.36, 128.65, 127.37, 127.23, 122.50, 115.16, 48.18, 24.22. Anal. Calcd. For C₁₄H₁₅N₃O: C, 69.69; H, 6.27; N, 17.41. Found: C, 69.59; H, 6.33; N, 17.20.

2-Acetamido-5-*N*-*sec*-**butylaminopyridine (Table 8, entry 2)** The general procedure C conducted with 2-acetamido-5-chloropyridine (0.168 g, 1.00 mmol), *sec*-butylamine (0.119 g, 1.20 mmol), Pd(OAc)₂ (1.1 mg, 5.0 × 10⁻³ mmol), CyPF-*t*-Bu (2.8 mg, 5.0 × 10⁻³ mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 198.3 mg (96%) of 2-Acetamido-5-*N*-*sec*-butylaminopyridine as a white solid. ¹H NMR (CDCl₃) δ 9.35(s, 1 H), 7.95 (d, *J* = 9.0 Hz, 1 H), 7.60 (d, *J* = 2.5 Hz, 1 H), 6.91 (dd, *J* = 9.0, 2.5 Hz, 1 H), 3.40 (s, br, 1 H), 3.30 (sext, *J* = 6.5 Hz, 1 H), 2.09 (s, 3 H), 1.50-1.56 (m, 1 H), 1.39-1.44 (m, 1 H), 1.11 (d, *J* = 6.5 Hz, 3 H), 0.89 (t, *J* = 7.0 Hz, 3 H); ¹³C NMR (CDCl₃) δ 168.22, 142.62, 140.83, 132.14, 122.53, 115.36, 50.05, 29.32, 24.19, 19.91, 10.15.

5-Acetamido-2-*N***-benzylaminopyridine (Table 8, entry 3)** The general procedure C conducted with 5-acetamido-2-chloropyridine (0.168 g, 1.00 mmol), benzylamine (0.129 g, 1.20 mmol), $Pd(OAc)_2$ (1.1 mg, 5.0 × 10⁻³ mmol), CyPF-*t*-Bu (2.8 mg, 5.0 × 10⁻³ mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 175.5 mg (73%) of 2-Acetamido-5-*N*-benzylaminopyridine as a white solid. ¹H NMR (CD₃OD) δ 8.05 (dd, *J* = 2.5, 1.0 Hz, 1 H), 7.59 (dd, *J* = 9.0, 3.0 Hz, 1 H), 7.32 (d, *J* = 7.5 Hz, 2 H), 7.28 (td, *J* = 7.0, 1.5 Hz, 2 H), 7.20 (t, *J* = 7.5 Hz, 1 H), 6.50 (dd, *J* = 9.0, 1.0 Hz, 1 H), 4.46

5-Acetamido-2-*N-iso***-butylaminopyridine (Table 8, entry 4)** The general procedure C conducted with 5-acetamido-2-chloropyridine (0.168 g, 1.00 mmol), *iso*-butylamine (0.119 g, 1.20 mmol), Pd(OAc)₂ (1.1 mg, 5.0×10^{-3} mmol), CyPF-*t*-Bu (2.8 mg, 5.0×10^{-3} mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 121.1 mg (67%) of 5-Acetamido-2-*N-iso*-butylaminopyridine as a white solid. ¹H NMR (CD₃OD) δ 7.60 (d, *J* = 9.0 Hz, 1 H), 7.58 (s, 1 H), 6.91 (dd, *J* = 9.0, 3.0 Hz, 1 H), 2.78 (d, *J* = 8.5 Hz, 2 H), 2.02 (s, 3 H), 1.72-1.79 (m, 1 H), 0.87 (d, *J* = 6.5 Hz, 6 H); ¹³C NMR (CD₃OD) δ 171.24, 144.42, 142.28, 132.98, 122.08, 117.44, 52.49, 29.02, 23.58, 20.76.

2-Hydroxy-5-*N***-octylaminopyridine (Table 8, entry 5)** The general procedure C conducted with 5chloro-2-hydroxypyridine (0.130 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ (1.1 mg, 5.0×10^{-3} mmol), CyPF-*t*-Bu (2.8 mg, 5.0×10^{-3} mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 117.6 mg (53%) of 2-Hydroxy-5-*N*-octylaminopyridine as a white solid. ¹H NMR (CDCl₃) δ 13.63 (s. br, 1 H), 7.07 (dd, *J* = 9.5, 2.5 Hz, 1 H), 6.62 (d, *J* = 2.5 Hz, 1 H), 6.48 (d, *J* = 10.0 Hz, 1 H), 3.20 (s, br, 1 H), 2.83 (t, *J* = 7.0 Hz, 2 H), 1.53 (quint, *J* = 7.0 Hz, 2 H), 1.23-1.32 (m, 10 H), 0.84 (d, *J* = 67.0 Hz, 3 H); ¹³C NMR (CDCl₃) δ 162.35, 135.37, 131.93, 120.31, 114.20, 45.06, 31.72, 29.29, 29.19, 29.15, 27.07, 22.57, 14.02. Anal. Calcd. For C₁₃H₂₂N₂O: C, 70.23; H, 9.97; N, 12.60. Found: C, 69.96; H, 10.01; N, 12.42.

3-Hydroxy-5-*N***-cyclohexylaminopyridine (Table 8, entry 6)** The general procedure C conducted with 5-chloro-3-hydroxypyridine (0.130 g, 1.00 mmol), cyclohexylamine (0.119 g, 1.20 mmol), $Pd(OAc)_2$ (1.1 mg, 5.0 × 10⁻³ mmol), CyPF-*t*-Bu (2.8 mg, 5.0 × 10⁻³ mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 110.6 mg (67%) of 3-Hydroxy-5-*N*-cyclohexylaminopyridine as a white solid. ¹H NMR (CD₃OD) δ 7.40 (d, *J* = 2.5 Hz, 1 H), 7.30 (d, *J* = 2.5 Hz, 1 H), 6.43 (t, *J* = 2.5 Hz, 1 H), 3.15 (tt, *J* = 10.0, 4.0 Hz, 1 H), 1.98 (dd, *J* = 12.5, 3.0 Hz, 2 H), 1.76 (dt, *J* = 13.5, 3.5 Hz, 2 H), 1.65 (dt, *J* = 12.5, 3.5 Hz, 1 H), 1.33-1.42 (m, 2 H), 1.14-1.27 (m, 3 H); ¹³C NMR (CD₃OD) δ 156.57, 147.27, 127.85, 125.42, 106.94, 52.42, 33.92, 27.00, 26.09.

5-Hydroxymethyl-2-*N***-octylaminopyridine** (**Table 8, entry 7**) The general procedure C conducted with 2-chloro-5-hydroxymethylpyridine (0.144 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ (1.1 mg, 5.0 × 10^{-3} mmol), CyPF-*t*-Bu (2.8 mg, 5.0 × 10^{-3} mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 187.0 mg (79%) of 5-Hydroxymethyl-2-*N*-octylaminopyridine as a white solid. ¹H NMR (CDCl₃) δ 7.85 (d, *J* = 2.0 Hz, 1 H), 7.42 (dd, *J* = 8.5, 2.0 Hz, 1 H), 6.32 (d, *J* = 8.5 Hz, 1 H), 4.59 (s, 1 H), 4.44 (s, 2 H), 3.35 (s, br, 1 H), 3.15 (td, *J* = 7.0, 5.0 Hz, 2 H), 1.55 (quint, *J* = 7.5 Hz, 2 H), 1.23-1.35 (m, 10 H), 0.84 (t, *J* = 7.0 Hz, 3 H); ¹³C NMR (CDCl₃) δ 158.45, 147.28, 137.78, 125.07, 106.10, 62.47, 42.37, 31.76, 29.43, 29.31, 29.19, 27.00, 22.59, 14.04. Anal. Calcd. For C₁₄H₂₄N₂O: C, 71.14; H, 10.23; N, 11.85. Found: C, 71.39; H, 10.26; N, 11.46.

5-Hydroxymethyl-2-*N***-benzylaminopyridine (Table 8, entry 8)** The general procedure C conducted with 2-chloro-5-hydroxymethylpyridine (0.144 g, 1.00 mmol), benzylamine (0.129 g, 1.20 mmol), $Pd(OAc)_2$ (1.1 mg, 5.0 × 10⁻³ mmol), CyPF-*t*-Bu (2.8 mg, 5.0 × 10⁻³ mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 117.9 mg (55%) of 5-Hydroxymethyl-2-*N*-benzylaminopyridine as a white solid. ¹H NMR (CD₃OD) δ 7.89 (d, *J* = 2.0 Hz, 1 H), 7.43 (dd, *J* = 9.0, 2.0 Hz, 1 H), 7.32 (d, *J* = 7.0 Hz, 2 H), 7.27 (t, *J* = 7.0 Hz, 2 H), 7.19 (t, *J* = 7.0 Hz, 1 H), 6.52 (d, *J* = 9.0 Hz, 1 H), 4.89 (s, 2 H), 4.47 (s, 2 H), 4.41 (s, 2 H); ¹³C NMR (CD₃OD) δ 159.82, 147.27, 140.99, 138.96, 129.40, 128.28, 127.89, 126.32, 109.54, 62.74, 46.38. Anal. Calcd. For C₁₃H₁₄N₂O: C, 72.87; H, 6.59; N, 13.07. Found: C, 72.60; H, 6.58; N, 12.90.

General Procedure D Using K_3PO_4 as the Base for Catalytic Amination of Functionalized Aryl Iodides. The reaction conditions and average yields for each reaction are shown in Table 9. A typical procedure is given Table 6, entry 5.

4-N-Octylamino-benzoic acid. (Table 9, entry 1) 4-Chlorobenzoic acid (0.157 g, 1.00 mmol) was added to a 4 mL vial containing lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) in 1.0 mL of DME. Pd(OAc)₂ and CyPF-*t*-Bu (50.0 µL from stock solution **A**, 5.0×10^{-4} mmol) were then added by syringe, followed by octylamine (0.155g, 1.20 mmol). The vial was sealed with a cap containing a PTFE septum, and the reaction mixture was stirred at 100° C for 20 h. The reaction mixture then was allowed to cool to room temperature. To the reaction mixture was added 1 M HCl (0.5-1.0 mL). The mixture was stirred at room temperature for 5 min and was then extracted with CH₂Cl₂ (3 × 30.0 mL). The organic layer was separated and dried over Na₂SO₄. The solvent was evaporated, and the crude product was isolated by eluting with hexane/ethyl acetate (50/50) to give 202.2 mg (81%) of *N*-octyl-aminobenzoic acid as a white solid. ¹H NMR (CD₃OD) δ 7.75 (d, *J* = 9.2 Hz, 2 H), 6.55 (d, *J* = 9.2 Hz, 2 H), 4.70-5.20 (s, b, 2 H), 3.09 (t, *J* = 7.2 Hz, 2 H), 1.59 (quint, *J* = 7.2 Hz, 2 H), 1.27-1.35 (m, 10 H), 0.88 (t, *J* = 7.0 Hz, 3 H); ¹³C NMR (CD₃OD) δ 171.02, 154.82, 132.92, 117.93, 112.09, 44.15, 33.17, 30.72, 30.60, 30.31, 28.40, 23.89, 14.62. Anal. Calcd. For: C₁₅H₂₃NO₂ C, 72.25; H, 9.30; N, 5.62. Found: C, 72.19; H, 9.43; N, 5.56.

4-N-Octylamino-benzoic acid. (Table 9, entry 2) The general procedure C conducted with 4-bromobenzoic acid (0.201 g, 1.00 mmol), octylamine (0.155g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution **A**, 5.0 × 10⁻⁴ mmol) gave 179.4 mg (72%) of *N*-octyl-aminobenzoic acid as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 9, entry 1.)

4-*N***-***sec***-butylamino-benzoic acid (Table 9, entry 3)** The general procedure C conducted with 4bromobenzoic acid (0.201 g, 1.00 mmol), sec-butylamine (87.8 mg, 1.20 mmol), Pd(OAc)₂ and CyPF*t*-Bu (50.0 µL from stock solution **A**, 5.0×10^{-4} mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 178.4 mg (92%) of 4-*N*-*sec*-butylbenzoic acid as a white solid. ¹H NMR (CDCl₃) δ 7.25-9.00 (s, b, 1 H), 7.89 (d, J = 6.8 Hz, 2 H), 6.52 (d, J = 6.8 Hz, 2 H), 4.70-5.20 (s, b, 1H), 3.47 (sext, J = 5.2 Hz, 1 H), 1.46-1.62 (m, 2 H), 1.19 (d, J = 4.8 Hz, 3 H), 0.94 (t, J = 6.0 Hz, 3 H); ¹³C NMR (CDCl₃) δ 172.55, 152.03, 132.37, 116.67, 111.61, 49.53, 29.51, 20.04, 10.29. Anal. Calcd. For C₁₁H₁₅NO₂: C, 68.37; H, 7.82; N, 7.25. Found: C, 68.35; H, 7.80; N, 7.17.

