Supporting Information

Total Synthesis, Assignment of the Relative and Absolute Stereochemistry, and Structural Reassignment of Phostriecin (aka Sultriecin)

Christopher P. Burke, Nadia Haq, and Dale L. Boger*

Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037

Methyl (S)-3-(4-Methoxybenzyloxy)-2-methylpropanoate (S1). A solution of 4methoxybenzyl alcohol (44 g, 320 mmol) in 640 mL of Et₂O under N₂ at room temperature was treated with NaH (60% in oil, 1.3 g, 32 mmol). After stirring for 45 min, the solution was cooled to 0 °C, trichloroacetonitrile (46 g, 320 mmol) was added dropwise, and the mixture was allowed to warm to room temperature. The clear solution turned opaque orange. After 4 h, the mixture was concentrated under reduced pressure, and 124 mL of hexanes mixed with 0.84 mL of methanol was added to the mixture. The brown precipitate was removed by filtration, and the vellow filtrate was concentrated to a syrup and added to a solution of methyl (S)-3-hydroxy-2-methylpropanoate (11) (25 g, 212 mmol) in 1060 mL of CH₂Cl₂. The solution was then treated with (D,L)-10camphorsulfonic acid (4.9 g, 21 mmol) and was stirred overnight. The reaction was quenched with the addition of saturated aqueous NaHCO₃, extracted with CH₂Cl₂, washed with H₂O, saturated aqueous NaCl, dried (Na₂SO₄), and concentrated. The trichloroacetamide solid that formed was removed by filtration with a hexanes wash, and the filtrate was concentrated to give the crude product which was taken to the next step without further purification. Analytically pure material was obtained by flash chromatography (SiO₂, 5% EtOAc/hexanes) providing the product as a colorless oil: ¹H NMR (CDCl₃, 500 MHz) δ 7.26–7.22 (m, 2H), 6.89–6.85 (m, 2H), 4.48–4.42 (m, 2H), 3.80 (s, 3H), 3.69 (s, 3H), 3.63 (dd, J = 9.0, 7.5 Hz, 1H), 3.46 (dd, J = 9.0, 6.0 Hz, 1H), 2.81–2.72, (m, 1H), 1.17 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 175.2, 159.1, 130.2, 129.1, 113.7, 72.7, 71.6, 55.2, 51.6, 40.1, 13.9.

HO

Ŵе

(S)-3-(4-Methoxybenzyloxy)-2-methylpropanol (12). A solution of methyl (S)-3-(4-methoxybenzyloxy)-2-methylpropanoate (S1) (from previous reaction, 212 mmol) in 120 mL of Et₂O was added slowly to a stirred suspension of lithium aluminum hydride (21.9 g, 577 mmol) in 940 mL of Et₂O at 0 °C under N₂. After 1 h, the reaction mixture was allowed to warm to room temperature and the mixture was stirred overnight. The solution was cooled to 0 °C and quenched by sequential *slow* addition of H₂O (20 mL), 15% aqueous NaOH (20 mL), and H₂O (60 mL). After allowing the mixture to warm to room temperature, the white solid was removed by filtration while washing with Et₂O. The filtrate was washed with saturated aqueous NaCl, dried (Na₂SO₄), and concentrated. The crude product was distilled (bp 130–133 °C @ 1.4 mm Hg, however all material

collected from 130–145 °C is usable in the next step) to give 40.3 g (91%, 2 steps) of **12** as a colorless oil: ¹H NMR (CDCl₃, 400 MHz) δ 7.23–7.18 (m, 2H), 6.87–6.83 (m, 2H), 4.42 (s, 2H), 3.78 (s, 3H), 3.61–3.53 (m, 2H), 3.50 (dd, J = 8.8, 4.8 Hz, 1H), 3.36 (dd, J = 8.8, 8.4 Hz, 1H), 2.35 (brs, 1H), 2.08–1.90 (m, 1H), 0.84 (d, J = 7.2 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz) δ 159.3, 130.1, 129.2, 113.8, 75.2, 73.0, 68.0, 55.3, 35.5, 13.5; IR (film) v_{max} 3406, 1511, 1243, 1031 cm⁻¹.

(*S*)-3-(4-Methoxybenzyloxy)-2-methylpropanal (S2). Oxalyl chloride (12.0 g, 94.5 mmol) was added slowly to a solution of DMSO (15.0 g, 191 mmol) in 224 mL of CH₂Cl₂ at -78 °C under N₂. After 20 min, **12** (10.0 g, 47.2 mmol) in 25 mL of CH₂Cl₂ was added slowly to the reaction mixture. After stirring for 20 min, 40 mL of Et₃N was slowly added, and the reaction mixture was allowed to warm to 0 °C over 1.5 h. The mixture was stirred at 0 °C for 15 min, quenched with the addition of saturated aqueous NH₄Cl, and extracted with Et₂O. The combined organic phases were washed with saturated aqueous NH₄Cl, H₂O, saturated aqueous NaCl, dried (Na₂SO₄), and concentrated to give the crude aldehyde as a yellow oil which was used immediately in the next step without further purification: ¹H NMR (CDCl₃, 500 MHz) δ 9.71 (dd, *J* = 1.5, 1.0 Hz, 1H), 7.25–7.21 (m, 2H), 6.90–6.85 (m, 2H), 4.43 (s, 2H), 3.80 (s, 3H), 3.65(ddd, *J* = 9.5, 6.5, 1.0 Hz, 1H), 3.60 (ddd, *J* = 9.5, 5.5, 1.0 Hz, 1H), 2.64 (m, 1H), 1.12 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 203.8, 159.2, 129.9, 129.1, 113.7, 72.8, 69.7, 55.2, 46.7, 10.6.

