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SI Text
A Simple Biomechanical Model for Coleochaete. A simple analytical
model (Fig. S1) enables an explicit link between the cell-wall
viscosity coefficient and the radial expansion rate of the speci-
mens (Eq. 1). The viscosity coefficient can in turn be simply es-
timated from experimental growth curve (Fig. 1B) using least
square techniques and be used to perform finite element com-
putations on more complex structures.
Kinematics.Cell expansion and division concern exclusively the first
layer of cells at the periphery of the thallus. Cell size (radial lr and
tangential lt) in this layer is assumed to remain constant. Cell
expansion is assumed to be linear in boundary cells and null for
interior cell. Therefore, velocity field can easily be expressed as a
function of the rate of radial expansion _R and the radial position r

v ¼ _R
�
r−Rþ lr

lr

�
er; r ∈ ½R− lr;R�

v ¼ 0; r<R− lr

8><
>: [S1]

The strain rates on ½R− lr;R� in the radial and tangential di-
rections are _εt ¼ _R=R and _εr ¼ _R=lr .
Tensile forces in cell walls. Strain in cell walls is therefore constant
and depends only on orientation. Therefore, assuming a perfect
viscous material property, it is possible to relate expansion rate of
the specimen to tensile forces in cell walls:

Ft ¼ μSt _R=R

Fr ¼ μSr _R=lr

(
[S2]

where Fr and Ft are the tensile forces in radial and tangential cell
walls, μ is the viscosity coefficient (Pa·s) of the wall, and St and Sr
are cell wall cross-sections in tangential and radial direction. If
radial and tangential cell walls have the same width e, St and Sr are
equal to he. Cell wall cross-section is assumed to remain constant
throughout deformation.
Expansion of the thallus. If the expansion is slow, it is possible to
neglect the forces of inertia, and the forces present in cell walls
must equal the force applied by turgor on cell walls. Projecting the
equilibrium of forces on half the specimen on the vertical axis as
shown in Fig. S1C, it follows that:

2μSt _R=Rþ
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where h is the height of cells in the z direction. From the equi-
librium of forces acting on cell walls, it is possible to derive an
expression of the radial growth of the system:

_R ¼ ðP−P0Þ hRlrlt
ðStlr lt=Rþ SrRÞ μ : [S4]

When the radius becomes large relative to the dimensions of the
cell, and if it is assumed that radial and tangential cell wall have
the same width e (St and Sr are equal to he), the expression of μ
reduces to μ ≈ P:lr lt=ðe _RÞ and can easily be used for the esti-
mation of the viscosity coefficient from experimental data.

Computational Model for Plant Morphogenesis. In this section, we
outline the application of the finite element method for modeling
cellular growth. To obtain a more detailed introduction on the
finite element method, we encourage the reader to refer to
classical structural mechanics textbooks (1).

In the finite element model, cell walls are represented as a
network of 2D beams. Each beam is defined by two nodes denoted
Xi = (Xi1, Xi2) (Fig. S2D). Turgor pressure inside the cells is
converted into external punctual forces applied at each node of
the structure. These punctual forces equal half of the pressure
applied on the incident side walls (Fig. S2A).
This beam structure deforms in reaction to the application of

these external forces, and the finite element method provides a
theoretical basis for determining how single-element behavior
integrates in the global behavior of the structure. The key com-
ponent for describing the behavior of mechanical elements is the
stiffnessmatrixK.Thismatrix is such that themultiplicationofKby
the vector of displacements at the nodes of the element equals the
external forces required to obtain that displacement. If it is
assumed that nodes can only transfer axial forces then we have at a
given time step:

0
BB@

Pi1
Pi2

Pðiþ1Þ1
Pðiþ1Þ2

1
CCA ¼

2
664

μdtS=L 0 − μdtS=L 0
0 0 0 0

− μdtS=L 0 μdtS=L 0
0 0 0 0

3
775
0
BB@

Vi1
Vi2

Vðiþ1Þ1
Vðiþ1Þ2

1
CCA
[S5]

The global behavior of the whole structure is obtained by
“assembling” the global stiffness matrix of the whole structure:0
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To account for bending forces and rotations, which include 3
degrees of freedom per node (longitudinal, transversal, and
rotational displacement), the following element tangential stiff-
ness Ki matrix is used:

Ki ¼ μdt
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The next step of the analysis consists of finding the displacements
Vi at the nodes of the structure when the forces at the nodes are
known (Fig. S2C). This is done by finding the solution of the
problem in Eq. S6, for which various numerical algorithms exist.
Once the displacement at the finite set of nodes of the structure
has been found, it is possible to determine the continuous de-
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formation of the beam using Hermite cubic polynomials. Internal
stresses within the structure can be computed from the displace-
ments Vi using the stress-strain relationship (Fig. S2D). Finally,
the numerical solution discussed above is verified against the
analytical solution presented in Eq. S4 (Fig. S2E). More details on
the Euler Bernoulli method can be found in classical textbooks on
the finite element method (see main text).