4-N-sec-butylamino-benzoic acid (Table 9, entry 4) The general procedure C conducted with 4iodobenzoic acid (0.248 g, 1.00 mmol), sec-butylamine (87.8 mg, 1.20 mmol), $Pd(OAc)_2$ and CyPF-*t*-Bu (50.0 µL from stock solution **A**, 5.0 × 10⁻⁴ mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 151.3 mg (92%) of 4-*N*-sec-butylbenzoic acid as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 9, entry 3.)

4-*N***-***Iso***-Butylamino-benzamide (Table 9, entry 5)** The general procedure C conducted with 4chlorobenzamide (0.156 g, 1.00 mmol), *iso*-butylamine (87.8 mg, 1.20 mmol), $Pd(OAc)_2$ (1.1 mg, 5.0 × 10⁻³ mmol), CyPF-*t*-Bu (2.8 mg, 5.0 × 10⁻³ mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 129.6 mg (67%) of 4-*N-iso*-butylamino-benzamide as a white solid. ¹H NMR (CDCl₃) δ 7.63 (d, J = 7.2 Hz, 2 H), 6.53 (d, J = 7.2 Hz, 2 H), 5.96 (s, b, 2 H), 4.04 (s, b, 1 H), 2.94 (d, J = 5.2 Hz, 2 H), 1.86 (nonet, J = 5.2 Hz, 1 H), 0.95 (d, J = 5.6 Hz, 6 H); ¹³C NMR (CDCl₃) δ 169.50, 151.52, 129.23, 120.87, 111.48, 51.13, 27.98, 20.33. Anal. Calcd. For C₁₁H₁₆N₂O: C, 68.72; H, 8.39; N, 14.57. Found: C, 68.70; H, 8.43; N, 14.32.

4-N-Iso-Butylamino-benzamide (Table 9, entry 6) The general procedure B conducted with 4-bromobenzamide (0.200 g, 1.00 mmol), *iso*-butylamine (87.8 mg, 1.20 mmol), $Pd(OAc)_2$ (1.1 mg, 5.0 × 10⁻³ mmol), CyPF-t-Bu (2.8 mg, 5.0 × 10⁻³ mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 162.5 mg (85%) of 4-*N*-*Iso*-Butylamino-benzamide as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 9, entry 6.)

4-N-octylamino-acetophenone (Table 9, entry 7) The general procedure B conducted with 4'-chloro-acetophenone (0.155 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ (1.1 mg, 5.0 × 10⁻³ mmol), CyPF-*t*-Bu (2.8 mg, 5.0 × 10⁻³ mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) in DME (5.0 mL) gave 225.6 mg (91%) of 4'-*N*-octylamino-acetophenone as a pale yellow liquid. ¹H NMR (CDCl₃) δ 7.78 (d, *J* = 8.8 Hz, 2 H), 6.51 (d, *J* = 8.8 Hz, 2 H), 4.1 (s, b, 1H), 3.13 (q, *J* = 6.4 Hz, 2 H), 2.46 (s, 3 H), 1.60 (quint, *J* = 7.2 Hz, 2 H), 1.25-1.36 (m, 10 H), 0.86 (t, *J* = 6.8 Hz, 3 H); ¹³C NMR (CDCl₃) δ 196.13, 152.34, 130.72, 126.25, 111.13, 43.23, 31.70, 29.25, 29.21, 29.13, 26.98, 25.84, 22.55, 13.98. Anal. Calcd. For C₁₆H₂₅NO: C, 77.68; H, 10.19; N, 5.66. Found: C, 77.59; H, 10.32; N, 5.58.

4'-N-octylamino-acetophenone (Table 9, entry 8). The general procedure D conducted with 4'chloro-acetophenone (0.155 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), $Pd(OAc)_2$ (1.1 mg, 5.0 × 10^{-3} mmol), CyPF-*t*-Bu (2.8 mg, 5.0 × 10^{-3} mmol) and potassium phosphate (0.254 g, 1.40 mmol) gave 178.5 mg (74%) of 4'-*N*-octylamino-acetophenone as a pale yellow liquid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 9, entry 7.)

4-N-octylamino-acetophenone (Table 9, entry 9) The general procedure C conducted with 4'-chloroacetophenone (0.155 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), $Pd(OAc)_2$ and CyPF-*t*-Bu (50.0 μ L from stock solution **A**, 5.0 × 10⁻⁴ mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 151.2 mg (61%) of 4'-*N*-octylamino-acetophenone as a pale yellow liquid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 9, entry 7.)

4'-N-octylamino-acetophenone (Table 9, entry 10). The general procedure D conducted with 4'iodoacetophenone (0.246 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), $Pd(OAc)_2$ (1.1 mg, 5.0 × 10^{-3} mmol), CyPF-*t*-Bu (2.8 mg, 5.0 × 10^{-3} mmol) and potassium phosphate (0.254 g, 1.40 mmol) gave 192.9 mg (78%) of 4'-*N*-octylamino-acetophenone as a pale yellow liquid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 9, entry 7.)

4-*N***-cyclohexylamino-acetophenone (Table 9, entry 11)** The general procedure C conducted with 4'chloro-acetophenone (0.155 g, 1.00 mmol), cyclohexylamine (0.119 g, 1.20 mmol), Pd(OAc)₂ (1.1 mg, 5.0×10^{-3} mmol), CyPF-*t*-Bu (2.8 mg, 5.0×10^{-3} mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 151.6 mg (87%) of 4-*N*-cyclohexylamino-acetophenone as a pale yellow liquid. ¹H NMR (CDCl₃) δ 7.76 (dt, *J* = 9.0, 2.0 Hz, 2 H), 6.49 (dt, *J* = 9.0, 2.0 Hz, 2 H), 4.27 (s, b, 1H), 3.28-3.32 (m, 1 H), 2.44 (s, 3 H), 2.00 (dd, *J* = 12.5, 3.0 Hz, 2 H), 1.73 (dt, *J* = 13.0, 4.0 Hz, 2 H), 1.62 (dt, *J* = 13.0, 4.0 Hz, 1 H), 1.30-1.39 (m, 2 H), 1.12-1.23 (m, 3 H); ¹³C NMR (CDCl₃) δ 196.09, 151.29, 130.75, 125.88, 111.36, 51.09, 32.92, 25.79, 25.57, 24.70. Anal. Calcd. For: C₁₄H₁₉NO C, 77.38; H, 8.81; N, 6.45. Found: C, 77.44; H, 8.95; N, 6.55.

4'-N-octylamino-acetophenone (Table 9, entry 12). The general procedure D conducted with 4'bromo-acetophenone (0.199 g, 1.00 mmol), cyclohexylamine (0.119 g, 1.20 mmol), $Pd(OAc)_2$ (2.2 mg, 1.0×10^{-2} mmol), CyPF-t-Bu (5.5 mg, 1.0×10^{-2} mmol) and potassium phosphate (0.254 g, 1.40 mmol) gave 142.9 mg (82%) of 4'-*N*-octylamino-acetophenone as a pale yellow liquid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 9, entry 11.)

4-N-Octylamino-acetanilide (Table 9, entry 13) The general procedure C conducted with 4-bromoacetanilide (0.214 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution **A**, 5.0 × 10⁻⁴ mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 257 mg (98%) of 4-*N*-octyl-amino-acetanilide as a yelow solid. ¹H NMR (CD₃OD) δ 7.18 (d, *J* = 8.5 Hz, 2 H), 6.51 (d, *J* = 8.5 Hz, 2 H), 2.95 (t, *J* = 7.2 Hz, 2 H), 1.99 (s, 3 H), 1.51 (quint, *J* = 7.2 Hz, 2 H), 1.23-1.33 (m, 10 H), 0.83 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (CD₃OD) δ 171.08, 147.56, 129.43, 123,29, 114.00, 45.35, 33.01, 30.62, 30.43, 30.39, 28.32, 23.72, 23.48, 14.48. Anal. Calcd. For C₁₆H₂₆N₂O: C, 73.24; H, 9.99; N, 10.68. Found: C, 73.22; H, 10.10; N, 10.71.

4-N-Octylamino-acetanilide (Table 9, entry 14). The general procedure C conducted with 4iodoacetanilide (0.261 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), $Pd(OAc)_2$ (1.1 mg, 0.50 mmol%), CyPF-*t*-Bu (2.7 mg, 0.50 mmol%) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 176.2 mg (67%) of 4-*N*-octyl-amino-acetanilide as a yellow solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 9, entry 13.)

3-N-cyclohexylamino-acetanilide (Table 9, entry 15) The general procedure C conducted with 3-chloroacetanilide (0.170 g, 1.00 mmol), cyclohexylamine (0.119g, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution **A**, 5.0 × 10⁻⁴ mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 172.6 mg (74%) of 3-*N*-cyclohexylamino-acetanilide as a yellow solid. ¹H NMR (CDCl₃) δ 7.81 (s, 1H), 7.02 (t, *J* = 6.4 Hz, 1 H), 6.99 (s, 1 H), 6.62 (d, *J* = 6.4 Hz, 1 H), 6.29 (d, *J* = 6.4 Hz, 1 H), 3.40 (s, b, 1H), 3.18 (tt, *J* = 8.0, 3.0 Hz, 1 H), 2.08 (s, 3 H), 1.98 (dd, *J* = 10.0, 2.0 Hz, 2 H), 1.70 (dt, *J* = 10.8, 2.8 Hz, 2 H), 1.59 (dt, *J* = 10.0, 3.0 Hz, 1 H), 1.26-1.34 (m, 2 H), 1.04-1.23 (m, 3 H); ¹³C NMR (CDCl₃) δ 168.64, 147.95, 139.03, 129.43, 108.80, 108.17, 104.75, 51.52, 31.22, 25.78, 24.84, 24.47. Anal. Calcd. For C₁₄H₂₀N₂O: C, 72.38; H, 8.68; N, 12.06. Found: C, 72.24; H, 8.64; N, 11.85.

4-*N***-***iso***Butylamino-benzylalcohol (Table 9, entry 16)** The general procedure C conducted with 4bromobenzylalcohol (0.187 g, 1.00 mmol), *iso*-butylamine (87.8 mg, 1.20 mmol), Pd(OAc)₂ and CyPF-*t*-Bu (50.0 μ L from stock solution **A**, 5.0 × 10⁻⁴ mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 128.7 mg (72%) of 4-*N*-*iso*butylamino-benzylalcohol as a yellow liquid. ¹H NMR (CDCl₃) δ 7.15 (d, *J* = 8.0 Hz, 2 H), 6.56 (d, *J* = 8.0 Hz, 2 H), 4.50 (s, 2 H), 3.00-3.80 (s, br, 1 H), 2.91 (d, *J* = 7.2 Hz, 2 H), 1.84-1.91 (m, 1 H), 1.10-2.10 (s, br, 1 H), 0.96 (d, *J* = 7.2 Hz, 6 H); ¹³C NMR (CDCl₃) δ 148.25, 129.30, 128.82, 112.57, 65.35, 51.77, 27.93, 20.40.

4-*N-iso***Butylamino-benzylalcohol (Table 9, entry 17)** The general procedure C conducted with 4-iodobenzylalcohol (0.234 g, 1.00 mmol), *iso*-butylamine (87.8 mg, 1.20 mmol), $Pd(OAc)_2$ (1.1 mg, 0.50 mmol%), CyPF-*t*-Bu (2.7 mg, 0.50 mmol%) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 84.0 mg (47%) of 4-*N-iso*butylamino-benzylalcohol as a yellow liquid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 9, entry 16.)

1-(4-*N***-sec-Butylamino-phenyl)-ethanol. (Table 9, entry 18)** The general procedure C conducted with 4-chlorophenyl-1-ethanol (0.157 g, 1.00 mmol), *sec*-butylamine (87.8 mg, 1.20 mmol), Pd(OAc)₂ (1.1 mg, 5.0×10^{-3} mmol), CyPF-*t*-Bu (2.8 mg, 5.0×10^{-3} mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 160.7 mg (83%) of 1-(*N*-sec-butylamino-phenyl)-ethanol as a pale yellow liquid. ¹H NMR (CDCl₃) δ 7.15 (d, J = 8.8 Hz, 2 H), 6.54 (d, J = 8.0 Hz, 2 H), 4.74 (q, J = 6.6 Hz, 1 H), 3.38 (sext, J = 6.2 Hz, 1 H), 3.00 (s, b, 1H), 2.20 (s, b, 1 H), 1.54-1.62 (m, 1 H), 1.41-1.51 (m, 1 H), 1.44 (d, J = 6.4 Hz, 3 H), 1.16 (d, J = 6.0 Hz, 3 H), 0.95 (t, J = 7.4 Hz, 3 H); ¹³C NMR (CDCl₃) δ 147.03, 133.93, 126.56, 112.84, 69.93, 49.73, 29.46, 24.52, 20.08, 10.26. Anal. Calcd. For C₁₂H₁₉NO: C, 74.57; H, 9.91; N, 7.25. Found: C, 74.20; H, 9.86; N, 7.20.

