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SI Methods. Systempreparation andmolecular dynamics.Preparation
of the system and subsequent molecular dynamics simulations
were performed with the GROMACS package (version 3.3.1)
(S1), employing the Gromos96 43a1 force field [the Gromos96
43a1 force field was used in previous work on photoactive yellow
protein (PYP)] (S2, S3) in combination with the Simple Point
Charge water model (S4). As a starting point for the folded
pB0 state of PYP, we used the NMR structure of PYP in the dark
state [Protein Data Bank (PDB) entry 3PHY, conformation 11
(S5)] with manual alterations to reflect the different chemical
topology of the chromophore binding pocket [i.e., protonated
para-coumaric acid (pCA) and deprotonated Glu46, and pCA
in cis configuration, obtained from a cryotrapped crystal structure
(PDB entry 1UWP) (S6)]. This structure was placed in a periodic
rhombic dodecahedral box of SPC water (S4). The box size
allowed accommodation of the protein with a minimum solvation
layer of 1.5 nm. Water molecules that resided in the internal hy-
drophobic cavities were removed. Sodium ions replaced six water
molecules to neutralize the charge of −6 on the protein. The sys-
tem was energy minimized by using 200 steps of the conjugate
gradient method and equilibrated to dissipate excess energy
and relax the box volume. After relaxation of the water molecules
and the protein hydrogens for 20 ps, 1 ns of equilibration of
the whole solvated system at constant temperature and pressure
resulted in a diameter of 54.83 Å. Van der Waals interactions
were treated with a cutoff of 1.4 nm, and particle mesh Ewald
handled the electrostatics with a grid spacing of 0.12 nm (S7,
S8). Using the linear constraint solver (LINCS) for interactions
between protein atoms (S9) and the SETTLE algorithm for water
interactions (S10), allowed for a time step of 2 fs. Parameters for
pCA were taken from ref. S11. To keep the temperature constant
in the transition path sampling (TPS) simulations, we used a mod-
ified version of the Andersen thermostat (S12). In subsequent
molecular dynamics (MD) simulations we used the Nosé–Hoover
thermostat (S13, S14) to maintain a constant temperature. All
other settings in these MD simulations were as described above.

TPS. TPS (S15, S16) carries out an unbiased sampling of MD tra-
jectories that connect predefined initial and final states. The tran-
sition path sampling is a random walk through trajectory space,
where new trajectories are generated from old trajectories by a
shooting move algorithm and accepted with a Metropolis rule
(S15, S16). A shooting move consists of choosing randomly a time
frame (the shooting point) of the old trajectory and creating from
it a new trajectory by integrating the equations of motion forward
and/or backward in time by using, e.g., conventional MD. Differ-
ent dynamics and different shooting algorithms require different
acceptance rules, as explained in detail in refs. S16 and S17.
In this work we use the TPS algorithm as previously implemented,
tested, and successfully applied to protein systems (S18, S19).
Acceptance of the new paths governed by a Metropolis rule
depends on the detailed balance condition and includes two
stages. First, the new path must still connect the initial and final
regions. If this is not the case, the acceptance probability
vanishes, and the trial path can be rejected right away. The sec-
ond stage in the acceptance rule comes from the fact that the new
path can and generally will be of different length than the initial
path (S20). At this stage the Metropolis acceptance ratio reduces
to Pacc ¼ minð1; NðoÞ

NðnÞÞ, where the min function returns the smaller
of its arguments. Instead of wasting CPU time by rejecting paths
that do connect initial and final states but are finally too long, we

introduce in the second stage of the acceptance-rejection pro-
cedure a maximum path length Nmax ¼ NðoÞ∕ξ, where ξ is a
random number ∈ ½0; 1�. We determine Nmax in advance and stop
the generation of the new path whenever the instantaneous value
of NðnÞ exceeds Nmax.

