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Enhanced Green’s Function Reaction Dynamics. Overview.We present
the enhanced Green’s Function Reaction Dynamics (eGFRD)
simulation algorithm.We provide the concepts required to under-
stand the outline of the algorithm, but details on the algorithm,
such as the actual mathematical expressions for the employed
Green’s functions, other numerical procedures, and performance
analyses, will be given in a forthcoming publication (S1).

We solve the many-body reaction-diffusion problem by decom-
posing it into a set of many one body (single) and two body (pair)
problems, for which analytical solutions (Green’s functions) exist.
In the original version of the Green’s Function Reaction Dy-
namics (GFRD) algorithm, the many-body problem was solved
by determining at each step of the simulation a maximum time
step Δt such that each particle could interact with at most one
other particle during that time step. In practice, the maximum
time step Δt was determined as follows: (1) An interaction sphere
of radiusH

ffiffiffiffiffiffiffiffiffiffiffiffi
6DiΔt

p
is drawn around each particle, where Di is the

diffusion constant of the i-th particle, and H is a user-set error
control parameter (usually 3 or 4); (2) The maximum time step
Δt is then set by the requirement that each interaction sphere
overlaps at most with one other interaction sphere. Subsequently,
for each single particle and pair of particles a tentative reaction
time is drawn, after which all particles are propagated simulta-
neously up to the smallest tentative reaction time, or to the max-
imum time step if that is smaller than the smallest tentative
reaction time (S2, S3). Although already up to five orders more
efficient than conventional reaction Brownian Dynamics (S4) and
also very accurate by its own right, the original GFRD algorithm
has three major drawbacks: (1) Because of the synchronous nat-
ure, the decomposition into one and two-body problems has to
happen at every simulation step; (2) All components in the system
are propagated according to the smallest tentative reaction time,
making the performance sub-optimal; (3) the decomposition into
single particles and pairs of particles involves cut-off distances,
which makes the algorithm inexact. The systematic error is con-
trolled by theH parameter, which determines the probability that
during a time step Δt a particle travels a distance further than the
maximum distance set by the requirement that each particle can
interact with at most one other particle. This means that there is a
trade-off between performance and error.

In the current work, we overcome the drawbacks of the original
GFRD scheme by putting protective domains around single par-
ticles and pairs of particles (S5). In this scheme, the next event of
a domain can either be a reaction, or one particle leaving the
domain. The tentative exit time for the latter event is computed
by imposing an absorbing boundary condition on the surface of
the protective domain. This makes the algorithm exact, and
allows for an asynchronous event-driven algorithm.

In the following sections, we explain how the reaction-diffusion
problem in a spherical protective domain is solved for the one-
body (Single problem) and two-body case (Pair problem), and
then describe how the simulations of the different domains are
integrated.

Single particle events. We consider a single particle of diameter d
surrounded by a spherical protective shell of radius a (Fig. S1A).
Motion of a freely diffusing spherical particle is described by the
Einstein diffusion equation,

∂tp1ðr; tjr0; t0Þ ¼ D∇2p1ðr; tjr0; t0Þ; [S1]

where the Green’s function p1ðr; tjr0; t0Þ denotes the probability
that the particle is at position r at time t given that it was at r0 at
time t0. We obtain the Green’s function p1ðr; tjr0; t0Þ by solving
the diffusion Eq. S1 with the following initial and boundary
conditions:

p1ðr; t0jr0; t0Þ ¼ δðr − r0Þ; [S2]

p1ðjr−r0j ¼ a; tjr0; t0Þ ¼ 0; [S3]

where δ denotes the Dirac delta function.
From the Green’s function one can obtain the survival

probability

S1ðtjr0; t0Þ ¼
Z
jr−r0j<a

drp1ðr; tjr0; t0Þ; [S4]

which is the probability at time t that the particle remains within
the protective sphere of radius a. This is related to the probability
per unit time that the particle escapes the domain for the first
time,

qescape1 ðtjr0; t0Þ ¼ −∂Sðtjr0; t0Þ∕∂t: [S5]

Sampling from this escape-propensity function yields a tentative
escape time tescape.

It is also possible that the particle undergoes a unimolecular
reaction. The probability that the next reaction happens in an
infinitesimal time interval t and tþ dt is (S6)

qreaction1 ðtjt0Þdt ¼ k expð−kðt − t0ÞÞdt; [S6]

where k is the first-order reaction rate. This distribution can be
used to obtain the next tentative reaction time treaction.