1-(4-*N***-octylamino-phenyl)-ethanol. (Table 9, entry 19)** The general procedure C conducted with 4-chlorophenyl-1-ethanol (0.157 g, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), $Pd(OAc)_2$ (1.1 mg, 5.0 × 10⁻³ mmol), CyPF-*t*-Bu (2.8 mg, 5.0 × 10⁻³ mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 219.8 mg (89%) of 1-(*N*-octylamino-phenyl)-ethanol as a pale yellow liquid. ¹H NMR (CDCl₃) δ 7.01 (d, *J* = 8.4 Hz, 2 H), 6.55 (d, *J* = 8.0 Hz, 2 H), 3.77 (t, *J* = 6.4 Hz, 2 H), 3.40 (s, b, 1 H), 3.07 (t, *J* = 6.8 Hz, 2 H), 2.73 (t, *J* = 6.4 Hz, 2 H), 1.58 (quint, *J* = 7.2 Hz, 2 H), 1.28-1.40 (m, 11 H), 0.88 (t, *J* = 6.8 Hz, 3 H); ¹³C NMR (CDCl₃) δ 147.19, 129.76, 126.56, 112.97, 63.92, 44.19, 38.27, 31.79, 29.59, 29.38, 29.22, 27.15, 22.61, 14.04. Anal. Calcd. For C₁₆H₂₇NO: C, 77.06; H, 10.91; N, 5.62. Found: C, 77.21; H, 11.13; N, 5.61.

3-Hydroxy-*N***-benzyl-aniline (Table 9, entry 20)** The general procedure C conducted with 3-chlorophenol (0.129 g, 1.00 mmol), benzylamine (0.129 g, 1.20 mmol), $Pd(OAc)_2$ (1.1 mg, 5.0 × 10⁻³ mmol), CyPF-*t*-Bu (2.8 mg, 5.0 × 10⁻³ mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 168.1 mg (84%) of 3-hydroxy-*N*-benzyl-aniline as a pale yellow solid. ¹H NMR (CDCl₃) δ 7.34-7.42 (m, 5 H), 7.07 (t, *J* = 8.0 Hz, 1 H), 6.29 (dd, *J* = 8.6, 1.8 Hz, 1 H), 6.26 (dd, *J* = 8.0, 2.4 Hz, 1 H), 6.16 (t, *J* = 2.2 Hz, 1 H), 4.50-5.50 (s, b, 2H), 4.29 (s, 2 H); ¹³C NMR (CDCl₃) δ 156.47, 149.46, 139.01, 130.18, 128.53, 127.44, 127.16, 106.01, 104.92, 100.12, 48.17. Anal. Calcd. For C₁₃H₁₃NO: C, 78.36; H, 6.58; N, 7.03. Found: C, 78.17; H, 6.51; N, 6.84.

3-Hydroxy-*N***-benzyl-aniline (Table 9, entry 21)** The general procedure C conducted with 3bromophenol (0.172 g, 1.00 mmol), benzylamine (0.129 g, 1.20 mmol), $Pd(OAc)_2$ (1.1 mg, 5.0 × 10⁻³ mmol), CyPF-*t*-Bu (2.8 mg, 5.0 × 10⁻³ mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 170.1 mg (85%) of 3-hydroxy-*N*-benzyl-aniline as a pale yellow solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 9, entry 20.)

3-Hydroxy-*N***-cyclohexyl-aniline**²¹ (**Table 9, entry 22**) The general procedure C conducted with 3bromophenol (0.172 g, 1.00 mmol), cyclohexylamine (0.119g, 1.20 mmol), Pd(OAc)₂ (1.1 mg, 5.0 × 10^{-3} mmol), CyPF-*t*-Bu (2.8 mg, 5.0 × 10^{-3} mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 154.6 mg (81%) of 3-hydroxy-*N*-cyclohexyl-aniline as a pale yellow solid. ¹H NMR (CDCl₃) δ 6.98 (t, *J* = 7.6 Hz, 1 H), 6.19 (dd, *J* = 8.0, 1.6 Hz, 1 H), 6.16 (dd, *J* = 8.0, 1.6 Hz, 1 H), 6.05 (t, *J* = 2.0 Hz, 1 H), 4.70 (s, br, 2 H), 3.15 (tt, *J* = 10.0, 4.0 Hz, 1 H), 2.02 (dd, *J* = 12.8, 2.4 Hz, 2 H), 1.72 (dt, *J* = 13.2, 3.6 Hz, 2 H), 1.62 (dt, *J* = 12.0, 3.6 Hz, 1 H), 1.26-1.37 (m, 2 H), 1.04-1.23 (m, 3 H); ¹³C NMR (CDCl₃) δ 148.25, 129.30, 128.82, 112.57, 65.35, 51.77, 27.93, 20.40.

3-Hydroxy-*N***-cyclohexyl-aniline**²¹ (**Table 9, entry 23**). The general procedure C conducted with 3iodophenol (0.220 g, 1.00 mmol), cyclohexylamine (0.119 g, 1.20 mmol), $Pd(OAc)_2$ (2.2 mg, 1.0 mmol%), CyPF-*t*-Bu (5.5 mg, 1.0 mmol%) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 133.8 mg (70%) of 3-hydroxy-*N*-cyclohexyl-aniline as a pale yellow solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 9, entry 22.)

4-Hydroxy-*N***-octyl-aniline (Table 9, entry 24)** The general procedure C conducted with 4chlorophenol (0.129 g, 1.00 mmol), octylamine (0.155g, 1.20 mmol), Pd(OAc)₂ (1.1 mg, 5.0 × 10⁻³ mmol), CyPF-*t*-Bu (2.8 mg, 5.0 × 10⁻³ mmol) and lithium bis(trimethylsilyl)amide (0.402 g, 2.40 mmol) gave 159.6 mg (72%) of 4-hydroxy-*N*-octyl-aniline as a white solid. ¹H NMR (CDCl₃) δ 6.62 (d, *J* = 6.4 Hz, 2 H), 6.53 (d, *J* = 6.4 Hz, 2 H), 4.50-5.20 (s, b, 2 H), 3.02 (t, *J* = 6.8 Hz, 2 H), 1.56 (quint, *J* = 7.0 Hz, 2 H), 1.27-1.35 (m, 10 H), 0.88 (t, *J* = 7.0 Hz, 3 H); ¹³C NMR (CDCl₃) δ 148.45, 141.73, 116.28, 115.29, 45.68, 31.76, 29.42, 29.35, 29.19, 27.11, 22.60, 14.06. Anal. Calcd. For C₁₄H₂₃NO: C, 75.97; H, 10.47; N, 6.33. Found: C, 75.88; H, 10.57; N, 6.33.

Methyl-4-(*iso***butylamino**)-**benzoate** (**Table 9**, **entry 25**). The general procedure D conducted with methyl-4-chlorobenzoate (0.1719 mg, 1.00 mmol), *iso*butylamine (0.119 g, 1.20 mmol), Pd(OAc)₂ (2.2 mg, 1.0×10^{-2} mmol), CyPF-*t*-Bu (5.5 mg, 1.0×10^{-2} mmol) and potassium phosphate (0.254 mg, 1.40 mmol) gave 194.4 mg (94%) of methyl-4-(*iso*butylamino)-benzoate as a white solid. ¹H NMR (CDCl₃) δ 7.83 (d, J = 8.5 Hz, 2 H), 6.51 (d, J = 8.5 Hz, 2 H), 4.32 (s, 1 H), 3.81 (s, 3 H), 2.93 (t, J = 6.5 Hz, 2 H), 1.86 (nonet, J = 6.8 Hz, 1 H), 0.95 (d, J = 6.5 Hz, 6 H); ¹³C NMR (CDCl₃) δ 167.30, 152.23, 131.41, 117.54, 111.14, 51.32, 50.88, 27.84, 20.21. Anal. Calcd. For: C₁₂H₁₇NO₂ C, 69.54; H, 8.27; N, 6.76. Found: C, 69.46; H, 8.39; N, 6.80.

Ethyl-4-(*sec*-butylamino)-benzoate (Table 9, entry 26). The general procedure D conducted with ethyl-4-iodobenzoate (0.276 mg, 1.00 mmol), *sec*-butylamine (87.8 mg, 1.20 mmol), Pd(OAc)₂ (4.4 mg, 2.0 mmol%) and CyPF-*t*-Bu (11.0 mg, 2.0 mmol%) and potassium phosphate (0.254 g, 1.40 mmol) gave 169.7 mg (77%) of Ethyl-4-(*sec*-butylamino)-benzoate as a white solid. ¹H NMR (CDCl₃) δ 7.82 (d, J = 8.5 Hz, 2 H), 6.49 (d, J = 8.5 Hz, 2 H), 4.29 (q, J = 7.0 Hz, 2 H), 3.98 (d, J = 6.0 Hz, 1 H), 3.44 (hept, J = 6.5 Hz, 1 H), 1.44-1.62 (m, 2 H), 1.33 (t, J = 7.0 Hz, 3 H), 1.16 (d, J = 6.5 Hz, 3 H), 0.93 (t, J = 7.5 Hz, 3 H); ¹³C NMR (CDCl₃) δ 166.87, 151.36, 131.50, 117.84, 111.50, 60.02, 49.36, 29.43, 19.98, 14.38, 10.24. Anal. Calcd. For C₁₃H₁₉NO₂: C, 70.56; H, 8.65; N, 6.33. Found: C, 70.46; H, 8.64; N, 6.23.

Methyl-3-(*iso***butylamino**)-**benzoate** (**Table 9**, **entry 27**). The general procedure D conducted with methyl-3-chlorobenzoate (0.172 mg, 1.00 mmol), *iso***butylamine** (0.119 g, 1.20 mmol), Pd(OAc)₂ (2.2 mg, 1.0×10^{-2} mmol), CyPF-*t*-Bu (5.5 mg, 1.0×10^{-2} mmol) and potassium phosphate (0.254 mg, 1.40 mmol) gave 187.7 mg (91%) of methyl-3-(*iso***butylamino**)-benzoate as a white solid. ¹H NMR (CDCl₃) δ 7.26 (d, J = 7.6 Hz, 1 H), 7.18 (t, J = 2.0 Hz, 1 H), 7.12 (t, J = 7.6 Hz, 1 H), 6.68 (dd, J = 7.6, 2.0 Hz, 1 H), 3.80 (s, 3 H), 3.75-3.95 (s, br, 1 H), 2.87 (d, J = 6.8 Hz, 2 H), 1.80 (nonet, J = 6.8 Hz, 1 H), 0.90 (d, J = 6.8 Hz, 6 H); ¹³C NMR (CDCl₃) δ 167.54, 148.47, 130.86, 129.04, 117.95, 117.02, 113.03, 51.94, 51.55, 27.89, 20.37. Anal. Calcd. For: C₁₂H₁₇NO₂ C, 69.54; H, 8.27; N, 6.76. Found: C, 69.38; H, 8.27; N, 6.69.

Ethyl-3-(*iso***butylamino**)-**benzoate** (**Table 9, entry 28**). The general procedure D conducted with ethyl-3-bromobenzoate (0.215 mg, 1.00 mmol), *iso*butylamine (0.119 g, 1.20 mmol), $Pd(OAc)_2$ (2.2 mg, 1.0×10^{-2} mmol), CyPF-t-Bu (5.5 mg, 1.0×10^{-2} mmol) and potassium phosphate (0.254 mg, 1.40 mmol) gave 167.5 mg (81%) of Ethyl-3-(*iso*butylamino)-benzoate as a white solid. (¹H and ¹³C NMR spectra are the same as those for the product in Table 9, entry 27.)

Methyl-2-(benzylamino)-benzoate (Table 9, entry 29). The general procedure D conducted with methyl-2-chlorobenzoate (0.172 mg, 1.00 mmol), benzylamine (0.119 g, 1.20 mmol), $Pd(OAc)_2$ (4.4 mg, 2.0 × 10⁻² mmol), CyPF-*t*-Bu (11.0 mg, 2.00 × 10⁻² mmol) and potassium phosphate (0.254 mg, 1.40 mmol) gave 197.7 mg (82%) of methyl-2-(benzylamino)-benzoate as a white solid. ¹H NMR (CDCl₃) δ 8.22 (s, 1 H), 7.96 (dd, *J* = 8.0, 2.0 Hz, 1 H), 7.26-7.39 (m, 6 H), 6.66 (d, *J* = 8.5 Hz, 1 H), 6.62 (td, *J* = 8.0, 1.0 Hz, 1 H), 4.47 (d, *J* = 5.5 Hz, 2 H), 3.88 (s, 3 H); ¹³C NMR (CDCl₃) δ 169.06, 150.89, 138.79, 134.56, 131.56, 128.62, 127.08, 127.00, 114.79, 111.59, 110.07, 51.42, 46.86.