In addition to the flexible path length approach (S20), we im-
prove the Monte Carlo acceptance ratio by using a one-way
shooting algorithm (S16). The shooting move starts by randomly
choosing a point on the initial trajectory containing NðoÞ time
slices. The chosen time slice is denoted τ. Drawing a random
number ξ between 0 and 1 determines whether the new trajectory
is generated in a backward or forward direction. ξ > 0.5 selects to
grow a forward trajectory and ξ ≤ 0.5 a backward trajectory, by
reversing the momenta in the chosen time slice. The equations of
motion are then integrated by using Andersen coupled MD (see
below). Because of the stochastic dynamics, we do not have to
change the momentum of the shooting point. During the evolu-
tion of the new path, the instantaneous path length as well as sev-
eral order parameters are monitored. By denoting τf the number
of time slices in the new trajectory initiated from time slice τ, the
length of the new path when shooting forward is NðnÞ ¼ τ þ τf ,
whereas for backward shooting moves the new path length be-
comes NðnÞ ¼ ðNðoÞ − τÞ þ τf . The MD integration ceases when
the path reaches either the initial or the final state.

We use stochastic dynamics by coupling the water molecules in
the system to the Andersen thermostat, with a coupling constant
of p ¼ 0.00031 (S19). This probability corresponds to selecting
roughly one water molecule per time step on average. After
selecting a water molecule, its momenta are randomly drawn
from the Maxwell–Boltzmann distribution, leaving the rotational
motion unchanged, resulting in alteration of the center of
mass motion of the molecule. Compared to simulations using
the Nosé–Hoover thermostat, the diffusion constant of the water
does not change with the choice of the coupling constant p.
Applying the Andersen thermostat ensures that the trajectories
will diverge, even when started from identical initial conditions.
By using a relatively low coupling constant p only changing
momentum of water molecules, the trajectories will closely
resemble true dynamics.

Order parameters. By using various order parameters we aim to
characterize the transitions occurring in the formation of the
PYP signaling state. These order parameters include distances
between various groups and atoms, the number of waters within
a distance from specified residues, rmsd of different parts of
the protein, and hydrogen bond counts within helices and the
chromophore binding pocket. A list of these order parameters
is given in Table S1. These parameters were computed by using
a combination of GROMACS analysis tools and Perl scripts.
Several of these order parameters also describe the initial and
final states in the TPS simulations (Table S2). In the likelihood
maximization (LM) analysis (see below), all 75 parameters are
included as possible candidates for the reaction coordinate.

Sampling the transition path ensembles. A single TPS simulation
allows for sampling only one barrier at the time, because inter-
mediate states will lengthen pathways dramatically. Therefore we
split the process of signaling state formation into four parts, as
indicated in Fig. 1 of the main text: unfolding of the α3-helix
(pB0-Iα), exposure of pCA (Uα-SX ), exposure of glutamic acid
46 (Uα-SE), and exposure of both pCA and Glu46 (SE-pB).

Vreede et al. www.pnas.org/cgi/doi/10.1073/pnas.0908754107 1 of 7

http://www.pnas.org/cgi/doi/10.1073/pnas.0908754107


The definitions of the initial and final states for all four TPS
simulations are listed in Table S2.

Starting a TPS simulation requires an input trajectory connect-
ing the initial state to the final state. For three of the four TPS
simulations we used high temperature unfolding trajectories,
taken from previous replica exchange MD (REMD) simulations
(S21, S22). For the SE-pB transition, we used a high temperature
MD simulation starting from a conformation in the SE state.
Initial TPS simulations served to equilibrate these high tem-
perature trajectories, resulting in suitable room temperature
input pathways.

Initially, the definitions of the stable states originate from the
observations done for REMD simulations of this reaction (S22).
To verify that the definitions of the stable states are sufficient, we
performed several MD simulations initiated with start and end
points of the TPS trajectories. This check also enables a more
thorough characterization of the stable states in the light-induced
unfolding reaction of PYP. The results of the MD simulations
were also used in the Bayesian path statistical analysis (see SI
Results and Discussion).

During the TPS simulations we store the accepted paths, the
rejected paths, and the path statistics. We also store the forward
and backward shooting point configurations and the outcome of
the trajectory (initial or final state) for the LM analysis.