The next event time of a single is given by the smallest of the
two tentative event times, namely,

tsingle ¼ minðtescape; treactionÞ: [S7]

Particle pair events. To describe the diffusion and the reaction
of a pair of particles, we use the distribution function
p2ðrA; rB; tjrA0; rB0; t0Þ, which gives the probability that the parti-
cles A and B are at positions rA and rB at time t, given that they
were at rA0 and rB0 at time t0. This distribution function satisfies
for jrj ≥ σ, where σ ¼ ðdA þ dBÞ∕2 is the cross-section with dA
and dB the diameters of particles A and B, respectively, the
following diffusion equation:

∂tp2ðrA; rB; tjrA0; rB0; t0Þ ¼
½DA∇2

A þDB∇2
B�p2ðrA; rB; tjrA0; rB0; t0Þ: [S8]

We aim to solve this equation for two particles that can react with
each other and diffuse within a protective domain. To our knowl-
edge, it is impossible to solve this equation and obtain the Green’s
function directly. We therefore apply the following tricks.

First, we make a coordinate transformation

R ≡ DBrA þ DArB
DA þ DB

; [S9]
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r ≡ rB − rA; [S10]

and define the operators

∇R ≡ ∂∕∂R; [S11]

∇r ≡ ∂∕∂r: [S12]

Eq. S8 can then be rewritten as

∂tp2ðR; r; tjR0; r0; t0Þ ¼ ½DR∇2
R þDr∇2

r �p2ðR; r; tjR0; r0; t0Þ;
[S13]

where DR ≡DADB∕ðDA þDBÞ and Dr ≡DA þDB. This equation
describes two independent random processes, one for the inter-
particle vector r and another for the center-of-mass vector R.
This means that the distribution function p2ðrA; rB; tjrA0; rB0; t0Þ
can be factorized as pR2 ðR; tjR0; t0Þpr2ðr; tjr0; t0Þ and that the above
equation can be reduced to one diffusion equation for the coor-
dinate R and another for the coordinate r:

∂tpR2 ðR; tjR0; t0Þ ¼ DR∇2
Rp

R
2 ðR; tjR0; t0Þ; [S14]

∂tpr2ðr; tjr0; t0Þ ¼ Dr∇2
rpr2ðr; tjr; t0Þ: [S15]

The crux is now to define one protective domain for the inter-
particle vector r, with radius ar , and another for the center-
of-mass vector R, with radius aR (see Fig. S1B). These domains
have to be chosen such that when the inter-particle vector r and
the center-of-mass vector R would reach their maximum lengths,
given by jrj ¼ ar and jRj ¼ aR, respectively, the particles A and B
would still be within the protective domain for the two particles.

The diffusion equation for the center-of-mass vector now has
to be solved with the boundary conditions

pR2 ðR; t0jR0; t0Þ ¼ δðR − R0Þ; [S16]

pR2 ðjR−R0j ¼ aR; tjR0; t0Þ ¼ 0. [S17]

This problem, of the center-of-mass diffusing in its protective
domain, is similar to that of the single particle diffusing in a pro-
tective domain as discussed in the previous section. From the cor-
responding propensity function qR2 ðtjr0Þ we can draw a tentative
time tR at which the center-of-mass leaves its protective domain.

The solution for the diffusion equation for the inter-particle
vector is less trivial, since it should take into account not only that
the inter-particle vector can leave its protective domain, but also
that the two particles can react with each other. This reaction is
included as an extra boundary condition, yielding the following
boundary conditions for the inter-particle vector r:

pr2ðr; t0jr0; t0Þ ¼ δðr − r0Þ; [S18]

pr2ðjrj ¼ ar; tjr0; t0Þ ¼ 0; [S19]

−jðσ; tjr0; t0;Þ≡ 4πσ2Dr
∂
∂r
pr2ðr; tjr0; t0Þjrj¼σ ¼ kapr2ðjrj ¼ σ; tjr0; t0Þ;

[S20]

where ∂∕∂r denotes a derivative with respect to the inter-particle
separation r. Eq. S20 is the boundary condition that describes the
possibility that A and B can react with a rate ka once they are in
contact. Here, jðσ; tjr0; t0Þ is the radial flux of probability
pr2ðr; tjr0; t0Þ through the “contact” surface of area 4πσ2. This
boundary condition, also known as a radiation boundary
condition (S7), states that this radial flux of probability equals
the intrinsic rate constant ka times the probability that the par-

ticles A and B are in contact. In the limit ka → ∞, the radiation
boundary condition reduces to an absorbing boundary condition
pr2ðjrj ¼ σ; tjr0; t0Þ ¼ 0, while in the limit ka → 0 the radiation
boundary condition reduces to a reflecting boundary condition.

