Supporting Information

McGowan et al. 10.1073/pnas.0911813107

Fig. S1. Metal binding of PfIA-M1 (Open Circle) versus PfA-M17 (Closed Circle) (1). Graph shows relative enzymatic activity (%) against increasing EDTA concentration (M).

1 Maric S, et al. (2009) The M17 leucine aminopeptidase of the malaria parasite *Plasmodium falciparum*: Importance of active site metal ions in the binding of substrates and inhibitors. *Biochemistry* 48(23):5435–5439

PfA-M17_Zn²⁺Zn²⁺

Fig. S2. Stereo diagrams of the active sites of 2.0 Å *Pf*A-M17_Zn²⁺ (*A*) and 2.4 Å *Pf*A-M17_Zn²⁺ (*B*). X-ray crystal structures show the change in active site metals and metal coordination. Carbon atoms of residues are colored by green. Water molecules are shown as yellow spheres. Hydrogen and metal bonds are indicated (*Dashed Lines*). Zinc (Zn) is shown as black spheres, and carbon atom of carbonate ion (CO3) is colored grey.

Fig. S3. Sidechain rotamers of P1/P1' positions of neutral aminopeptidase inhibitors. Carbon and metal atoms of bestatin (A) are colored in cyan (PfA-M1) and green (PfA-M17), and carbon and metal atoms of Co4 (B) are shown in yellow (PfA-M1) and magenta (PfA-M17). Black dashed lines indicate protein-metallo bonds for PfA-M17 and red for PfA-M1.

Table S1. Data Collection and refinement statistics

U<

Data collection	$PfA-M17_Zn^{2+}$	Pf A-M17_Zn ²⁺ Zn ²⁺	PfA-M17-BES	<i>Pf</i> A-M17-Co4
Space Group	P2,2,2	P2,2,2	P2,2,2	P2,2,2
Cell dimensions (Å)	a=173.8, b=176.3, c=222.9,	a=171.7, b=173.7, c=220.3,	a=173.6, b=178.1, c=230.5	a=172.1, b=174.2, c=227.7
Resolution (Å)	57.3 - 2.0 (2.11 - 2.00)	56.1 - 2.4 (2.53 - 2.4)	62.1 - 2.0 (2.11 - 2.0)	78.9 - 2.6 (2.74 - 2.60)
Total number of	11156121	3662103	6476290	2662653
observations				
Number of unique	455194	256048	469417	217885
observations				
Multiplicity	24.5 (24.5)	14.3 (14.6)	13.8 (11.8)	12.2 (12.4)
Data Completeness (%)	100.0 (100.0)	100.0 (100.0)	98.5 (96.6)	99.9 (100.0)
<i i=""></i>	11.1 (2.6)	5.8 (2.4)	11.3 (2.5)	4.1 (2.1)
$R_{_{pim}}(\%)^{\mathrm{b}}$	7.5 (31.0)	10.1 (33.9)	6.9 (29.1)	16.4 (38.4)
Pseudo-translation	42.0% (0.011, 0.000, 0.500)	40.3% (0.012, 0.000, 0.500)	51.1% (0.015, 0.000, 0.500)	39.1% (0.017, 0.000, 0.500)
(vector)				
Structure refinement				
Non hydrogen atoms				
Protein	47964	47946	48146	48161
Solvent (HOH/PEG/SO4)	4744	3585	5747	3323
Metal	12	24	24	24
Ligand	-	-	252	28.8
$R_{\rm free}$ (%)	23.1	24.2	24.2	27.7
R _{crvst} (%)	18.3	17.6	19.2	22.0
Rms deviations from ideality				
Bond lengths (Å)	0.018	0.017	0.018	0.013
Bond angles (°)	1.56	1.71	1.63	1.46
Ramachandran plot				
Favoured (%)	98.3	97.3	98.2	96.7
Allowed (%)	99.9	99.9	99.9	99.8
<i>B</i> factors $(Å^2)$				
Mean main chain	20.3	24.1	16.3	29.0
Mean side chain	23.3	26.4	18.4	30.9
Mean ligand	-	-	28.3	40.5
Mean water molecule	26.1	29.8	24.7	21.5
r.m.s.d. bonded Bs				
Main chain	1.07	1.19	0.66	1.08
Side chain	3.53	4.06	1.98	2.99
aValues in parentheses refer to the	highest resolution shell.			

^bAgreement between intensities of repeated measurements of the same reflections and can be defined as: $\sum (I_{h,i} - \langle I_h \rangle) / \Sigma I_{h,i}$, where $I_{h,i}$ are individual values and $\langle I_h \rangle$ is the mean value of the intensity of reflection h.