Decorrelation of pathways was monitored by constructing
sampling trees (S19). A path was deemed decorrelated and inde-
pendent from the previous independent path if it had no config-
urations in common. The decorrelation takes more than one
accepted shot because of the one-way nature of the shooting
algorithm. The number of decorrelated pathways is listed in
Table 1 of the main text.

Reaction coordinate analysis. When performing the TPS simula-
tions, we monitor about 75 order parameters. Some of them
are used to determine whether the initial or final state has been
reached. These initial and final state order parameters are chosen
on the basis of the previous REMD simulations (S22) and are not
likely to describe the reaction coordinate (RC) optimally. As fol-
lows from the transition path theory (S23, S24), a good reaction
coordinate must be able to predict the commitment probability
(committor or p-fold) pBðxÞ of a conformation x to the final state;
i.e., the reaction coordinate must be able to describe the progress
of the reaction. This is exactly what the committor pBðxÞ does:
Each value of pBðxÞ gives the probability of reaching the final
state. Committor analysis facilitates judging whether an order
parameter is a good reaction coordinate (S16, S25). However,
this procedure is very expensive from a computational point of
view, to the extent that it easily requires a time comparable with
a whole TPS simulation.

Ma and Dinner employed the concept of the committor to de-
velop a more efficient and systematic procedure for identifying
reaction coordinates on the basis of genetic neural networks
(S26). This approach still requires an extensive committor analy-
sis. Best and Hummer developed a reaction coordinate analysis
technique that combines the equilibrium probability distribution
with path ensemble distributions (S27, S28). The basis is the
following Bayesian relation for the conditional probability
pðTPjrÞ that a configuration with a certain value of reaction
coordinate r lies on a transition path (TP) connecting the initial
and final states:

pðTPjrÞ ¼ pðrjTPÞpðTPÞ
peqðrÞ

: [S1]

Here peqðrÞ denotes the equilibrium distribution as a function
of r, pðrjTPÞ is the distribution of configurations with a certain
r visited along transition pathways in the TPS ensemble, and

the normalizing factor pðTPÞ is the overall likelihood to be on
a TP (S28). The conditional probability pðTPjrÞ is large for r
values that are common to transition pathways but are rarely vis-
ited in equilibrium. Thus, one can identify transition states with
the maximum of pðTPjrÞ or, in other words, with the configura-
tions that have the largest probability that trajectories passing
through them are reactive (S27). For diffusive dynamics
pðTPjrÞ ¼ 2pBðrÞð1 − pBðrÞÞ, where pBðrÞ is the committor
averaged over all configurations with r. For a good reaction co-
ordinate, all transition states—which have a maximum pðTPjrÞ—
should correspond to approximately the same value of the reac-
tion coordinate, and thus pðTPjrÞ should be peaked around the
transition state value of r. When r is a poor reaction coordinate,
pðTPjrÞ will be more or less featureless, because of the lack of
correlation between r and pðTPjrÞ. The Best–Hummer approach
requires a good estimate of the equilibrium distribution in the
transition region, which might be difficult to obtain.

LM analysis. Peters et al. (S29, S30) recently devised a committor
analysis on the basis of a LM estimation that requires only data
from a TPS simulation itself. The basic idea is that each trial shot
in the TPS simulation is a realization of a committor computation
(see below). The LM approach extracts a linear combination of
order parameters that best describes the reaction coordinate r.
Required as input for this procedure is the ensemble ofN forward
(or backward) shooting point configurations xsp belonging to the
accepted trajectories ending in the final state B (xsp → B) and the
rejected shooting points ending in the initial state A (xsp → A).
By using these configurations, the LM optimizes the likelihood

L ¼
Y

xsp→B

pBðrðxspÞÞ
Y

xsp→A

ð1 − pBðrðxspÞÞÞ; [S2]

where the committor pBðrÞ as a function of the reaction coordi-
nate r is modeled by a tanh function (S30):

pBðrðxÞÞ ¼
1

2
þ 1

2
tanhðr½qðxÞ�Þ: [S3]

The reaction coordinate rðxÞ in turn is approximated as a linear
combination of order parameters qðxÞ:

rðqðxÞÞ ¼ ∑
n

i¼1

aiqiðxÞ þ a0: [S4]

The LM analysis method facilitates the screening for many (com-
binations of) order parameters as candidate reaction coordinates.
The LM then gives the linear combination of order parameters
which reproduce the shooting point data best.