(2*S*,*S*)-1-(4-Methoxybenzyloxy)-2-methylhex-5-en-3-ol (13).¹ A mixture of (–)-*B*methoxydiisopinocampheylborane (33.2 g, 105 mmol) in 170 mL of Et₂O at –78 °C in a three-necked flask under N₂ was slowly treated with allylmagnesium bromide (1.0 M in Et₂O, 75 mL, 75 mmol). After stirring for 15 min at –78 °C, the cooling bath was removed, and the mixture was stirred for 1 h at room temperature during which time a white precipitate formed. The suspension was cooled to –100 °C (liquid N₂/EtOH bath), and (*S*)-3-(4-methoxybenzyloxy)-2-methylpropanal (**S**2) (from previous reaction, 47.2 mmol) in 80 mL of Et₂O (cooled to –78 °C) was added dropwise down the side of the reaction flask over 2 h via a jacketed addition funnel cooled to –78 °C (note: it is *critical* that the aldehyde solution is *COLD* when it hits the allyldiisopinocampheyl borane solution. It is therefore important to cool the aldehyde solution and add it dropwise *slowly* down the side of the flask). After addition of the aldehyde was complete, the reaction mixture was stirred for an additional 1 h at –78 °C before being quenched by the careful addition of MeOH (326 mL) followed by 3 N NaOH (30 mL) and 35% H₂O₂ (15

¹ (a) Racherla, U. S.; Brown, H. C. *J. Org. Chem.* **1991**, *56*, 401. (b) Nicolaou, K. C.; Patron, A. P.; Ajito, K.; Richter, P. K.; Khatuya, H.; Bertinato, P.; Miller, R. A.; Tomaszewski, M. J. *Chem. Eur. J.* **1996**, *2*, 847.

mL, exothermic). The mixture was stirred overnight at room temperature before saturated aqueous Na₂S₂O₃ (200 mL) was added. The mixture was diluted with Et₂O, and the phases were separated. The aqueous phase was extracted with Et₂O, and the combined organic phases were washed with saturated aqueous Na₂S₂O₃, H₂O, saturated aqueous NaCl, dried (Na₂SO₄), filtered, and concentrated. The crude syrup was then distilled under reduced pressure to remove most of the isopinocampheol by-product (bp 68–72 °C @ 3 mm Hg). The remaining oil was purified by flash chromatography (SiO₂, 5–40% EtOAc/hexanes gradient) to yield **13** as an oil and as a ~14:1 mixture of syn/anti diastereomers that contained some isopinocampheol. This mixture was used directly in the next step. For **13**: ¹H NMR (C₆D₆, 400 MHz) δ 7.15–7.10 (m, 2H), 6.80–6.74 (m, 2H), 5.87–5.75 (m, 1H), 5.08–4.98 (m, 2H), 4.22 (s, 2H), 3.81–3.76 (m, 1H), 3.38–3.24 (m, 2H), 3.28 (s, 3H), 2.28–2.17 (m, 1H), 2.12–2.03 (m, 2H), 1.82–1.68 (m, 1H), 0.93 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (C₆D₆, 125 MHz) δ 159.9, 136.2, 131.0, 129.6, 117.0, 114.3, 74.4, 73.3, 72.9, 54.9, 39.8, 38.3, 11.1; HRMS (ESI-TOF) calcd for C₁₅H₂₂O₃ + Na⁺ 273.1461; found 273.1461.