4-Nitro-*N***-octyl-aniline (Table 9, entry 30).** The general procedure conducted with 4-nitro-1iodobenzene (0.249 mg, 1.00 mmol), octylamine (0.155 g, 1.20 mmol), $Pd(OAc)_2$ (2.2 mg, 1.0 mmol%), CyPF-*t*-Bu (5.5 mg, 1.0 mmol%) and potassium phosphate (0.254 g, 1.40 mmol) gave 198.0 mg (79%) of 4-nitro-*N*-octyl-aniline as a white solid. ¹H NMR (CDCl₃) δ 8.05 (d, *J* = 9.0 Hz, 2 H), 6.49 (d, *J* = 9.0 Hz, 2 H), 4.55 (s, 1 H), 3.17 (q, *J* = 7.0 Hz, 2 H), 1.62 (quint, *J* = 7.0 Hz, 2 H), 1.21-1.39 (m, 10 H), 0.86 (t, *J* = 7.0 Hz, 3 H); ¹³C NMR (CDCl₃) δ 153.49, 137.60, 126.46, 110.83, 43.35, 31.70, 29.21, 29.13, 29.02, 26.92, 22.57, 14.03. Anal. Calcd. For C₁₄H₂₂N₂O₂: C, 67.17; H, 8.86; N, 11.19. Found: C, 67.09; H, 8.99; N, 11.11.

Reagents and conditions: Compound **5a** was prepared according to the reported procedure. i. a) HPtBu₂, AcOH, 100 °C, 3 h; b) BH₃, THF, 10 min; ii. a) tBuLi, THF, _78°C, 35 min, ClPMe₂, overnight, RT; b) BH₃, THF, 10 min; iii. Morpholine, 100 °C, 4 h.

Preparation of Racemic MePF-t-Bu 5 [CpFe(C₅H₃(CH(Me)PtBu₂(PMe₂)-1,2]. A red solution of compound **5a** (0.182 g, 0.540 mmol) and HPtBu₂ (79.3 mg, 0.540 mmol) in 2.0 mL acetic acid was heated at 100 °C for 3 h. The solvent was removed under reduced pressure, and 2 mL of THF was added. To the solution was added 5.0 mL of BH₃• THF (1.0 M). The resulting solution was stirred for 10 min, after which time 5 mL of MeOH was added slowly with cooling in an ice bath to quench the excess BH₃. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography (hexane/ethyl acetate, 90/10) to give 231.4 mg (95%) to give the product **5b** as an orange solid. ¹H NMR (C₆D₆) δ 4.30-4.31 (m, 1 H), 4.26-4.28 (m, 1 H), 4.08 (s, 5 H), 3.87-3.88 (m, 1 H), 3.28 (dq, *J* = 11.0, 7.5 Hz, 1 H), 1.94 (dd, *J* = 12.2, 7.4 Hz, 3 H), 1.35 (d, *J* = 12.0 Hz, 9 H), -0.2-1.0 (br, 3 H); ³¹P {¹H} NMR (C₆D₆) δ 60.3 (m). Anal. Calcd. For C₂₀H₃₃BBrFeP: C, 53.26; H, 7.38. Found: C, 53.47; H, 7.51.

To a solution of **5b** (0.143 mg, 0.320 mmol) in THF (6.0 mL) was added a solution of *t*BuLi (1.5 M in hexane) in hexane (227 μ L, 0.340 mmol) at _78°C. The resulting solution was stirred for 2 h at _78°C. A solution of ClPMe₂ (33.0 mg, 27.0 μ L, 0.350 mmol) in 3.0 mL of Et₂O was added by syringe. The mixture was stirred overnight, and 5.0 mL of BH₃•THF (1.0 M) was added. After 10 min, aqueous

saturated NaHCO₃ (10 mL) was slowly added with cooling in an ice bath. The resulting organic layer and Et₂O extracts from the aqueous layer were combined, washed with 2 × 20 mL of water, dried over MgSO₄, and concentrated to afford an organic powder. The BH₃ protected compound **5c** was purified by flash chromatography (hexane/ethyl acetate, 90/10) to give 121.4 mg (85%) of the product **5c** as an orange solid. ¹H NMR (C₆D₆) δ 4.72 (s, 1 H), 4.45 (t, *J* = 3.0 Hz, 1 H), 4.27 (s, 5 H), 4.16-4.17 (m, 1 H), 3.71 (dq, *J* = 11.0, 7.5 Hz, 1 H), 2.00 (dd, *J* = 11.0, 7.5 Hz, 3 H), 1.66 (d, *J* = 10.0 Hz, 3 H), 1.50 (d, *J* = 10.0 Hz, 3 H), 1.40 (, d, *J* = 12.0 Hz, 9 H), 1.27 (d, *J* = 12.0 Hz, 9 H), -0.5-1.3 (br, 6 H); ³¹P {¹H} NMR (C₆D₆) δ -3.03 (m), 57.3 (m).

A red solution of **5c** (43.0 mg, 0.096 mmol) in 1.0 mL of morpholine was heated at 100 °C for 3 h. The solvent was removed, and 5.0 mL of hexane was added. The red solution was filtered through a short plug of Celite, and the solvent was evaporated under reduced pressure. Ligand **5** was recrystalized from 5 mL of degassed EtOH to yield 38.1 mg (95%) of orange, microcrystalline product. ¹H NMR (C₆D₆) δ 4.07-4.09 (m, 1 H), 4.05-4.06 (m, 1 H), 4.01-4.02 (m, 1 H), 3.99 (s, 5 H), 3.63 (qd, *J* = 7.0, 2.5 Hz, 1 H), 1.74 (dd, *J* = 7.5, 3.0 Hz, 3 H), 1.49 (d, *J* = 2.5 Hz, 3 H), 1.37 (d, *J* = 10.5 Hz, 9 H), 1.26 (d, *J* = 4.5 Hz, 3 H), 1.10 (d, *J* = 11.0 Hz, 9 H); ³¹P {¹H} NMR (C₆D₆) δ -65.04 (d, *J* = 36 Hz), 51.96 (d, *J* = 36 Hz). ¹³C NMR δ 101.98 (t, *J* = 24.2 Hz), 79.90 (dd, *J* = 16.6, 3.9 Hz), 69.65 (d, *J* = 4.0 Hz), 67.68, 67.74 (d, *J* = 7.3 Hz), 67.68, 33.78 (d, *J* = 29.6 Hz), 33.86 (d, *J* = 29.6 Hz), 31.86 (d, *J* = 13.6 Hz), 31.60 (dd, *J* = 13.3 Hz), 30.78 (dd, *J* = 33.7, 6.9 Hz), 19.52 (t, *J* = 13.0 Hz), 17.02 (d, *J* = 3.0 Hz), 3.42 (dd, *J* = 11.3, 1.6Hz). Anal. Calcd. For C₂₂H₃₆FeP₂: C, 63.17; H, 8.67. Found: C, 62.94; H, 8.40.

Reagents and conditions: i. a) *n*BuLi, Et₂O, rt, overnight; b) ClPEt₂, Et₂O/THF, rt, overnight; ii. HPtBu₂, HOAc, 100 °C, 1 h.

Preparation of Racemic EtPF-t-Bu (6) [CpFe(C₅H₃(CH(Me)PtBu₂(PEt₂)-1,2]. To a solution of 6a (1.43 g, 5.00 mmol) in Et₂O (10.0 mL) was added a solution of *n*BuLi (2.5 M in hexane) in hexane (2.10 mL, 5.25 mmol) at room temperature. The resulting solution was stirred overnight, and the clear orange solution became orange cloudy. A solution of ClPEt₂ (0.620 g, 5.00 mmol) in 10.0 mL of Et₂O was added through syringe. The mixture was stirred overnight. Aqueous saturated NaHCO₃ (10 mL) was slowly added with cooling in an ice bath. The resulting organic layer and Et₂O extracts from the aqueous layer were combined, washed with 2 × 20 mL of water, dried over MgSO₄, and concentrated to afford an orange powder. Compound **6b** was purified by flash chromatography (hexane/ethyl acetate, 90/10) to give 0.863g (50%) of the product **6b** as an orange solid. ¹H NMR (C₆D₆) δ 4.30 (dd, J = 6.7, 3.0 Hz, 1 H), 4.20 (s, 1 H), 4.15 (d, J = 2.4 Hz, 1 H), 4.13 (s, 1 H), 4.07 (s, 5 H), 2.20 (s, 6 H),

1.83-1.88 (m, 4 H), 1.34 (dt, J = 16.2, 7.7 Hz, 3 H), 1.23 (d, J = 6.8 Hz, 3 H), 1.34 (dt, J = 15.3, 7.7 Hz, 3 H); ³¹P {¹H} NMR (C₆D₆) δ -31.6 (s).

A red solution of compound **6b** (0.358 g, 1.04 mmol) and HP*t*Bu₂ (152.5 mg, 1.04 mmol) in 5.0 mL acetic acid was heated at 100 °C for 1 h. The solvent was removed under reduced pressure and 1.0 mL of Et₃N and 10 mL of pentane was added. The red solution was filtered through a short plug of Celite and the solvent was evaporated. Ligand **6** was recrystalized from 5 mL of degassed EtOH yield 139.2 mg (30%) of orange, microcrystalline product. ¹H NMR (C₆D₆) δ 4.07-4.10 (m, 1 H), 4.02-4.04 (m, 2 H), 4.00 (s, 5 H), 3.64 (qd, *J* = 7.0, 2.5 Hz, 1 H), 2.27 (dqd, *J* = 14.0, 7.5, 1.5 Hz, 1 H), 1.77-1.89 (m, 3 H), 1.75 (dd, *J* = 7.5, 3.0 Hz, 3 H), 1.21 (dt, *J* = 16.5, 8.0 Hz, 3 H), 1.10 (d, *J* = 10.5 Hz, 9 H), 1.05 (dt, *J* = 9.5, 7.5 Hz, 3 H), 1.10 (d, *J* = 10.5 Hz, 9 H); ³¹P {¹H} NMR (C₆D₆) δ -35.75 (d, *J* = 25.7 Hz), 51.73 (d, *J* = 25.3 Hz). ¹³C NMR (C₆D₆) δ 102.00 (t, *J* = 23.0 Hz), 77.10 (dd, *J* = 16.3, 3.8 Hz), 70.04 (d, *J* = 4.7 Hz), 69.73, 69.55 (d, *J* = 7.5, 2.5 Hz), 30.79 (dd, *J* = 33.8, 7.5 Hz), 21.10 (d, *J* = 14.5 Hz), 20.99 (d, *J* = 14.5 Hz), 17.17 (dd, *J* = 8.5, 2.1 Hz), 11.82 (d, *J* = 23.9 Hz), 8.97 (d, *J* = 4.2 Hz). Anal. Calcd. For C₂₄H₄₀FeP₂: C, 64.58; H, 9.03. Found: C, 64.60; H, 8.75.

Reagents and conditions: i. a) *n*BuLi, Et₂O, rt, overnight; b) ClPtBu₂, Et₂O/THF, rt, overnight; ii. HPCy₂, HOAc, 100 °C, 1 h.

Preparation of Racemic tBuPFCy (9) [CpFe(C₅H₃(CH(Me)PCy₂(PtBu₂)-1,2]. To a solution of **6a** (0.257 g, 1.00 mmol) in Et₂O (5.0 mL) was added a solution of *n*BuLi (2.5 M in hexane) in hexane (0.44 mL, 1.10 mmol) at room temperature. The resulting solution was stirred overnight, and the clear orange solution became orange cloudy. A solution of ClPtBu₂ (0.180 g, 1.00 mmol) in 5.0 mL of Et₂O was added through syringe. The mixture was stirred overnight. Aqueous saturated NaHCO₃ (10 mL) was slowly added with cooling in an ice bath. The resulting organic layer and Et₂O extracts from the aqueous layer were combined, washed with 2×20 mL of water, dried over MgSO₄, and concentrated to afford an orange powder. Compound **9a** was purified by flash chromatography (hexane/ethyl acetate, 40/60) to give 0.381 g (95%) of the product **9a** as an orange solid. ¹H NMR (CDCl₃) δ 4.25-4.30 (m, 1 H), 4.18-4.20 (m, 1 H), 4.12-4.15 (m, 1H), 4.06 (s, 5 H), 3.95-4.02 (m, 1 H), 2.25 (s, 6 H), 1.58 (d, *J* = 12.0 Hz, 9 H), 1.28 (d, *J* = 7.2 Hz, 3 H), 1.14 (d, *J* = 12.0 hz, 9 H); ³¹P {¹H} NMR (CDCl₃) δ 13.8 (s). ¹³C NMR (C₆D₆) δ 100.12 (d, *J* = 27.9 Hz), 78.88 (d, *J* = 40.6 Hz), 72.64 (d, *J* = 6.3 Hz),

70.44, 68.78, 68.01 (d, J = 4.6 Hz), 56.30 (d, J = 13.1 Hz), 40.33, 33.30 (d, J = 23.3 Hz), 31.80 (d, J = 21.2 Hz), 31.21 (d, J = 15.7 Hz), 30.80 (d, J = 14.4 Hz), 26.75 (d, J = 5.2 Hz).