For each shooting point in the ensemble we computed all the
parameters listed in Table S1. Employing the LM approach for
the forward and backward shooting point ensembles, we tested
all possible linear combinations of up to three order parameters
and kept the one with the maximum likelihood as our best model
for the reaction coordinate (S30).

According to a Bayesian criterion, adding more variables to the
RC model is significant only if the log-likelihood lnL increases
by at least δLmin ¼ 1

2
lnðNÞ (S29), with N the total number of

shooting points in the ensemble.

Committor calculation. We explicitly computed the committor for
29 configurations that were identified as putative transition states
by the LM analysis for the Iα-Uα transition, with r ∈ ½−0.05; 0.05�.
The committor for a configuration is the fraction of MD trajec-
tories, initialized with random momenta, that reach the final
state. The number of trajectories is determined by the required
accuracy of the committor value (S16). We calculated the
committor with an accuracy of 0.1 with 95% confidence. The
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committor computation typically required 100–500 trajectories
per configuration.

Path density. The path density plots show the fraction of pathways
in the TPS ensemble that pass through the given values of the
order parameters at least once (S19). These plots were prepared
as follows. Each pathway in the ensemble was smoothed by taking
a running average with a window of 100 ps. Next, by discretizing
each of the order parameter intervals in about 30–40 bins, we
constructed for each trajectory in the ensemble a binary matrix,
in which 1 means that the path visits the bin at least once and 0
means no visitations at all. These matrices were subsequently
ensemble-averaged, resulting in the path density maps presented
in Figs. 2 and 3 of the main text and Fig. S3.

Results and Discussion. Bayesian path statistics analysis.As described
above, the Best–Hummer analysis can test the quality of pro-
posed reaction coordinates by computing the pðTPjrÞ fromEq. S1.
We performed this analysis for the pB0-Iα,Uα-SE, andUα-SX tran-
sitions to confirm the results of the LM method. For this analysis
we require both the equilibrium distribution as a function of the
reaction coordinate peqðrÞ and the TP ensemble distribution
pðrjTPÞ. The first can be constructed from the REMD data or,
in the case of pB0-Iα, also from the MD trajectories in pB0.
pðrjTPÞ can be constructed from the trajectories sampled in
the TPS simulation. The pðTPÞ factor is considered an arbitrary
scaling constant.

In Fig. S1 we plot the different distributions for the pB0-Iα tran-
sition. The scaling factor pðTPÞ is chosen such that all distribu-
tions fall within the same range. Fig. S1(a) and (b) show peqðrÞ,
pðrjTPÞ, and pðTPjrÞ for the optimized reaction coordinate
obtained from the LM analysis, r ¼ 5.11 − 16.81 � rmsdα − 4.68 �
dhb2 − 2.55 � dPA (see Table 2 in the main text). Both the MD
and REMD results show a peak at the location of the transition
state r ¼ 0. The spurious peak around r ¼ −2 arises from accu-
mulation of TPS trajectories in the stable states. The main reason
for the additional peak is that the optimized free energy barrier
for this transition is around 4kBT, leading to relatively high peqðrÞ
at the transition state r ¼ 0. Fig. S1(c) and (d) show the three
distributions for the best single order reaction coordinate,
r ¼ 3.89 − 29.1 � rmsdα. Also here a sharp peak occurs at the
transition state value r ¼ 0, although the difference between

the REMD and MD results is slightly larger. Again, spurious
peaks arise from trajectory accumulation in the stable states.
On the basis of this analysis it is hard to conclude which RC is
better. To compare with an arbitrary order parameter we show
in Fig. S1(e) and (f) the distributions for dDK . Here, the distribu-
tions are very broad and there is no clear peak. Thus, the Best–
Hummer analysis agree with the results of the LM method for
pB0-Iα presented in the main text. We note that there are conver-
gence problems with obtaining the equilibrium distribution
from MD and REMD that complicate a proper comparison.
Application of umbrella sampling or other biasing methods
might improve the sampling but require an a priori chosen order
parameter.