From the Green’s function for the inter-particle vector r,
pr2ðr; tjr0; t0Þ, we can obtain two important quantities. The first
is the time tbimo at which the inter-particle vector crosses the re-
action surface given by jrj ¼ σ—meaning that the particles A and
B react with each other—and the other is the time tr at which it
“escapes” through the boundary of the protective domain given
by jrj ¼ ar . The time at which the next event happens, be it a re-
action or an escape, can be obtained through the survival prob-
ability, which is given by

Sr2ðtjr0; t0Þ ¼
Z
σ≤jrj<ar

drpr2ðr; tjr0; t0Þ: [S21]

The propensity function qr2ðtjr0; t0Þ, which is the probability that
the next event happens between time t and tþ dt, is related to the
survival probability by

qr2ðtjr0; t0Þ≡ −
∂Sr2ðtjr0; t0Þ

∂t
: [S22]

To know which of the two event types, reaction or escape, hap-
pens at time t, we split this quantity into two components,

qr2ðtjr0; t0Þ ¼ qσ2ðtjr0; t0Þ þ qar2 ðtjr0; t0Þ [S23]

¼
Z
jrj¼σ

dSDr
∂
∂r
pr2ðr; tjr0; t0Þ −

Z
jrj¼ar

dSDr
∂
∂r
pr2ðr; tjr0; t0Þ; [S24]

where in the first term dS denotes an integral over the reaction
surface at jrj ¼ σ, and in the second term an integral over the
boundary of the protective domain jrj ¼ ar . The reaction rate
qσ2ðtjr0; t0Þ is the probability that the next reaction for a pair of
particles, initially separated by r0, occurs at time t, while the
escape rate qar2 ðtjr0; t0Þ yields the probability that the inter-
particle distance reaches ar and escapes from the protective
domain for the first time at time t. We can draw the tentative time
t for the next event, be it an escape or a reaction event, from
Eq. S22, and then determine which of the two takes place from
the ratio of qσ2ðtjr0; t0Þ and qar2 ðtjr0; t0Þ at time t. Alternatively, we
can draw a tentative time for a bimolecular reaction, tbimo, from
qσ2ðtjr0; t0Þ and a tentative time for an escape event, tr , from
qar2 ðtjr0; t0Þ; which of the two events can occur is then the one with
the smallest tentative time (see below). The function
∂
∂r p

r
2ðr; tjr0; t0Þ can be used to sample the exit points on the rele-

vant surfaces.
It is possible that the particles A and B do not only react with

each other, but also can undergo a unimolecular reaction of the
type X → …. In the same way as in the Single problem (Eq. S6),
we can also draw the times tmono;A and tmono;B at which the par-
ticles A and B undergo a first-order reaction, respectively.

The next event of a pair of particles in a protective domain is
thus one of the following events: (1) the center-of-mass leaving its
domain, (2) the inter-particle event leaving its domain, (3) a bi-
molecular reaction, (4) unimolecular reaction of molecule A, (5)
a unimolecular reaction of molecule B. The event that actually
takes place is the one with the smallest tentative time. The next
event time for a protective domain with two particles is thus given
by

tpair ¼ minðtR; tr; tbimo; tmono;A; tmono;BÞ: [S25]
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Algorithm outline.The outline of the eGFRD algorithm is given by

1. Initialize: Reset the simulator time (tsim←0). For each particle
in the system, draw a spherical protective domain of appropri-
ate size. When two particles are very close, create a Pair be-
tween them. Otherwise, create a Single object for each of the
particles. Then, for each of the Single and the Pair objects,
draw the next event type and the next event time according
to the formulations in the previous sections, and chronologi-
cally order the events in the scheduler.