A red solution of compound **9a** (0.100 g, 0.250 mmol) and HPCy₂ (250 mg, 1.25 mmol) in 2.0 mL acetic acid was heated at 100 °C for 1 h. The solvent was removed under reduced pressure, and 1.0 mL of Et₃N and 10 mL of pentane was added. The red solution was filtered through a short plug of Celite, and the solvent was evaporated. Ligand **9** was recrystalized from 5 mL of degassed EtOH to yield 131.2 mg (95%) of orange, microcrystalline product. ¹H NMR (C₆D₆) δ 4.35-4.39 (m, 1 H), 4.13-4.15 (m, 1 H), 4.12-4.13 (m, 1 H), 4.09 (s, 5 H), 3.22 (qd, *J* = 7.5, 4.0 Hz, 1 H), 1.85-2.10 (m, 4 H), 1.65-1.82 (m, 6 H), 1.62 (dd, *J* = 7.5, 4.0 Hz, 3 H), 1.53 (d, *J* = 12.0 Hz, 9 H), 1.42-1.60 (m, 5 H), 1.20-1.40 (m, 7 H), 1.15 (dt, *J* = 11.0 Hz, 9 H); ³¹P {¹H} NMR (C₆D₆) δ 12.12 (d, *J* = 24.4 Hz), 9.52 (d, *J* = 24.4 Hz). ¹³C NMR (C₆D₆) δ 103.55 (dd, *J* = 28.7, 18.5 Hz), 78.09 (dd, *J* = 37.7, 1.8 Hz), 72.00 (d, *J* = 6.5 Hz), 70.25, 68.50 (dd, *J* = 24.0 Hz), 68.23, 34.25 (d, *J* = 21.2 Hz), 31.29 (d, *J* = 4.6 Hz), 31.18 (d, *J* = 4.6 Hz), 30.76 (d, *J* = 14.8 Hz), 30.21 (d, *J* = 4.6 Hz), 30.00 (d, *J* = 8.3 Hz), 28.30 (d, *J* = 14.7 Hz), 28.13 (d, *J* = 4.6 Hz), 27.71 (d, *J* = 6.4 Hz), 27.43 (d, *J* = 12.1 Hz), 26.90, 26.30 (d, *J* = 13.8 Hz), 26.11 (d, *J* = 12.8 Hz), 19.54 (d, J = 1.8 Hz). Anal. Calcd. For C₃₂H₅₂FeP₂: C, 69.31; H, 9.45. Found: C, 69.08; H, 9.83.

Reagents and conditions: i. a) *n*BuLi, Et₂O, rt, overnight; b) ClPCy₂, Et₂O/THF, rt, overnight; ii. HPtBu₂, HOAc, 100 °C, 1 h.

Preparation of Racemic Ligand (10) [CpFe(C₅H₃(CH₂PCy₂)(PtBu₂)-1,2]. To a solution of 10a (0.243 g, 1.00 mmol) in Et₂O (5.0 mL) was added a solution of *n*BuLi (2.5 M in hexane) in hexane (0.44 mL, 1.10 mmol) at room temperature. The resulting solution was stirred overnight, and the clear orange solution became orange cloudy. A solution of ClPCy₂ (0.233 g, 1.00 mmol) in 5.0 mL of Et₂O was added through syringe. The mixture was stirred overnight. Aqueous saturated NaHCO₃ (10 mL) was slowly added with cooling in an ice bath. The resulting organic layer and Et₂O extracts from the aqueous layer were combined, washed with 2 × 20 mL of water, dried over MgSO₄, and concentrated to afford an orange powder. Compound **10b** was purified by flash chromatography (hexane/ethyl acetate, 50/50) to give 0.350 g (83%) of the product **10b** as an orange solid. ¹H NMR (CDCl₃) δ 4.31 (s, 1 H), 4.18 (t, *J* = 2.4 Hz, 1 H), 4.01 (s, 6 H), 3.61 (dd, *J* = 13.2, 2.0 Hz, 1 H), 3.03 (d, *J* = 12.8 Hz, 1

H), 2.28-2.29 (m, 1 H), 2.13 (s, 6 H), 1.94-1.98 (m, 3 H), 1.80-1.82 (m, 3 H), 1.54-1.71 (m, 6 H), 1.15-1.39 (m, 5 H), 1.04-1.06 (m, 4 H). ${}^{31}P$ { ${}^{1}H$ } NMR (CDCl₃) δ -12.13 (s).

A red solution of compound **10b** (43.9 mg, 0.100 mmol) and HPtBu₂ (16.2 mg, 0.100 mmol) in 1.0 mL acetic acid was heated at 80 °C for 5 h. The solvent was removed under reduced pressure, and 1.0 mL of Et₃N and 10 mL of pentane was added. The red solution was filtered through a short plug of Celite, and the solvent was evaporated. Ligand **10** was recrystalized from 5 mL of degassed EtOH to yield 52.2 mg (95%) of orange, microcrystalline product. ¹H NMR (C₆D₆) 4.65-4.68 (m, 1 H), 4.15-4.17 (m, 1 H), 4.10 (s, 5 H), 4.05-4.08 (m, 1 H), 2.74 (d, *J* = 16.8 Hz, 1 H), 2.63 (dd, *J* = 16.4, 4.4 Hz, 1 H), 2.26-2.30 (m, 1 H), 2.05-2.13 (m, 2 H), 1.61-1.87 (m, 9 H), 1.32-1.48 (m, 6 H), 1.21 (d, *J* = 10.8 Hz, 9 H), 1.10-1.22 (m, 4 H), 1.07 (d, *J* = 10.8 Hz, 9 H). ³¹P {¹H} NMR (C₆D₆) δ 23.39 (s), -14.37 (s). ¹³C NMR (C₆D₆) δ 94.26 (dd, *J* = 23.6, 19.8 Hz), 79.64 (dd, *J* = 20.6, 3.8 Hz), 71.97 (dd, *J* = 13.7, 3.0 Hz), 70.23, 70.08, 67.87, 36.56 (dd, *J* = 14.6, 2.3 Hz), 35.90 (d, *J* = 13.0 Hz), 33.88 (d, *J* = 23.6 Hz), 32.05 (d, *J* = 24.4 Hz), 31.70 (d, *J* = 22.8 Hz), 31.64 (d, *J* = 13.0 Hz), 31.39 (d, *J* = 15.3 Hz), 30.47 (d, *J* = 4.6 Hz), 30.30 (d, *J* = 13.8 Hz), 30.14 (d, *J* = 14.5 Hz), 28.43 (d, *J* = 15.3 Hz), 27.99, 27.91 (d, *J* = 3.0 Hz), 27.64 (d, *J* = 10.0 Hz), 26.90, 22.38 (d, *J* = 10.7 Hz), 22.13 (d, *J* = 10.7 Hz); Anal. Calcd. For C₃₁H₅₀FeP₂: C, 68.88; H, 9.32. Found: C, 68.85; H, 9.47.

Reagents and conditions: Compound **11a** was prepared according to the reported procedure. i. a) HNMe₂, Et₃N, TiCl₄, CH₂Cl₂, overnight; b) NaCNBH₃, MeOH, 0°C, 1 h; ii. a) Li₂PdCl₄, Et₃N, MeOH, overnight; Br₂, CH₂Cl₂, 30 min; iii. a) HP*t*Bu₂, AcOH, 100 °C, 3 h; b) BH₃, THF, 10 min; ii. *t*BuLi, THF, _78°C, 2 h, CIPCy₂, overnight, RT; iv. Morpholine, 100 °C, 4 h.

Preparation of Racemic Ligand (11) [CpFe(C₅**H**₃(**CH**(*n***Pr)PCy**₂)(**PtBu**₂)-**1,2].** To a dry 500 mL flask with septum was added compound **11a** (2.56 g, 10.0 mmol), dimethylamine hydrochloride (0.816 g, 10.0 mmol), triethylamine (3.0 g, 30 mmol) and CH₂Cl₂ (60 mL) under nitrogen atmosphere. Titanium tetrachloride (0.6 mL, 5.0 mmol) was added slowly via syringe. The reaction was stirred overnight and quenched with a solution of NaCNBH₃ (1.80 g, 30.0 mmol) in 30 mL of MeOH with cooling in an ice bath. The resulting mixture was allowed to stir for 1 h, and the pH was adjusted to 13 with 5 N NaOH. The resulting organic layer and EtOAc extracts from the aqueous layer were combined, washed with 2 × 50 mL of water, dried over MgSO₄, and concentrated to afford **11b** as a red oil. This compound was used without further purification.

A solution of **11b** (1.00 g, 3.52 mmol) in 70 mL of MeOH was added to the solution of triethyl amine (1.06 mL, 7.00 mmol) and Li₂PdCl₄ (0.926 g, 3.52 mmol) in 70 mL of MeOH. Orange precipitates formed after 0.5 h, and the mixture was allowed to stir overnight. The precipitate was filtered and washed with MeOH. The resulting orange solid was dissolved in 60.0 mL of CH₂Cl₂, and bromine (0.2 mL) in 70 mL of CH₂Cl₂ was added dropwise. After stirring for 30 min, the solvent was removed under reduced pressure, and the residue was purified by flash chromatography (hexane/triethylamine, 80/20) to give 350 mg (40%) of the desired compound **11c** as an red oil. ¹H NMR (CDCl₃) δ 4.43 (dd, *J* = 2.0, 1.0 Hz, 1 H), 4.13 (s, 5 H), 4.10 (t, *J* = 2.5 Hz, 1 H), 3.97 (dd, *J* = 2.5, 1.0 Hz, 1 H), 3.60 (dd, *J* = 11.0, 3.5 Hz, 1 H), 2.03 (s, 6 H), 1.93-2.01 (m, 1 H), 1.77-1.85 (m, 1 H), 1.61-1.68 (m, 1 H), 1.49-1.56 (m, 1 H), 1.04 (t, *J* = 7.5 Hz, 3 H); ¹³C NMR (CDCl₃) δ 85.79, 79.51, 71.14, 69.47, 65.68, 65.50, 59.44, 40.89, 35.01, 20.57, 14.25. MS (m/e) 318 (100), 320 (100) (M⁺-NMe₂).

A red solution of compound **11c** (0.273 g, 0.750 mmol) and HP*t*Bu₂ (0.122 g, 0.750 mmol) in 5.0 mL acetic acid was heated at 100 °C for 1 h. The solvent was removed under reduced pressure, and 2 mL of THF was added. To the solution was added 5.0 mL of BH₃•THF (1.0 M). The resulting solution was stirred for 10 min, and 5 mL of MeOH was added slowly with cooling in an ice bath to quench the excess BH₃. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography (hexane/ethyl acetate, 30/70) to give 341.3 mg (95%) of the product **11d** as an orange solid. ¹H NMR (CDCl₃) δ 4.28 (s, 1 H), 4.15 (s, 1 H), 4.00 (s, 6 H), 2.55-2.59 (m, 1 H), 2.30-2.33 (m, 1 H), 1.51-1.87 (m, 3 H), 1.66 (d, *J* = 12.3 Hz, 9 H), 1.01 (d, *J* = 12.3 Hz, 9 H), 0.86 (t, *J* = 7.2 Hz, 3 H), -0.5-0.8 (m, 3 H); ³¹P {¹H} NMR (CDCl₃) δ 46.4 (m). Anal. Calcd. For C₂₂H₃₇BBrFeP: C, 55.16; H, 7.78. Found: C, 55.45; H, 7.89.