Fig. S2 shows the result of a similar analysis for the Uα-SE and
Uα-SX transitions, using only REMD data. Fig. S2(a) shows the
peqðrÞ, pðrjTPÞ, and pðTPjrÞ for the optimized RC r ¼ −2.03þ
2.70 � dXE, as obtained from the LM analysis for the Uα-SE tran-
sition. A peak occurs at the proposed transition state r ¼ 0 but
turns out to be caused by accumulation of the TPS distribution,
and not by a low equilibrium distribution. Again, this effect is
probably caused by poor REMD convergence. The distributions
for the Uα-SX transition are shown in Fig. S2(b) as a function
of r ¼ −5.05þ 5.02 � dXY com − 2.51dXEcom þ 4.30 � dXE, which
according to the LM analysis should be a reasonable RC.
However, the situation is even worse than for the Uα-SE transi-
tion. In this case, there no maximum at the proposed transition
state r ¼ 0, but a minimum instead. Again this effect is due to an
unconverged equilibrium distribution.

The LM analysis does not suffer from unwanted contributions
from the equilibrium distributions because it focuses only on
shooting points on TPs. Hence, the reaction coordinates found
by LM analysis are valid only around the transition state regions.
If we would sample configuration space orthogonal to r ¼ 0,
performing a committor analysis would very likely fail. As stated
in the main text, a full committor analysis would be beyond the
scope of this work.

To complement the figures from the main text, Fig. S3 shows
the path density and the transition state ensembles for the solvent
exposure of Glu46 and pCA. In this figure it is clear that the pre-
dicted transition state ensembles lie close to the predicted rc ¼ 0
line, as they should naturally. Note that the transition state in
both transitions lies close to the initial states in the projections.
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Fig. S1. Best–Hummer analysis of the pB0-Iα transition. The equilibrium distribution peq is obtained from either replica exchange simulations (a, c, and e) or MD
simulations of the pB0 state (b, d, and f). The probability distribution of TPs pðrjTPÞ is obtained from the path ensemble of the pB0-Iα TPS simulation. The
distributions pðTPjrÞ result from applying Eq. S1 and are scaled arbitrarily for clarity. We performed this analysis for three order parameters: (a and b)
the reaction coordinate resulting from the LM analysis, (c and d) the rmsdα, and (e and f) the distance between Asp20 and Lys55 (dDK).

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

-2.03 + 2.70*dXE

0

0.02

0.04

0.06

0.08

pr
ob

ab
ili

ty

p(r|TP)
p

eq
(r)

p(TP|r)Uα - S
E

-5.05 + 5.02*dXY
com

 - 2.51*dXE
com

 + 4.30*dXE

0

0.02

0.04

 Uα - S
X

(b)(a)

Fig. S2. Best–Hummer analysis of the solvent exposure of Glu46 and pCA. The equilibrium distribution peq is obtained from replica exchange simulations. The
probability distribution of TPs pðrTPÞ is obtained from the path ensemble of (a) theUα-SE and (b) theUα-SX TPS simulations. The distributions pðTPjrÞ result from
applying Eq. S1 and are scaled arbitrarily for clarity. We performed this analysis for the reaction coordinates found with the LM analysis.
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Fig. S3. Path density and transition state ensembles of the solvent exposure of Glu46 and pCA. The path density is plotted in (a) the ðdXYcom; dXEÞ plane and
(b) the ðdXYcom; dXEcomÞ plane. The yellow triangles and green squares indicate the transition state ensembles for, respectively, the Uα-SX and the Uα-SE
transitions. The dashed line represents the dividing surface r ¼ 0 for the solvent exposure of pCA. Note that in both cases the dividing surface is rather close
to the initial state Uα.
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Table S1. List of order parameters