2. Step: Pick the next event with the smallest scheduled time t
from the scheduler. Update the simulator time tsim←t. The
next even could either be:

(a) Single event

(a1) If the event is a Single escape event, then (i) propa-
gate the particle to a randomly determined exit point
on the surface of the protective domain; (ii) check if
there are protective domains that are close to the
new position of the particle; (iii) if there are, burst
the neighboring domains, and propagate the parti-
cles in the burst domains to a new position, and
check if the current Single particle can form a Pair
with one of the neighboring particles; (iv) if a Pair is
formed, discard the current Single, determine the
new Pair event time (Eq. S25), and schedule the
new Pair event on the scheduler; and (v) for each
of the particles contained in the stepping Single
or the burst domains that are not used in formation
of the Pair, draw a new domain and schedule a Single
event on the scheduler.

(a2) If the event is Single reaction event, (i) propagate
the particle to a point r within the protective domain
according to the single Green’s function
p1ðr; tsimjrlast; tlastÞ, where tlast is the time the single
was created or the last time it stepped, and rlast is
the position of the particle at tlast; (ii) execute the
reaction by replacing the particle with one or more
of the product particles placed next to each other;
and (iii) for each of the newly created particles, draw
a new protective domain and schedule a single event
on the scheduler.

(b) Pair event

(b1) If the event type is Pair reaction, meaning that the
two particles in the domain react, (i) draw the
new R from pR2 ðR; tsimjRlast; tlastÞ, where Rlast is the
position of R at tlast, which is the time at which
the Pair was formed; (ii) remove particles A and
B of the Pair from the simulator; (iii) place the pro-
duct particle(s) at the new position R; (iv) draw pro-
tective domain(s) around the new particle(s), and
schedule Single event(s) on the scheduler.

(b2) If the event type is r escape, meaning that the inter-
article vector r leaves its protective domain, (i) sam-
ple the new R position as above; (ii) sample the r exit
point from ∂

∂r p
r
2; (iii) determine the new positions

of A and B, rA and rB, by putting the R as calculated
in Eq. S1, and the exit point r on the surface of
the inter-particle protective domain as calculated
in Eq. S2, into Eqs. S9 and S10; (iv) delete the Pair;
(v) create a Single domain and schedule a new single
event on the scheduler for both A and B.

(b3) If the event type is R escape, meaning that the
center-of-mass leaves its domain, (i) sample the
new interparticle vector r with pr2ðr; tsimjrlast; tlastÞ,
where rlast is the interparticle vector at the time
tlast it was last updated; (ii) sample the R exit point
from ∂

∂r p
R
2 ; (iii) displace the particles A and B to the

new positions; (iv) delete the Pair; (v) create two
Singles and schedule them on the scheduler.

(b4) If the event type is Single reaction, (i) burst the pair
domain and update the positions of the particles
A and B by sampling pR2 ðR; tsimjRlast; tlastÞ and
pr2ðr; tsimjrlast; tlastÞ; (ii) execute the reaction of the re-
acting particle according to the same procedures as
used in the Single event; (iii) create a new Single do-
main for the other (non-reacting) particle and sche-
dule it on the scheduler.

3. Go to 2.

It can happen that more than two particles come very close to
each other, making it difficult to draw protective domains of suf-
ficient size around each of the particles (S5); this could bring
the simulations to a standstill. To preempt this scenario, the
algorithm puts one protective domain around the “squeezed”
particles to form a third type of object called “Multi.” The par-
ticles in this domain are propagated according to Brownian
dynamics (S4) until the particles recover from the squeezed
condition. Because it is guaranteed that Brownian dynamics con-
verges to the correct solution when a sufficiently small step size is
used (S4), this squeezing recovery procedure does not affect the
overall accuracy of the simulation.

The actual forms of the single and Pair Green’s functions, ef-
ficient numerical evaluation methods for the Green’s functions,
more details on the algorithm including the recovery procedure
from squeezing, and handling of surfaces will be described in a
forthcoming publication (S1).

Rebinding-time distribution. In this section we present scaling re-
lations for the rebinding-time distributions of two particles that
can diffuse and react with each other in a large compartment.
These results give a mathematical interpretation of the non-
monotonic form of the enzyme-substrate rebinding-time distribu-
tions, shown in Fig. 4A and B of the main text.

The problem is reduced to solving the reaction-diffusion equa-
tion for a random walker that can diffuse in a domain internally
bounded by a sphere of radius σ, and to which it can bind with an
intrinsic rate ka once it is in contact with the sphere. This repre-
sents the evolution of the inter-particle vector r describing the
distance between a substrate molecule and the enzyme molecule
that has just modified it.