To a solution of **11d** (0.149 g, 0.310 mmol) in THF (6.0 mL) was added a solution of *t*BuLi (1.5 M in hexane) in hexane (227 µL, 0.340 mmol) at _78 °C. The resulting solution was stirred for 2 h at _78 °C. A solution of ClPCy₂ (79.3 g, 0.340 mmol) in 3.0 mL of Et₂O was added through syringe. The mixture was stirred overnight. Aqueous saturated NaHCO₃ (10 mL) was slowly added with cooling in an ice bath. The resulting organic layer and Et₂O extracts from the aqueous layer were combined, washed with 2 × 20 mL of water, dried over MgSO₄, and concentrated to afford an organic powder. The BH₃ protected compound **11**•BH₃ was purified by flash chromatography (hexane/ethyl acetate, 95/5) to give 157.2 mg (85%) of the product as an orange solid. ¹H NMR (CDCl₃) δ 4.55-5.59 (m, 1 H), 4.24 (t, J = 2.5 Hz, 1 H), 4.18-4.20 (m, 1 H), 4.08 (s, 5 H), 3.20 (dt, J = 12.0, 9.5 Hz, 1 H), 2.31-2.41 (m, 2 H), 2.15-2.23 (m, 1 H), 1.98-2.05 (m, 3 H), 1.61-1.87 (m, 6 H), 1.32-1.54 (m, 6 H), 1.29 (d, J = 12.0 Hz, 9 H), 1.22 (d, J = 12.5 Hz, 9 H), 1.12-1.32 (m, 5 H), 1.00-1.10 (m, 3 H), 0.98 (t, J = 7.0 Hz, 3 H), -0.50-0.80 (m, 3 H); ³¹P {¹H} NMR (CDCl₃) δ -20.38 (s), 61.08 (m). ¹³C NMR (CDCl₃) δ 99.83 (dd, J = 28.0, 4.2 Hz), 84.78 (dd, J = 23.9, 4.7 Hz), 71.45 (d, J = 4.7 Hz), 70.94 (t, J = 3.1 Hz), 69.50, 67.45.

41.42 (d, J = 13.5 Hz), 40.47, 34.98 (d, J = 23.3 Hz), 34.27-34.59 (4 C overlap), 32.88 (d, J = 14.8 Hz), 32.50 (dd, J = 20.6, 15.1 Hz), 31.34 (d, J = 13.0 Hz), 30.14, 29.19 (d, J = 17.9 Hz), 29.03, 28.25 (d, J = 2.9 Hz), 27.73 (d, J = 3.1 Hz), 27.60 (d, J = 10.9 Hz), 27.31 (d, J = 11.3 Hz), 26.90 (d, J = 2.8 Hz), 24.56 (d, J = 3.3 Hz), 24.49 (d, J = 3.3 Hz), 14.43.

A red solution of **11**•BH₃ (50 mg, 0.083 mmol) in 1.0 mL of morpholine was heated at 100 °C for 1 h. The solvent was removed and 5.0 mL of hexane was added. The red solution was filtered through a short plug of Celite, and the solvent was evaporated under reduced pressure. Recrystallization of the residue from 3.0 mL of degassed EtOH yields 46.0 mg (95%) of ligand **11** as orange, microcrystalline product. ¹H NMR (C₆D₆) δ 4.24-5.27 (m, 1 H), 4.08 (s, 6 H), 4.07-4.09 (m, 1 H), 3.24-3.29 (m, 1 H), 2.22-2.25 (m, 3 H), 2.12-2.24 (m, 2 H), 2.04-2.13 (m, 2 H), 1.90-2.03 (m, 1 H), 1.45-1.87 (m, 13 H), 1.39 (d, *J* = 10.0 Hz, 9 H), 1.22 (d, *J* = 12.5 Hz, 9 H), 1.12-1.32 (m, 5 H), 1.05 (t, *J* = 7.0 Hz, 3 H); ³¹P {¹H} NMR (C₆D₆) δ -17.66 (d, *J* = 31.9 Hz), 56.79 (d, *J* = 31.5 Hz). ¹³C NMR (C₆D₆) δ 102.93 (dd, *J* = 26.0, 23.6 Hz), 80.00 (dd, *J* = 24.7, 3.0 Hz), 72.09 (d, *J* = 4.3 Hz), 69.69, 69.08 (t, *J* = 3.6 Hz), 67.49, 39.30 (d, *J* = 16.0, 3.4 Hz), 36.51 (d, *J* = 1.7 Hz), 35.97 (d, *J* = 6.2 Hz), 35.82 (d, *J* = 6.6 Hz), 35.52 (d, *J* = 7.0 Hz), 35.16 (d, *J* = 7.5 Hz), 33.92-34 31 (2 C overlap), 32.50 (d, *J* = 15.1 Hz), 31.62-32.20 (3 C overlap), 30.12, 28.92 (d, *J* = 16.7 Hz), 28.45 (d, *J* = 10.0 Hz), 28.13 (d, *J* = 3.2 Hz), 27.95 (d, *J* = 13.0 Hz), 27.01 (d, *J* = 23.1 Hz), 24.75, 15.01.

Reagents and conditions: i. a) *n*BuLi, THF, _78°C, 2 h, ClPEt₂, overnight, RT; iv. Morpholine, 100 °C, 1 h.

To a solution of **11d** (90.2 mg, 0.200 mmol) in THF (1.0 mL) was added a solution of *n*BuLi (1.6 M in hexane) in hexane (133 μ L, 0.220 mmol) at _78°C. The resulting solution was stirred for 2 h at _78°C. A solution of ClPEt₂ (24.9 g, 0.200 mmol) in 2.0 mL of Et₂O was added through syringe. The mixture was stirred overnight. Aqueous saturated NaHCO₃ (10 mL) was slowly added with cooling in an ice bath. The resulting organic layer and Et₂O extracts from the aqueous layer were combined, washed with 2 × 20 mL of water, dried over MgSO₄, and concentrated to afford an organic powder. A red solution of the organic powder in 1.0 mL of morpholine was heated at 100 °C for 1 h. The solvent was removed and 5.0 mL of hexane was added. The red solution was filtered through a short plug of Celite, and the solvent was evaporated under reduced pressure. Recrystallization of the residue from 2.0 mL

of degassed EtOH yields 76.0 mg (80%) of ligand **12** as orange, microcrystalline product. ¹H NMR (C₆D₆) δ 4.00-4.08 (m, 3 H), 3.98 (s, 5 H), 3.35-3.45 (m, 1 H), 2.08-2.32 (m, 3 H), 1.70-2.06 (m, 4 H), 1.46-1.66 (m, 1 H), 1.34 (d, *J* = 10.0 Hz, 9 H), 1.20 (dt, *J* = 8.0, 7.6 Hz, 2 H), 0.95-1.18 (m, 7 H), 1.04 (t, *J* = 10.0 Hz, 9 H); ³¹P {¹H} NMR (C₆D₆) δ -35.55 (d, *J* = 54.0 Hz), 60.45 (d, *J* = 54.0 Hz). ¹³C NMR (C₆D₆) δ 100.44 (t, *J* = 23.6 Hz), 76.66 (dd, *J* = 18.3, 6.0 Hz), 70.41 (d, *J* = 4.6 Hz), 70.02, 68.74, 67.02, 36.31 (d, *J* = 33.6 Hz), 34.47, 34.10 (dd, *J* = 36.6, 3.0 Hz), 33.99 (d, *J* = 32.1 Hz), 31.97 (d, *J* = 15.3 Hz), 31.69 (d, *J* = 13.8 Hz), 24.39, 21.74 (t, *J* = 13.8 Hz), 18.33 (d, *J* = 9.9, 4.6 Hz), 15.13, 11.95 (d, *J* = 23.7 Hz), 9.64 (d, *J* = 6.0 Hz). Anal. Calcd. For C₂₆H₄₄FeP: C, 65.82; H, 9.35. Found: C, 65.94; H, 9.13.

Reagents and conditions: i. a) H₂O₂, MeOH, room temperature, 1 h; ii. HPtBu₂, HOAc, 100 °C, 1 h.

Preparation of Racemic Ligand 13 [CpFe(C₂H₃(CH(Me)P(O)Cv₂)(PtBu₂)-1.2]. To a solution of 13a (88.0 mg, 0.200 mmol) in 3 mL MeOH, one drop of 30% H₂O₂ was added at 0 °C and stirred for 1 h at room temperature. The product was partitioned between 30 mL CHCl₃ and 10 mL H₂O. The phase was separated, and the organic layer was washed with brine (20 mL), dried over MgSO₄ and evaporated *in vacuo* to give 90.0 mg (99%) **13b** as an orange powder. ¹H NMR (CDCl₃) δ 4.99 (s, 1 H), 4.53 (q, J = 6.7, 1 H), 4.47-4.50 (m, 1 H), 4.22 (s, 5 H), 4.11-4.15 (m, 1 H), 2.51 (s, 3 H), 2.32 (s, 3 H), 1.86 (d, J = 6.8 Hz, 3 H), 1.00-2.30 (m, 22 H from Cy); ³¹P {¹H} NMR (C₆D₆) δ 49.29 (s). A red solution of compound 13b (90.0 mg, 0.200 mmol) and HPtBu₂ (32.4 mg, 0.200 mmol) in 2.0 mL acetic acid was heated at 100 °C for 30 h. The solvent was removed under reduced pressure, and 1.0 mL of Et₃N and 10 mL of pentane was added. The red solution was filtered through a short plug of Celite, and the solvent was evaporated. Ligand 13 was recrystalized from 5 mL of degassed EtOH to give 82.2 mg (73%) of orange, microcrystalline product. ¹H NMR (C_6D_6) δ 4.25 (s, 5 H), 4.13-4.16 (m, 1 H), 4.03-4.06 (m, 1 H), 3.99-4.02 (m, 1 H), 3.67 (dg, J = 22.4, 10.4 Hz, 1 H), 2.84-2.94 (m, 1 H), 2.61-2.66 (m, 1 H), 2.37-2.50 (m, 1 H), 1.75 (dd, *J* = 7.6, 3.2 Hz, 3 H), 1.44 (d, *J* = 10.4 Hz, 9 H), 1.15 $(d, J = 10.8 \text{ Hz}, 9 \text{ H}), 1.20-2.03 \text{ (m, 19 H from PCy_2)}; {}^{31}\text{P} \{ {}^{1}\text{H} \} \text{ NMR (C_6D_6) } \delta 49.68 \text{ (s)}, 42.50 \text{ (s)};).$ ¹³C NMR (C₆D₆) δ 101.62 (dd, J = 22.9, 12.9 Hz), 74.17 (dd, J = 93.1, 3.1 Hz), 70.89 (d, J = 12,2Hz), 70.56, 70.38 (d, J = 8.3 Hz), 68.34 (d, J = 10.0 Hz), 42.83 (d, J = 64.8 Hz), 42.39 (d, J = 21.42 Hz), 41.72 (d, J = 21.32 Hz), 34.18 (d, J = 33.6 Hz), 33.32 (d, J = 29.8 Hz), 32.14 (d, J = 14.5 Hz), 31.75 (d, J = 13.7 Hz), 30.11, 29.79 (d, J = 35.1 Hz), 28.26 (d, J = 11.4 Hz), 27.94 (d, J = 12.3 Hz), 27.70 (d, J = 12.3 Hz),J = 3.1 Hz), 27.58, 27.34, 27.21, 27.04, 26.78, 26.66 (d, J = 1.5 Hz).

Reagents and conditions: Compound **14a** was prepared according to the reported procedure. i. *n*BuLi, THF, room temperature, 2 h, ClPCy₂, overnight, RT.

Preparation of Ligand 14. A 2.5 M solution of *n*BuLi (80 μL, 0.20 mmol) was added dropwise to the solution of **14a** (62.2 mg, 0.200 mmol) in 1.0 mL of Et₂O at room temperature. The resulting mixture was stirred for 2 h at room temperature. A solution of ClPCy₂ (46.5 mg, 0.200 mmol) in 2.0 mL of Et₂O was added through syringe. The mixture was stirred overnight. Aqueous saturated NaHCO₃ (10 mL) was slowly added with cooling in an ice bath. The resulting organic layer and Et₂O extracts from the aqueous layer were combined, washed with 2 × 20 mL of water, dried over MgSO₄, and concentrated to afford an organic powder. The crude product was purified by flash chromatography (hexane/ethyl acetate, 95/5) to give 89.3 mg (88%) of the product as an orange solid. ¹H NMR (C₆D₆) δ 4.95-5.01 (m, 1 H), 4.15 (s, 5 H), 4.13-4.14 (m, 2 H), 3.86-3.94 (m, 2 H), 3.77 (dd, *J* = 9.5, 8.0 Hz, 1 H), 2.58-2.61 (m, 1 H), 1.00-2.00 (m, 21 H), 0.95 (s, 9 H); ³¹P {¹H} NMR (C₆D₆) δ -10.14 (s). ¹³C NMR (C₆D₆) δ 165.12 (d, *J* = 1.5 Hz), 80.82 (d, *J* = 32.2 Hz), 76.88, 75.23 (d, *J* = 15.5 Hz), 72.23, 72.19, 71.26 (d, *J* = 17.5 Hz), 71.20, 70.34, 68.00, 37.86 (d, *J* = 19.2 Hz), 33.92 (d, *J* = 16.0 Hz), 33.72, 32.48 (d, *J* = 19.7 Hz), 31.02 (d, *J* = 12.8 Hz), 30.40 (d, *J* = 13.1 Hz), 29.88 (d, *J* = 9.4 Hz), 28.55 (d, *J* = 9.7 Hz), 28.32 (d, *J* = 8.4 Hz), 27.56 (d, *J* = 10.8 Hz), 27.42 (d, *J* = 9.7 Hz), 26.97 (d, *J* = 8.7 Hz), 26.25. Anal. Calcd. For C₂₉H₄₂FeNOP: C, 68.64; H, 8.34. Found: C, 68.55; H, 8.13.