Table S2. PfA-M17-ligand interactions

PNAS PNAS

Metal Core:			
Metal position	Bestatin (Mg ²⁺ /Zn ²⁺)	Co4 (Zn ²⁺ /Zn ²⁺)	Type of bond
Loose (1)	Asp ₃₇₉ O _D (r <i>Pf</i> A-M17)	Asp ₃₇₉ O _D (r <i>Pf</i> A-M17)	metal-protein
Loose (1)	Asp ₄₅₉ O _D (r <i>Pf</i> A-M17)	Asp ₄₅₉ O _D (r <i>Pf</i> A-M17)	metal-protein
Loose (1)	Asp ₄₅₉ O (r <i>Pf</i> A-M17)	Asp ₄₅₉ O (r <i>Pf</i> A-M17)	metal-protein
Loose (1)	Glu ₄₆₁ Οε (r <i>Pf</i> A-M17)	Glu ₄₆₁ Οε (r <i>Pf</i> A-M17)	metal-protein
Loose (1)	BES O ₂	Co4 O₃	metal-ligand
Loose (1)	—	Co4 O ₄	metal-ligand
Tight (2)	Lys ₃₇₄ N _z (r <i>Pf</i> A-M17)	Lys ₃₇₄ N _z (r <i>Pf</i> A-M17)	metal-protein
Tight (2)	Asp379 OD (rPfA-M17)	Asp379 OD (rPfA-M17)	metal-protein
Tight (2)	Asp ₃₉₉ O _D (r <i>Pf</i> A-M17)	Asp ₃₉₉ O _D (r <i>Pf</i> A-M17)	metal-protein
Tight (2)	Glu ₄₆₁ Οε (r <i>Pf</i> A-M17)	Glu ₄₆₁ Οε (r <i>Pf</i> A-M17)	metal-protein
Tight (2)	BES O ₂	Co4 O ₄	metal-ligand
Tight (2)	BES N ₂	Co4 N	metal-ligand
Protein-ligand			
<i>Pf</i> A-M17	Bestatin	Co4	Type of bond
Lys ₃₇₄ N _z	BES N ₂ /O ₂	Co4 N/O ₄	H-bond
Lys ₃₈₆ N _z	BES O₃	Co4 O₃	H-bond
Asp379 OD	BES O ₂	—	H-bond
Asp399 OD	BES N ₂	Co4 N	H-bond
Asp ₄₅₉ O _D /O	BES O ₂ /O ₃	Co4 O ₃ /O ₄	H-bond
Glu ₄₆₁ Οε	BES O ₂	Co4 O ₄	H-bond
Thr ₄₈₆ O	BES N ₂	—	H-bond
Leu ₄₈₇ O	BES N ₁	—	H-bond
Gly ₄₈₉ N	BES O ₄	Co4 O ₁	H-bond
CO31002 O2	BES O ₂	Co4 O ₄	H-bond
CO31002 O3	BES N	—	H-bond
WAT HOH	BES O ₄	Co4 O ₁	H-bond
WAT HOH	BES O ₁	—	H-bond
Met ₃₉₂	BES P1 (Phe)	Co4 P1	vdw
Met ₃₉₆	BES P1 (Phe)	Co4 P1	vdw
Phe ₃₉₈	BES P1 (Phe)	Co4 P1	vdw
Asn ₄₅₇	BES P1′ (Leu)	Co4 P1′	vdw
Leu ₄₈₇	BES C ₆	Co4 C ₁₇	vdw
Thr ₄₈₈	_	Co4 C ₁₇	vdw
Gly ₄₈₉	BES P1 (Phe)	Co4 P1	vdw
Leu ₄₉₂	—	Co4 P1	vdw
lle ₅₄₇	BES P1′ (Leu)	—	vdw
Ala ₅₇₇	BES P1 (Phe)	Co4 P1	vdw

Table S3. Kinetic parameters for the hydrolysis of fluorogenic peptide substrates for PfA-M1 (2) and PfA-M17 (3)

	$k_{cat} \times 10^3 (s^{-1})$		K _m (mM)		$k_{cat}/K_m(M^{-1}s^{-1})$	
Enzyme	PfA-M1	<i>Pf</i> A-M17	PfA-M1	<i>Pf</i> A-M17	PfA-M1	PfA-M17
H-Leu-NHMec	1.52	39	329.9	12.12	4607	3218
H-Phe-NHMec	0.18	1.45	194.8	7.92	924	183.1
H-Pro-NHMec	0.0032	0.59	734.4	234.91	4	2.51
H-Ala-NHMec	2.04	0.2	888.9	52.9	2295	3.78
H-Arg-NHMec	1.07	—	717.4	NC	1491	_
H-Gly-NHMec	0.116	—	348.6	NC	333	_
H-Val-NHMec	0.036	—	1068.1	NC	34	_
H-lle-NHMec	0.04	—	1706	NC	23	_
H-Asp-NHMec	_	—	NC	NC	_	_
H-Glu-NHMec	—	—	NC	NC	_	—

NC equals Amino acids not cleaved (even at substrate concentrations of greater than 200 uM).

2 McGowan S et al. (2009) Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase. Proc Natl Acad Sci USA 106(8):2537–2542

3 Stack CM et al. (2007) Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase. A protease involved in amino acid regulation with potential for antimalarial drug development. J Biol Chem 282(3):2069–2080.

Table S4. Comparison of inhibitor interactions with <i>Pf</i> A-M1 (2) and	I
<i>Pf</i> A-M17	

	Bestatin		Co4	
Enzyme	PfA-M17	<i>Pf</i> A-M1 (2)	<i>Pf</i> A-M17	PfA-M1 (2)
K _i (nM)	25 (4)	478.2	13 (4)	79
Metallo-bonds	11	5	12	5
H-bonds	12	7	8	5
vdw interactions	9	7	8	10
BSA (Ų)	44.2	23.8	195.1	62.2

McGowan S et al. (2009) Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase. Proc Natl Acad Sci USA 106(8):2537–2542
Skinner-Adams TS et al. (2007) Identification of phosphinate dipeptide analog inhibitors directed against the Plasmodium falciparum M17 leucine aminopeptidase as lead antimalarial compounds. J Med Chem 50(24):6024–6031.

PNAS PNAS