The rebinding probability can be obtained from the Green’s
function p2ðr; tjr0; t0Þ. The probability that a particle that starts
at the origin given by jrj ¼ σ returns to the origin at a later time
t, is given by

p2ðσ; tjσ; 0Þ ¼
σ − eDtα2∕σ2

ffiffiffiffiffiffiffiffi
πDt

p
α erfc

�
α

ffiffiffiffi
Dt
σ2

q �

4πσ3
ffiffiffiffiffiffiffiffi
πDt

p ; [S26]

where α ¼ 1þ hσ and erfc is the complementary error func-
tion. If we assume that the enzyme becomes active immediately
after enzyme-substrate dissociation, then, according to Eq. S20,
the rebinding-time probability distribution can be expressed as

p0rebðtÞ ¼ kap2ðσ; tjσ; 0Þ: [S27]

This rebinding-time distribution has a number of properties.
Firstly, the total probability that there is a rebinding is smaller
than one:

Z
∞

0

dtprebðtÞ ¼
1

1þ 4πDσ
ka

< 1. [S28]

Secondly, upon a variable change t ¼ τ σ2

Dð1þka∕ð4πDσÞÞ2, the
rebinding probability distribution can be rescaled as
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prebðτÞ ¼
1

1þ 4πDσ
ka

f ðτÞ; f ðτÞ ¼ ½ 1ffiffiffiffiffi
πτ

p − eτerfcð ffiffiffi
τ

p Þ�: [S29]

The function f ðτÞ has the shape of two power laws f ðτÞ≃ 1ffiffi
τ

p for
τ ≪ 1 and f ðτÞ≃ 1

τ
ffiffi
τ

p for τ ≫ 1, in accordance with the results pre-
sented in Figure 2 of the main text. In fact, we can estimate the
time for the inflection point to be τmol ¼ σ2

Dð1þka∕ð4πDσÞÞ2. Here, τmol

represents the time after which most of the rebindings correspond
to particles that start at contact, but wander away from the reac-
tion sphere before they return to and rebind the reaction sphere.
We stress that these trajectories are rebinding trajectories; we
thus exclude trajectories where particles diffuse in the bulk
and come back in a memory-less fashion (see also below). The
t−1∕2 scaling for t < τmol can be understood by noticing that on
this time scale particles stay close to the surface of the reaction
sphere; indeed, on this time scale the particles essentially see a
flat reaction surface, meaning that the return-time distribution is
that of a 1D random walker as described in the main text. The
t−3∕2 scaling for t > τmol can be understood by observing that on
this time scale the particles have diffused away from the surface
of the sphere; the particles now see the entire sphere, which
means that the rebinding-time distribution is that of a 3D random
walker returning to the origin. Interestingly, τmol depends on ka.
When ka is increased, the probability that a particle binds the
target upon contact increases. Hence, the probability that after
a time t the particle is still performing a 1D random walk close
to the surface, decreases as ka increases—the particle has either
reacted with the surface, or escaped from the surface, thus per-
forming a 3D random walk.

So far we have assumed that upon dissociation, the enzyme and
substrate can rebind as soon as they are in contact again. If, how-
ever, they can only rebind after the enzyme has become active
again, then the rebinding-time distribution is given by

prebðtÞ ¼
Z

t

0

dt0
Z

∞

σ
4πr2drp�2ðr; t0jσ; 0Þkapactðt0Þp2ðσ; t − t0jr; 0Þ;

[S30]

where

pactðtÞ ¼ kacte−kactt [S31]

is the enzyme reactivation distribution with kact ≡ 1∕τrel, and
p�2ðr; tjr0; 0Þ is the solution of the Smoluchowski equation with
a reflecting boundary condition—this reflects the idea that when
the enzyme has not become active yet, the substrate cannot
bind it.

Wheras we do not know an analytical expression for the
rebinding-time distribution of Eq. S30, we can derive a lower
bound pmin

reb ðtÞ and an upper bound pmax
reb ðtÞ for it, such that

pmin
reb ðtÞ ≤ prebðtÞ ≤ pmax

reb ðtÞ. The upper bound pmax
reb ðtÞ is based

on the inequality

p2ðσ; t − t0jr; 0Þ ≤ p2ðσ; t − t0jσ; 0Þ; [S32]

with equality for r ¼ σ. This inequality expresses the fact that the
probability that the particles are in contact at a later time t de-
creases with the initial distance. This yields the upper bound

pmax
reb ðtÞ ¼

Z
t

0

dt0kapactðt0Þp2ðσ; t − t0jσ; 0Þ: [S33]

Using the solution for p2ðσ; t − t0jσ; 0Þ as described in S29 one can
show that for small t the bound increases with t as

ffiffi
t

p
, while for

large t it decreases with t as 1
t
ffi
t

p . The upper bound pmax
reb ðtÞ thus has

a non-monotonic behavior, going to zero at both zero and

infinity. The position of the maximum depends on the two time
scales τrel ¼ 1∕kact and τmol and is located in the inter-
val ½MINðτmol; τrelÞ;MAXðτmol; τrelÞ�.