Cell Division Model. The biomechanical model for cell growth is
coupled to a cell divisionmodel based on the sensing of cell shape.
The algorithm follows four steps:

1. In the first step, cells are initiated (either at the start of the
simulation or when a cell division occurs) with an intrinsic
limit size. This limit cell area is drawn randomly according
to a uniform distribution (377-856 μm2; cf. Fig. 2 ) or nor-
mally distributed (mean 610 μm2, SD 110 μm2).

2. Cell shape is calculated: the tangential direction is deter-
mined as the vector parallel to the boundary wall, and the
radial direction is the cross-product of the tangential vector
with the z vector. Cell shape (lr and lt) is computed as the
projection of the cell on these two axes. The cell center is
calculated as the center of mass of the cell area.

3. Each cell is tested for cell division: the cell area is compared
with the intrinsic limit area. If the limit is reached, division is
computed according to the model in Eq. 2 and using param-
eters derived from cell division data (a = 0.85, s = 0.055).
The cell division is asymmetric: this appears both from the
fact that the limit between anticlinal and periclinal divisions
is not symmetric in Fig. 2, and the measurement of cell sizes
at the border and inside the thallus. We chose a 2/3:1/3 ratio
because it is required for border cells to have the same size
as interior cells.

4. The next growth increment is computed, and steps 2 and 3
are reiterated.

To compare the distribution of cell size at division with the
result of the simulations, we have transformed the variables
describing the cell shape to remove the correlations that exist
between lr and lt (Fig. 2) (R

2 = 0.25). We chose the cross-section
area A (lr × lt) and the ratio between radial and tangential size R
(lt/lr) as random variables to perform the comparisons. After
transformation, A and R had weak correlations (R2 = 0.04), and
we have used quantile–quantile plots (Q–Q plots) to assess the
differences between experimental and simulated A and R dis-
tributions independently (Fig. S3).

Fig. S1. The geometrical assumptions (A) of the analytical model consist of a perfectly circular colony of radius R, whose cells show constant radial lr and
tangential lt length. The kinematics hypotheses (B) assume that velocity field is only in the radial direction. Interior cells (r < R − lr) are fixed, and a linear
increase (i.e., constant strain rate) in the velocity field is observed for boundary cells until r = R. As a consequence, the velocity field in the whole system is a
function of cell radial length lr and expansion rate dR/dt. The forces (C) which put the system in equilibrium, neglecting dynamic effects, are pressure inside (P)
and outside (P0) the cell, tensile forces in walls in the radial direction (tr), and tensile forces in walls in the tangential direction (tt).
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Fig. S2. Principal steps for the finite element analysis of cellular structures. (A) The structure is decomposed into beam elements defined by pairs of nodes
(Xi,Xj). The mechanical behavior of individual beam elements is defined by their length li, the properties of their sections, and the material properties (e.g.,
viscosity). (B) Turgor pressure is transcribed into punctual forces on the node of the structure. (C) Translational and rotational displacements are the unknowns
of the problem. The stiffness matrix of the structure (e.g., Eq. S6) encodes the relationship between the displacements and the forces required to deform it
accordingly. A numerical algorithm, e.g., scaled gradient conjugate, is used to find the displacements that correspond to the forces applied at the nodes of the
structure. (D) Internal stresses and forces are computed a posteriori using the material properties (stress-strain relationship). (E) The numerical solution (solid
line) is verified against the analytical model (dashed line) described in Eq. S4. Error bars are ±SE from three different simulations where a measure of the radius
is obtained for each cell on the border of the thallus.

Fig. S3. Q–Q plots for the comparison of measured and simulated cell size at division. Comparisons are for the two transformed variables A = lr × lt, and R = lr/lt
when limit cell area is drawn from a uniform distribution and when limit cell area is drawn from a normal distribution.
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