Reagents and conditions: i. a) NaH, Et₂O, reflux, 5 h; b) TsCl, 0°C, 1 h; ii. a) LiPtBu₂•BH₃, -78°C \rightarrow reflux, 10 h; iii. a) tBuLi, THF, _78°C, 35 min, ClPCy₂, overnight, RT; b) Morpholine, 100 °C, 1 h.

Preparatiion of Ligand 15. A solution of 2-bromo- α -methylbenzylaocohol **15a** (0.400 g, 2.00 mmol) in 2.0 mL of Et₂O was added dropwise to a suspension of NaH (50.0 mg, 2.00 mmol) in 3.0 mL of Et₂O in a schlenk's tube nunder nitrogen atmosphere. The resulting mixture was stirred for 30 min at room temperature and heated to reflux for 5 h. The mixture was cooled to 0 °C and tosyl chloride (1.9

mmol) in 5.0 mL Et₂O was added dropwise. The mixture was stirred for another hour at 0 °C. The mixture was filtered through a short-pass funnel with Celite. The solvent was evaporated under reduced pressure. Recrystallizition from Et₂O/hexane at -10 °C gave 675 mg (95%) of compound **15b** as white crystals. ¹H NMR (CDCl₃) δ 7.65 (d, *J* = 8.5 Hz, 2 H), 7.34 (ddd, *J* = 8.0, 5.5, 1.0 Hz, 2 h), 7.14-7.18 (m, 3 H), 7.03 (td, *J* = 8.0, 1.5 Hz, 1 H), 5.89 (t, *J* = 6.5 Hz, 1 H), 2.32 (s, 3 H), 1.50 (d, *J* = 6.5 Hz, 3 H); ¹³C NMR (CDCl₃) δ 144.49, 139.16, 133.44, 132.32, 129.47, 129.36, 127.72, 127.66, 127.35, 120.82, 79.09, 22.80, 21.40. Anal. Calcd. For C₁₅H₁₅BrO₃S: C, 50.71; H, 4.26. Found: C, 50.67; H, 4.23.

15b

A 1.0 M solution of *n*BuLi (0.4 mL, 1.0 mmol) was added dropwise to a solution of HPtBu₂•BH₃ (0.160 g, 1.00 mmol) in 2.0 mL of THF at -78°C. The resulting mixture was stirred for 0.5 h at -78°C and 0.5 h at room temperature. The resulting solution was then added to a solution of **15b** (0.354 g, 1.00 mmol) in 3.0 mL of THF at -78°C. The mixture was stirred for 0.5 h at room temperature and heated to reflux for 10 h. White precipitate was formed during this time. After cooling to room temperature, the mixture was filtered through a short-pass funnel containing Celite. The solvent was evaporated under reduced pressure. The residue was purified by flash chromatography (hexane/ethyl acetate, 99/1) to give 295.3 mg (92%) of **15c** as a white solid. ¹H NMR (CDCl₃) δ 7.85 (d, *J* = 8.4 Hz, 1 H), 7.43 (d, *J* = 8.0 Hz, 1 H), 7.18-7.22 (m, 1 H), 6.97-7.01 (m, 1 H), 4.06 (dq, *J* = 14.4, 7.2 Hz, 1 H), 1.52 (dd, *J* = 13.2, 7.2 Hz, 3 H), 1.37 (d, *J* = 12.0 Hz, 9 H), 1.01 (d, *J* = 12.0 Hz, 9 H), 0.10-1.00 (m, 3 H); ¹³C NMR (CDCl₃) δ 142.80, 132.67 (d, *J* = 2.7 Hz), 131.82 (d, *J* = 2.2 Hz), 128.33 (d, *J* = 1.5 Hz), 127.58 (d, *J* = 1.7 Hz), 124.03 (d, *J* = 6.2 Hz), 34.49 (d, *J* = 23.6 Hz), 34.17 (d, *J* = 24.5 Hz), 31.98 (d, *J* = 22.5 Hz), 29.22, 29.14, 22.55 (d, *J* = 1.3 Hz). ³¹P {¹H} NMR (CDCl₃) δ 58.5 (m).

A 1.5 M solution of *t*BuLi (0.54 mL, 0.81 mmol) was added dropwise to the solution of **15c** (0.278 g, 0.810 mmol) in 2.0 mL of THF at -78°C. The resulting mixture was stirred for 1 h at -78°C. To this yellow solution, CIPCy₂ (0.189 g, 0.900 mmol) was added. The resulting mixture was stirred at -78°C for 2 h and then heated to 60 °C for 5 h. The solution was cooled to room temperature, and 3.0 mL of BH₃•THF (1.0 M) was added. The resulting solution was stirred for 10 min, and 5.0 mL of MeOH was added slowly with cooling in an ice bath to quench the excess BH₃. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography (hexane/ethyl acetate, 90/00) to give 203.3 mg (53%) of **15**•BH₃ as a white solid. ¹H NMR (CDCl₃) δ 8.22 (dd, *J* = 7.6, 4.4 Hz, 1 H), 7.45 (t, *J* = 8.0 Hz, 1 H), 7.38 (t, *J* = 8.0 Hz, 1 H), 7.23 (t, *J* = 7.6 Hz, 1 H), 4.89 (dq, *J* = 14.4, 6.8 Hz, 1 H), 2.18-2.30 (m, 1 H), 1.71-1.98 (m, 9 H), 1.58 (dd, *J* = 13.2, 7.2 Hz, 3 H), 1.40-1.60 (m, 3 H), 1.41 (d, *J* = 12.0 Hz, 9 H), 1.00-1.26 (m, 9 H), 1.00 (d, *J* = 12.0 Hz, 9 H), 0.00-1.00 (m, 6 H); ³¹P {¹H} NMR (CDCl₃) δ 24.79 (m), 58.75 (m).

A colorless solution of **15**•2BH₃ (100.0 mg, 0.224 mmol) in 1.0 mL of morpholine was heated at 100 °C for 1 h. The solvent was evaporated, and 5.0 mL of hexane was added. The solution was filtered through a short plug of Celite, and the solvent was evaporated under reduced pressure. Recrystallization of the residue from 3.0 mL of degassed EtOH yielded 85.0 mg (85%) of ligand **15** as white crystals. ¹H NMR (C₆D₆) δ 7.60-7.64 (m, 1 H), 7.07 (d, *J* = 8.0 Hz, 1 H), 6.86-6.88 (m, 1 H), 6.71 (td, *J* = 7.5, 1.5 Hz, 1 H), 4.47-4.55 (m, 1 H), 1.68-1.78 (m, 3 H), 1.37-1.49 (m, 6 H), 1.32 (dd, *J* = 8.5, 7.0 Hz, 3 H), 1.17-1.26 (m, 2 H), 1.03 (d, *J* = 10.0 Hz, 9 H), 1.00-1.26 (m, 9 H), 0.80-1.00 (m, 2 H), 0.89 (d, *J* = 10.0 Hz, 9 H); ¹³C NMR (C₆D₆) δ 156.07 (dd, *J* = 24.9, 9.2 Hz), 133.25 (d, *J* = 17.5 Hz), 133.12 (d, *J* = 2.8 Hz), 130.38 (dd, *J* = 11.9, 2.6 Hz), 128.74, 124.99 (d, *J* = 1.8 Hz), 36.16 (d, *J* = 15.6 Hz), 32.61-32.09 (4 C), 31.97 (dd, *J* = 17.5 Hz), 29.59 (d, *J* = 6.5 Hz), 27.77 (d, *J* = 11.9 Hz), 27.68 (d, *J* = 6.4 Hz), 27.52 (d, *J* = 10.2 Hz), 27.34 (d, *J* = 11.1 Hz), 26.64 (d, *J* = 26.77 Hz), 24.81 (d, *J* = 12.8 Hz), 10.5. ³¹P {¹H</sup>} NMR (CDCl₃) δ -16.98 (s), 53.59 (s). Anal. Calcd. For C₂₈H₄₈P₂: C, 75.30; H, 10.83. Found: C, 74.87; H, 11.27.

15

Reagents and conditions: i. *t*BuLi, THF, _78°C, 1 h, ClPCy₂, overnight, RT; ii. 1-Chloroethyl chloroformate, THF, -40 °C \rightarrow room temperature, overnight; iii. a) HP*t*Bu₂, TlPF₆, acetone, room temperature, overnight; b) Et₃N, room temperature, 15 min.

Preparation of Ligand 16. A 1.5 M solution of *t*BuLi (0.73 mL, 1.00 mmol) was added dropwise to the solution of **16a** (0.285 g, 1.00 mmol) in 2.0 mL of THF at -78°C. The resulting mixture was stirred for 1 h at -78 °C. To this yellow solution, ClPCy₂ (0.210 g, 1.00 mmol) was added. The resulting mixture was stirred at -78 °C for 2 h and then room temperature overnight. Aqueous saturated NaHCO₃ (10 mL) was slowly added with cooling in an ice bath. The resulting organic layer and Et₂O extracts from the aqueous layer were combined, washed with 2 × 20 mL of water, dried over MgSO₄, and concentrated to afford a yellow powder. Compound **16b** was purified by flash chromatography (hexane/diethyl ether, 80/20) to give 0.397 g (80%) of the product **16b** as a yellow solid. ¹H NMR (C₆D₆) δ 5.03 (d, *J* = 5.5 Hz, 1 H), 4.63 (t, *J* = 6.0 Hz, 1 H), 4.41-4.48 (m, 3 H), 2.52-2.55 (m, 1 H),

S48

1-Chloroethyl chloroformate (0.143 g, 1.00 mmol) was added dropwise to a stirring solution of **16b** (0.100 g, 0.250 mmol) in 5.0 mL of THF at -40°C. The solution was warmed to room temperature and kept stirring overnight. The solvent was evaporated and the residue was dissolved in 5.0 mL of Et₂O. The solution was filtered through a short pad of Celite, and the solvent was evaporated under reduced pressure to give a yellow solid. Attempts at purification by flash chromatography resulted in decomposition. The crude material was used without further purification.

HPtBu₂ (36.6 mg, 0.250mmol) was added to the solution of the crude product dissolved in 5.0 mL of dry acetone. To this solution was added dropwise a suspension of TIPF₆ (88.0 mg, 0.250 mmol) in 1.0 mL of dry acetone. A fine white formed immediately. The solution was stirred at room temperature overnight. NEt₃ (0.5 mL) was added, and the solution was further stirred for 15 min and then filtered through a short plug of Celite. The solvent and excess NEt_3 were evaporated under reduced pressure. The residue was purified by flash chromatography (hexane/Et₂O, 95/5) to give 104.5 mg (70%) of ligand **16** as a yellow solid. ¹H NMR (C_6D_6) δ 5.12 (d, J = 6.5 Hz, 1 H), 4.67-4.71 (m, 2 H), 4.35 (td, J = 6.0, 2.0 Hz, 1 H), 4.12 (quintet, J = 6.5 Hz, 1 H), 1.53 (dd, J = 7.5, 2.5 Hz, 3 H), 1.1-2.5 (m, 22 H), 1.30 (d, J = 11.0 Hz, 9 H), 1.02 (d, J = 11.0 Hz, 9 H); ³¹P {¹H} NMR (C₆D₆) δ 50.23 (d, J = 52.67 Hz), -13.66 (d, J = 52.67 Hz) ppm. ¹³C NMR (C₆D₆) δ 233.79, 125.62 (dd, J = 20.5, 16.5 Hz), 107.57 (d, J= 38.5 Hz), 98.18 (d, J = 2.1 Hz), 94.18, 90.40 (t, J = 5.5 Hz), 89.03, 38.30 (dd, J = 13.8, 9.6 Hz), 36.46 (dd, J = 19.2, 4.5 Hz), 35.25 (d, J = 16.7 Hz), 35.14 (d, J = 33.1 Hz), 34.93 (d, J = 16.9 Hz),34.63 (d, J = 32.1 Hz), 33.11 (d, J = 23.5 Hz), 32.55 (dd, J = 15.6, 7.3 Hz), 32.42 (d, J = 13.5 Hz), 31.74 (dd, J = 12.5, 2.9 Hz), 30.03 (d, J = 12.2 Hz), 28.81 (d, J = 9.3 Hz), 28.68 (d, J = 12.8 Hz), 28.01 (d, J = 7.3 Hz), 27.45 (d, J = 6.9 Hz), 27.41 (d, J = 13.7 Hz), 26.89, 26.72 (d, J = 1.6 Hz). Anal. Calcd. For C₃₂H₅₁CrO₃P₂: C, 64.30; H, 8.60. Found: C, 63.87; H, 9.05.