The lower bound pmin
reb ðtÞ is based on the inequality

p2ðr; tjσ; 0Þ ≤ p�2ðr; tjσ; 0Þ. This reflects the idea that with a radia-
tion boundary condition, the particle can react with the reactive
sphere (and thus leak out of the system), whereas with a reflecting
boundary condition it cannot. This yields the following expression
for the lower bound

pmin
reb ðtÞ ¼

Z
t

0

dt0kapactðt0Þp2ðσ; tjσ; 0Þ; [S34]

¼ ð1 − e−kacttÞkap2ðσ; tjσ; 0Þ; [S35]

¼ sactðtÞp0rebðtÞ; [S36]

where sactðtÞ is the probability that the enzyme is active after time
t and p0rebðtÞ is the enzyme-substrate rebinding-time distribution
assuming that the enzyme is active at all times. This lower bound
has a number of interesting scaling regimes, depending on the
relative values of τrel and τmol. They can be understood intuitively
by making the following observations: as discussed above, for
t < τmol, p0rebðtÞ ∼ t−1∕2, while for t > τmol, p0rebðtÞ ∼ t−3∕2; more-
over, for t ≪ τrel, sactðtÞ ∼ t, while for t ≫ τrel, sactðtÞ → 1. Hence,
for t < MINðτmol; τrelÞ, pmin

reb ðtÞ ∼ t−1∕2 × t ∼ tþ1∕2, while for
t > MAXðτmol; τrelÞ, pmin

reb ðtÞ ∼ t−3∕2. Moreover, when τrel < τmol,
pmin
reb ðtÞ ∼ t−1∕2 for τrel < t < τmol, because sact → 1 and p0rebðtÞ∼
t−1∕2. And in the scenario that τmol < τrel, pmin

reb ðtÞ ∼ t−1∕2 for
τmol < t < τrel, because sact ∼ t and p0rebðtÞ ∼ t−3∕2.

Fig. S2 shows the predictions of the upper bound Eq. S33 and
lower bound Eq. S36 for the rebinding-time distribution given by
Eq. S30, for three different scenarios: (1) τrel ≪ τmol (Blue line);
(2) τrel ≈ τmol (Green line); (3) τrel > τmol (Red line). It is seen that
in all three scenarios the upper and lower bound for prebðtÞ con-
verge for t > τrel. Indeed, in this regime, where the enzyme is ac-
tive, prebðtÞ scales as t−3∕2. It is also observed that when τrel ≤ τmol
(Blue and Green lines), the difference between the upper and
lower bound for prebðtÞ is very small, even when t < τrel. This
implies that both bounds are good approximations for prebðtÞ;
we can thus conclude that, to a good approximation, prebðtÞ scales
as t1∕2 for t < MINðtrel; τmolÞ and t−1∕2 for τrel < t < τmol when
τrel < τmol. The difference between the bounds arises when τrel >
τmol (Red line); in this scenario, the bounds differ in the regime
τmol < t < τrel. The question arises which bound is closer to the
actual rebinding-time distribution, prebðtÞ. To this end, we com-
pare our analytical results with the simulation data, shown
in Fig. S3.

In Fig. S3 we show the simulation results of Fig. 4 of the main
text. When t ≥ τbulk the rebinding-time distribution is exponen-
tial. This is due to particles that come from the bulk, and bind
the reactive sphere in a memory-less fashion. This regime is
not described by the analysis discussed above, which is performed
for the geometry of an infinite, spherical domain internally
bounded by a reactive sphere. For this geometry, in three dimen-
sions, there is a probability that the particle escapes to infinity
without returning to and reacting with the reactive sphere. In
a bounded domain, when a particle escapes from the vicinity
of the reactive sphere into the bulk, it will return to the reactive
sphere on a time scale τbulk. Therefore, the rebinding-time distri-
butions for the infinite domain analyzed above and the finite
domain of the simulations, are the same, but only up to τbulk. This
also means that to observe the different power-law scaling
behaviours, τbulk ≫ MAXðτrel; τmolÞ.