Number of waters around
pCA nwX

Tyr42 nwY

Glu46 nwE

Distance between atoms
pCA-O4′ − Tyr42-OH dXY
pCA-O4′ − Glu46-CD dXE
pCA-O1 − Cys69-N dOaC
Glu46-CD − Thr50-OG1 dET
Glu46-CD − Tyr42-OH dYE
Arg52-CZ − Asp97-CG dRD
Lys64-NZ − Thr70-OG1 dKT
pCA-O1 − Asp97-N dOaN
pCA-O4′ − Ile49-N dXI
pCA-O4′ − Thr50-N dXT
pCA-O4′ − Arg52-N dXR
pCA-O4′ − Asp97-N dXN1
pCA-O4′ − Asp97-CG dXN2
Ala44-N − Pro54-CG dPA
Gly47-CA − Arg52-O dGR
Glu46-CD − Asn43-ND2 dEN
Glu46-CD − Gly51-N dEG
Asn43-O − Gly47-H dhb1
Ala44-O − Asp48-H dhb2
Ala45-O − Ile49-H dhb3
Glu46-O − Thr50-H dhb4
Gly47-O − Gly51-H dhb5
Asp20-CG − Lys55-NZ dDK
Asp24-CG − Lys55-NZ dDK2
Glu9-CD − Lys110-NZ dEK
Glu12-CD − Lys110-NZ dEK2
K111-NZ − Glu116-CD dKE
Distance between center of mass of side chains
pCA − Tyr42 dXY com

pCA − Glu46 dXEcom

pCA − Phe62 dXF1com

pCA − Phe96 dXF2com

pCA − Ile49 dXIcom

Lys64 − Thr70 dKT com

Distance between center of mass of groups of residues
13–17 − 114–116 dN − loop
35–37 − 98–101 dloops1
35–37 − 114–116 dloops2
rmsd
11–15 rmsdN1

19–23 rmsdN2

43–51 rmsdα

62–68 rmsdC1

75–86 rmsdC2

111–116 rmsdloop
Dihedral angles in pCA
N-CA-CB-SG dihCACB

CA-CB-SG-C1 dihCBSG

Other
Number of hydrogen bonds in α3 nhb
Cosines of dihedral angles ϕ in α3 ϕ42 − ϕ53

Cosines of dihedral angles ψ in α3 ψ42 − ψ53

The order parameters are sorted according to their type. Atom names used
in the description of the distances between atoms follow PDB nomenclature.
All water molecules within a radius of 3.5 Å around a residue are counted for
the nw order parameters. For the dcom order parameters involving pCA, only
the center of mass of the heavy atoms in the phenol group is used. For the
rmsd order parameters, the rmsd of the indicated region is calculated with
respect to the crystal structure of the receptor state by using Cα positions.
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Table S2. Stable state definitions

pB0-Iα—unfolding of helix α3

OP pB0min pB0max Imin
α Imax

α

nhb 4 5 0 1
rmsdα 0 0.10 0.23 þ∞

Uα-SE—exposure of Glu46
OP Umin

α Umax
α Smin

E Smax
E

nwX 0 3 5 þ∞
dXY com – – 1.0 þ∞
dXY 0 0.35 – –
dYE 0 0.40 0.85 þ∞
dXE 0 0.60 – –
dET 0 0.45 – –
nwE – – 10 þ∞

Uα-SX—exposure of pCA
OP Umin

α Umax
α Smin

X Smax
X

nwX 0 3 10 þ∞
dXY 0 0.35 0.9 þ∞
dYE 0 0.4 – –
dXE 0 0.45 0.9 þ∞
dET 0 0.45 – –

SE-pB—exposure of pCA after exposure of Glu46
OP Smin

E Smax
E pBmin pBmax

nwX 0 5 10 þ∞
dXY com 0 1 – –
dXY – – 0.9 3.5
dYE 0.85 3.0 0.85 3.0
nwE 10 þ∞ 10 þ∞

Order parameters (OP) defining the upper (max) and lower (min) bound-
aries of the stable states for the four TPS simulations. All distances are given
in nanometers. A dash demarks order parameters that are not used to define
a state. þ∞ indicates that there is no upper boundary; all values above a cer-
tain threshold are included as belonging to the state.
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