16

Reagents and conditions: i. a) BuLi/TMEDA, Et₂O, -78 °C \rightarrow room temperature for 16 h; b) ClPtBu₂, -78 °C \rightarrow room temperature, 16 h; c) BuLi/TMEDA, Et₂O, -78 °C \rightarrow room temperature for 16 h; d) ClPCy₂, -78 °C \rightarrow room temperature, 16 h; e) BH₃/THF, room temperature, 10 min; ii. a) TMEDA, reflux, 10 h; b) HBF₄/CH₂Cl₂, room temperature, 30 min.

Preparatiion of Ligand 17. A solution (1.40 M) of sec-Butyllithium (1.50 mL, 2.10 mmol) was added dropwise to a mixture of Xanthene (0.420 g, 2.0 mmol) and TMEDA (0.244 g, 2.10 mmol) in Et₂O (5.0 mL). The resulting mixture was stirred for 16 h at room temperature. The mixture was cooled to -78 °C, and di-tert-butyl-chlorophosphine (0.361g, 2.00 mmol) in 5.0 mL Et₂O was added dropwise. The mixture was stirred for 16 h at room temeperature before it was cooled to -78 °C. TMEDA (0.244 g, 2.10 mmol) was added, followed by a solution (1.40 M) of sec-butyllithium (1.50 mL, 2.10 mmol). The resulting mixture was stirred for 16 h at room temperature. The mixture was cooled to -78 °C and di-cyclohexyl-chlorophosphine (0.465 g, 2.00 mmol) in 5.0 mL Et₂O was added dropwise. The mixture was stirred for 16 h at room temperature. BH₃ in THF (30.0 mL, 1.0 M) was added, and the mixture was stirred for another 2 h at room temperature. The excess BH₃ was quenched by methanol. The solvent was evaporated under reduced pressure, and the residue was purified by flash chromatography (hexane/ethyl acetate, 90/10) to give a white solid. The white solid was further purified by recrystallization from ethyl acetate to give 17a (300.9 mg, 26%) as colorless crystals. ¹H NMR (CDCl₃) δ 7.91 (ddd, J = 13.2, 7.2, 1.2 Hz, 1 H), 7.63 (dt, J = 7.6, 1.6 Hz, 1 H), 7.54 (d, J = 7.2 Hz, 1 H), 7.46 (dd, J = 7.6, 1.6 Hz 1H), 7.10-7.14 (m, 2 H), 3.60-3.64 (m, 2 H), 2.13 (d, J = 11.6 Hz, 2 H), 1.73-1.82 (m, 4 H), 1.57 (s, 6 H), 1.26 (d, J = 12.0 Hz, 18 H), 1.10-1.62 (m, 14 H), 0.01-1.00 (m, 6 H); $^{31}P \{^{1}H\}$ NMR (CDCl₃) δ 38.4 (br), 10.54 (br).

A colorless solution of **17a** (100.0 mg, 0.173 mmol) in 10.0 mL of TMEDA was heated at 110°C for 5 h. The solvent was removed, and 5.0 mL of hexane was added. The solution was filtered through a short plug of Celite, and the solvent was evaporated under reduced pressure. The residue was dissolved in 3.0 mL of CH₂Cl₂, and aqueous HBF₄ (43% w/w, 0.2 mL) was added. After vigiously stirring for 10 min, the organic layer was separated and dried over MgSO₄. Filtration, followed by removal of the solvent and recrystallization of the residue form CH₂Cl₂ by the addition of pentane afforded the product as colorless crystals. ¹H NMR (CD₂Cl₂) δ 8.48 (dd, *J* = 478.3, 7.2 Hz, 1 H), 7.91 (d, *J* = 8.0 Hz, 1 H), 7.65 (t, *J* = 8.4 Hz, 1 H), 7.48-7.54 (m, 2 H), 7.38 (d, *J* = 7.6 Hz, 1 H), 7.27 (t, *J* = 7.6 Hz, 1 H), 2.06 (t, *J* = 7.2 Hz, 2 H), 1.95 (d, *J* = 7.5 Hz, 2 H), 1.79 (d, *J* = 12.8 Hz, 2 H), 1.65 (s, 6 H), 1.57 (d, *J* = 13.2 Hz, 18 H), 1.50-1.70 (m, 5 H), 0.95-1.42 (m, 11 H); ³¹P {¹H} NMR (CD₂Cl₂) δ 22.0 (d, *J* = 89.0 Hz), -16.55 (d, *J* = 89.0 Hz). ¹³C NMR (CD₂Cl₂) δ 154.60 (d, *J* = 3.0 Hz), 154.30 (d, *J* = 18.4 Hz), 134.76 (d, *J* = 4.5 Hz), 133.14, 132.41 (d, *J* = 3.0 Hz), 131.37, 130.73 (d, *J* = 5.3 Hz), 126.95, 125.63 (d, *J* = 11.4 Hz), 124.94, 122.19 (d, *J* = 19.1 Hz), 103.52 (d, *J* = 70.4 Hz), 35.81, 35.13 (d, J = 33.5 Hz), 33.24 (d, J = 9.9 Hz), 30.98 (d, *J* = 16.0 Hz), 30.01, 29.53 (d, *J* = 6.8 Hz), 27.93, 27.29 (d, *J* = 13.0 Hz), 27.11 (d, *J* = 8.3 Hz), 26.53.

References:

- 1. Wagaw, S.; Buchwald, S. L. J. Org. Chem. 1996, 61, 7240-7241.
- Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; Yin, J.; Buchwald, S. L. J. Org. Chem. 2000, 65, 1158-1174.
- 3. Morris, J.; Wishka, D. J. J. Org. Chem. 1995, 60, 2642 2644.
- 4. Noveron, J. C.; Lah, M. S.; Del Sesto, R. E.; Arif, A. M.; Miller, J. S.; Stang, P. J. J. Am. Chem. Soc. 2002, 124, 6613-6625.
- 5. Zhang, Z.; Mao, J.; Zhu, D.; Wu, F.; Chen, H.; Wan, B. Tetrahedron, 2006, 62, 4435.
- 6. Ma, D. W.; Cai, Q.; Zhang, H. Org. Lett. 2003, 5, 2453 2455.
- 7. Brown, D. S.; Elliott, M. C.; Moody, C. J.; Mowlem, T. J.; Marino, J. P. Jr; Padwa, A. J. Org. Chem. 1994, 59, 2447-2455.
- 8. Urgaonkar, S.; Nagarajum, M.; Verkade, J. G. Org. Lett. 2003, 5, 815-818.
- Grail, G. F.; Renenbaum, L. E.; Tolstoouhov, A. V.; Duca, C. J.; Reinhard, J. F.; Anderson, F. E.; Scudi, J. V. J. Am. Chem. Soc. 1952, 74, 1313.
- 10. Cho, C. S.; Kim, H. S.; Kim, T. J.; Shim, S. C. Synth. Commun. 2001, 31, 3791.
- 11. Urgaonkar, S.; Verkade, J. G. J. Org. Chem. 2004, 69, 9135.
- 12. Clark, V. M.; Cox, A.; Herbert, E. J. J. Chem. Soc. 1968, 831-833.
- 13. Zhou, C.; Wang, Y.; Li, D.; Zhou, L.; Liu, P.; Shi, Q. Eur. J. Inorg. Chem. 2006, 2437-2446.
- 14. Tundel, R. E.; Anderson, K. W.; Buchwald, S. L. J. Org. Chem. 2006, 71, 430-433.
- 15. Dai, Q.; Gao, W.; Liu, D.; Kapes, L. M.; Zhang, X. J. Org. Chem. 2006, 71, 3928-3934.
- 16. Grasa, G. A.; Viciu, M. S.; Huang, J.; Nolan, S. P. J. Org. Chem. 2001, 66, 7729-7737.
- 17. Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164-5173.
- 18. Xu, C.; Gong, J.; Wu, Y. Tetrahedron Lett. 2007, 48, 1619-1623.
- 19. Xie, X.; Zhang, T. Y.; Zhang, Z. J. Org. Chem. 2006, 71, 6522-6529.
- 20. Noriyasu, K.; Quinetta, S.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem. 2002, 67, 5553-5566.
- 21. Ryoichi, H.; Masahiro, K.; Tetsutaro, K.; Kiyoshi, T.; Fumio, Y. J. Heterocyclic Chem. 1989, 26, 1255-1259.

Table 1, entry 6, N-Cyclohexyl-2-aminopyridine

Table 1, entry 6, N-Cyclohexyl-2-aminopyridine

Table 1, entry 14, N-Benzyl-3-aminopyridine

Table 1, entry 18, N-Cyclohexyl-3-aminopyridine

Table 1, entry 18, N-Cyclohexyl-3-aminopyridine

Table 1, entry 20, N-tert-butyl-3-aminopyridine

Table 1, entry 20, *N-tert*-butyl-3-aminopyridine

Table 1, entry 25, 4-benzamidopyridine

Table 1, entry 25, 4-benzamidopyridine

Table 1, entry 28, 5-(Cyclohexylamino)pyrimidine

Table 3, entry 1, N-(Phenyl)-cyclohexylamine

Table 3, entry 1, N-(Phenyl)-cyclohexylamine

Table 3, entry 3, N-(Phenyl)-benzylamine

66

Table 3, entry 3, N-(Phenyl)-benzylamine

Table 3, entry 9, N-(p-Tolyl)-iso-butylamine

Table 3, entry 9, N-(p-Tolyl)-iso-butylamine

Table 3, entry 21, N-(Cyclohexylamino)-m-anisidine

Table 3, entry 23, N-octyl-1-qminonaphathlene

Table 5, entry 4, N-Phenyloctylamine

Table 5, entry 10, N-(Cyclohexylamino)-o-toluidine

Table 6, entry 3 , 2- α -Naphthylaminopyridine

Table 6, entry 6, 2,3'-Dipyridylamine

Table 6, entry 9, N-3-pyridyl-2-pyrimidinamine

Table 6, entry 9, N-3-pyridyl-2-pyrimidinamine

Table 6, entry 13, N-Phenyl-p-toluidine

Table 6, entry 13, N-Phenyl-p-toluidine

Table 6, entry 15, N-(2-Pyridyl)-aniline

Table 6, entry 15, N-(2-Pyridyl)-aniline

91

Table 6, entry 19, 3,4'-Dimethoxydiphenylamine aniline

Table 6, entry 19, 3,4'-Dimethoxydiphenylamine aniline

Table 6, entry 21, N-(o-Tolvl)-p-toluidine

Table 6, entry 24, N-(p-Tolyl)-2-cyclohexylaniline

Table 6, entry 24, N-(p-Tolyl)-2-cyclohexylaniline

Table 7, entry 1, 2-(N-Methylanilino)pyridine

Table 7, entry 2, 3-Pyridylmorpholine

Table 7, entry 2, 3-Pyridylmorpholine

Table 7, entry 5, N-Methyldiphenylamine

104

Table 7, entry 5, N-Methyldiphenylamine

Table 7, entry 6, N, N-Di-butylaniline

Table 7, entry 7, Triphenylamine
Table 7, entry 7, Triphenylamine

Table 18, entry 8, *p*-Tolylmorpholine

Table 18, entry 8, *p*-Tolylmorpholine

Table 7, entry 9, N-(3-Methoxyphenyl)-morpholine

Table 7, entry 9, N-(3-Methoxyphenyl)-morpholine

Table 8, entry 2, 2-Acetamido-5-N-sec-butylaminopyridine

Table 8, entry 3, 5-Acetamido-2-N-benzylaminopyridine

Table 8, entry 4, 5-Acetamido-2-N-iso-butylaminopyridine

Table 8, entry 6, 3-Hydroxy-5-N-cyclohexylaminopyridine

Table 8, entry 6, 3-Hydroxy-5-N-cyclohexylaminopyridine

Table 9, entry 16, N-iso-Butylamino-benzylalcohol

Table 9, entry 22, 3-Hydroxy-N-cyclohexyl-aniline

Table 9, entry 22, 3-Hydroxy-N-cyclohexyl-aniline

Table 9, entry 29, Methyl-2-(benzylamino)-benzoate

Ligand 13 [CpFe(C₅H₃(CH(Me)P(O)Cy₂)(PtBu₂)-1,2]