In A of Fig. S3, τrel ≈ τmol, while in panel B τrel ≫ τmol. In both
scenarios prebðtÞ ∼ ðtÞ1∕2 when t < MINðτrel; τmolÞ, in accordance
with the analysis of the upper and lower bounds of prebðtÞ
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presented above. Both panels also show that when
MAXðτmol; τrelÞ < t < τbulk, prebðtÞ ∼ t−3∕2. An interesting regime
is τmol < t < τrel in the case that τrel > τmol (panel B). It is seen
that the simulation results suggest that prebðtÞ ∼ t−1∕2 in this
regime. This is predicted by the lower bound for prebðtÞ, Eq. S36,
but not by the upper bound, Eq. S33 (see Fig. S2). This can be
understood by noting that in this regime, τmol < t < τrel, the
enzyme is mostly still inactive and the particle can thus diffuse
away from the reactive sphere; while the lower bound of Eq. S36
captures this effect, the upper bound of Eq. S33 does not, since it
is based on the inequality p2ðσ; t − t0jr; 0Þ ≤ p2ðσ; t − t0jσ; 0Þ.

The effect of concentration. Fig. S4 shows the input-output relation
as a function of concentration. Here, the concentrations of all
components are increased by the same factor from the base-line
values used in Fig. 5A of the main text. It is seen that both the
particle-based model and the mean-field model predict that an
increase in concentration induces bistability, although the
concentration at which the bifurcation occurs is higher in the
particle-based model.

Fig. S5 elucidates the origin of why an increase in concentra-
tion can induce bistability, both in the mean-field model and the
particle-based model. Bistability arises when a substrate molecule
that has been phosphorylated once, is more likely to be dephos-
phorylated again than to become fully phosphorylated (similarly,
the probability that after a fully phosphorylated molecule has
been dephosphorylated once becomes fully phosphorylated
again, should be higher than that it becomes fully dephosphory-
lated). We therefore plot in Fig. S5 the probability that a substrate
that has just been phosphorylated once, either binds the same
kinase molecule as the one that just phosphorylated it (this is
most likely due to a rebinding event), another kinase molecule
(from the bulk), or a phosphatase molecule (from the bulk);
the system is in a state where most substrate molecules are un-
phosphorylated. It is seen that the fraction of rebindings is fairly
constant. This can be understood as follows: (1) the probability
that a molecule returns to the origin before it looses memory

where it came from is independent of the concentration (see Fig. 2
of the main text)—only the memory-less returns from the bulk
depend on concentration; (2) when a rebinding event happens,
it happens very fast; as Fig. 2 of the main text shows, rebindings
are dominated by events that occur on time scales of t < 1ms.
These time scales are so short, that the probability that an enzyme
molecule from the bulk interferes with a rebinding event, is neg-
ligible, even up to concentrations of 100–1000 times the baseline
value, i.e., 10 − 100μM; only above that concentration can mol-
ecules from the bulk effectively compete with those undergoing a
rebinding trajectory, and will the probability that a dissociated
molecule rebinds drop significantly. Up to a concentration of
10 − 100μM, there is thus an essentially constant probability,
independent of the concentration, that both sites of a substrate
molecule are modified by the same enzyme molecule. Now
bistability can arise when the antagonistic enzyme in the bulk wins
the competition from the agonistic enzyme undergoing the re-
binding event and the other agonistic enzymes in the bulk. Fig. S5
shows that when the concentration is increased, the competition
between the kinase (the agonist) in the bulk and the phosphatase
(antagonist) in the bulk changes in favor of the phosphatase. This
is because the system is in a state where the substrate molecules
are mostly unphosphorylated, and in this state the kinase mole-
cules become increasingly sequestered by the unphosphorylated
substrate molecules as the concentration is increased. This in-
creases the probability that a molecule that has just been phos-
phorylated once, will bind a phosphatase (antagonist), which will
drive it back towards the unphosphorylated state. Increasing the
overall concentration thus changes the competition between the
kinases and the phosphatases in the bulk in such a way that the
driving force towards a state in which the substrate molecules are
either fully unphosphorylated or fully phosphorylated, increases.
In essence, increasing the concentration drives the system deeper
into the bistable regime. This makes it possible to overcome the
effect of rebindings, which tends to drive the system out of the
bistable regime, as shown in Fig. 6 of the main text.
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Fig. S1. Single and Pair objects. To solve the many-body problem exactly, protective domains are put around single particles (A) and pairs of particles (B).
(A) The radius of the protective domain of a single particle is denoted by a. (B) To solve the reaction-diffusion problem of two particles that can react with each
other and diffuse within a protective domain with radiusR, we construct two protective domains: one for the center-of-mass R, with radius aR, and one for the
interparticle vector r, with radius ar . The radii aR and ar can be freely chosen, provided that when R and r would reach their maximum lengths, i.e., when
jRj ¼ aR and jrj ¼ ar , the particles A and B would remain within the protective domain. The latter means that aR and ar should satisfy the following two
constraints: 1) aR þ arDA∕ðDA þ DBÞ < R − σA∕2, which reflects that particle A should remain with the protective domain with radius R; 2)
aR þ arDB∕ðDA þ DBÞ < R − σB∕2, reflecting that B should remain with the protective domain with radiusR. Although aR and ar can be freely chosen provided
that these constraints aremet, an efficient choice is given by a2R∕D2

R ¼ ðar − r0Þ2∕D2
r , meaning that the average time for R to reach the boundary of its domain by

free diffusion, equals that of r. To illustrate the constraints, Panel B shows a scenario where R and r reach their maximum lengths; here, DA ¼ DB.
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Fig. S2. The upper bound Eq. S33 (Dashed lines) and lower bound Eq. S36 (Solid lines) of the rebinding-time distribution, given by Eq. S30, for three different
scenarios: (1) τrel ≪ τmol (Blue lines); τrel ≈ τmol (Green lines); τrel ≫ τmol (Red lines). It is seen that both bounds converge when t > τrel. It is also seen that the
difference between the bounds is rather small when t < τmol. The difference between the upper and lower bounds arises for τmol < t < τrel, when τrel ≫ τmol (Red
lines). This is because in this case the reactive sphere (i.e., enzyme) is mostly still inactive, and the (substrate) particle thus tends to diffuse away from it. This
phenomenon is captured by the lower bound, but not by the upper bound. For a comparison with the simulation results, see Fig. S3.

Fig. S3. The enzyme-substrate association-time distribution of Fig. 4 of the main text, together with the scaling regimes as predicted by the analysis of the
upper and lower bounds for the rebinding-time distribution (see Fig. S2); in Panel A τrel ≈ τmol, while in Panel B τrel ≫ τmol. For t > τbulk, the association-time
distribution is exponential, because on this time scale the particles meet each other at random in the bulk. As predicted by the analysis of the upper and lower
bounds for the rebinding-time distribution (see Fig. S2), the enzyme-substrate association-time distribution scales as t1∕2 for t < MINðτmol; τrelÞ, and as t−3∕2 for
MAXðτmol; τrelÞ < t < τbulk; while the t1∕2 scaling is seen in both panels, the t−3∕2 is only seen in Panel A, because in Panel B τbulk approaches τrel. Panel B shows
that the lower bound Eq. S36 correctly predicts the t−1∕2 scaling for τmol < t < τrel, when τrel ≫ τmol.

Fig. S4. Steady-state input-output relations for different concentrations. The concentrations of all components are increased by the same factor. (A) Baseline
parameter values; the concentrations equal those corresponding to Fig. 5A in the main text: ½K�total ¼ 200nM, ½KK� þ ½P� ¼ 100nM). (B) 3× concentration
(½K�total ¼ 600nM, ½KK� þ ½P� ¼ 300nM), (C) 10× concentration (½K�total ¼ 2μM, ½KK� þ ½P� ¼ 1μM), (D) 100× concentration (½K�total ¼ 20μM, ½KK� þ ½P� ¼ 10μM).
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Fig. S5. The probability that a substrate molecule that has been phosphorylated once will bind the same kinase molecule (Blue), another kinase molecule
(Red) or a phosphatase molecule (Green), for different concentrations; the baseline values correspond to Fig. 5A of the main text and Fig. S4. It is seen that the
fraction of events where the substrate molecule binds the same kinase molecule again is fairly constant, while the fraction of events in which the substrate
molecule binds another kinase molecule strongly drops in favor of those in which the substrate molecule binds a phosphatase molecule, when the concen-
tration is increased by a factor 10 from the baseline value—as shown in Fig. S4, the system now becomes bistable.
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