(25,35)-3-(1-Ethoxyethoxy)-1-(4-methoxybenzyloxy)-2-methylhex-5-ene (14). А solution of 13 (from previous reaction, 47.2 mmol) in 470 mL of anhydrous CH₂Cl₂ under N₂ was treated with ethyl vinyl ether (51 g, 710 mmol) and PPTS (1.8 g, 7.1 mmol) at 25 °C. After 2 h, the reaction was guenched with the addition of saturated aqueous NaHCO₃, and the mixture was extracted with CH_2Cl_2 . The combined organic phases were washed with H₂O, saturated aqueous NaCl, dried (Na₂SO₄), and concentrated. The crude product was isolated as a yellow oil along with the ethoxyethyl acetal of isopinocampheol and was used directly in the next reaction without further purification. Analytically pure material was obtained by flash chromatography (SiO₂, 5% EtOAc/hexanes) as a mixture of acetal isomers: $\left[\alpha\right]_{D}^{22} - 2.8$ (c 1.8, CH₂Cl₂); ¹H NMR (C₆D₆, 500 MHz) δ 7.26–7.18 (m, 4H), 6.82–6.76 (m, 4H), 5.91–5.81 (m, 1H), 5.79–5.69 (m, 1H), 5.10–4.97 (m, 4H), 4.66 (q, J = 5.5 Hz, 1H), 4.64 (q, J = 5.5 Hz, 1H), 4.42–4.27 (m, 4H), 3.88 (ddd, J = 3.5, 6.5, 9.5 Hz, 1H), 3.83 (ddd, J = 3.5, 6.0, 8.0 Hz, 1H), 3.59 (dd, J = 9.0, 7.0 Hz, 1H), 3.54-3.46 (m, 2H), 3.42 (dd, J = 9.0, 7.5 Hz, 1H), 3.39-3.31(m, 3H), 3.29 (s, 6 H), 3.23 (dd, J = 9.0, 5.5 Hz, 1H), 2.55–2.48 (m, 1H), 2.39–2.29 (m, 2H), 2.28–2.18 (m, 1H), 2.12–2.00 (m, 1H), 1.26 (d, J = 5.5 Hz, 3H), 1.25 (d, J = 5.5 Hz, 3H), 1.12 (t, J = 7.0 Hz, 3H), 1.11 (t, J = 7.0 Hz, 3H), 1.07 (d, J = 7.0 Hz, 3H), 0.96 (d, J = 7.0 Hz, 3H); ¹³C NMR (C₆D₆, 125 MHz) δ 159.7, 159.6, 136.0, 135.7, 131.4, 131.2 129.5, 129.3, 116.7, 116.4, 114.06, 114.03, 100.6, 99.0, 76.6, 75.6, 72.9, 72.4, 60.5, 60.1, 54.8, 54.7, 37.7, 37.3, 37.0, 36.7, 20.9, 20.6, 15.7, 15.6, 11.8, 11.2; IR (film) v_{max} 1512, 1248, 1087 cm⁻¹; HRMS (ESI-TOF) calcd for $C_{19}H_{30}O_4 + Na^+$ 345.2036; found 345.2020.

(35,45)-3-(1-Ethoxyethoxy)-5-(4-methoxybenzyloxy)-4-methylpentanal (15). А solution of 14 (all from previous reaction, 47.2 mmol) in THF/H₂O (2:1, 2430 mL) was treated with 2.5 wt% OsO₄ in t-BuOH (12.3 mL, 0.98 mmol), N-methylmorpholine Noxide (22.1 g, 189 mmol) and NaIO₄ (40.4 g, 189 mmol) sequentially. A white precipitate formed within a few minutes, and the mixture was stirred for 18 h. The white precipitate was removed by filtration. Saturated aqueous Na₂S₂O₃ (300 mL) was added to the filtrate, and the mixture was stirred until it turned brown/black. The mixture was extracted with Et₂O, and the combined organic phases were washed with H₂O, saturated aqueous NaCl, dried (Na₂SO₄), and concentrated. The crude product was purified by flash chromatography (SiO₂, 5-10% EtOAc/hexanes gradient; the ethoxyethyl acetal of isopinocampheol is readily separated at this stage) to yield 11.24 g (73%, 4 steps; the yield typically ranges from 42-73%) of 15 as a pale yellow oil as a mixture of acetal isomers: $[\alpha]^{22}_{D}$ – 3.8 (c 0.68, CH₂Cl₂); ¹H NMR (C₆D₆, 400 MHz) δ 9.62 (dd, J = 2.8, 1.6) Hz, 1H), 9.44 (dd, J = 2.4, 2.0 Hz, 1H), 7.24–7.17 (m, 4H), 6.83–6.77 (m, 4H), 4.60 (q, J = 5.2 Hz, 1H), 4.54 (q, J = 5.2 Hz, 1H), 4.32–4.22 (m, 4H), 4.22–4.15 (m, 2H), 3.49–3.40 (m, 2H), 3.33-3.17 (m, 5H), 3.29 (s, 6H), 3.14 (dd, J = 9.2, 5.6 Hz, 1H), 2.53 (ddd, J = 9.2, 5.6 Hz, 2H), 2.53 (ddd, J = 9.2, 5.6 Hz, 2H), 2H, 2H), 2H 16.0, 7.6, 2.8 Hz, 1H), 2.34 (ddd, J = 16.8, 6.8, 2.4 Hz, 1H), 2.17 (ddd, J = 10.4, 4.8, 1.6 Hz, 1H), 2.13 (ddd, J = 10.8, 5.2, 1.6 Hz, 1H), 1.97–1.75 (m, 2H), 1.17 (d, J = 5.2 Hz, 3H), 1.15 (d, J = 5.2 Hz, 3H), 1.07 (t, J = 6.8 Hz, 3H), 1.06 (t, J = 7.2 Hz, 3H), 0.93 (d, J = 7.2 Hz, 3H), 0.81 (d, J = 6.8 Hz, 3H); ¹³C NMR (C₆D₆, 125 MHz) δ 200.4, 200.0, 159.8, 159.7, 131.2, 131.0, 129.6, 129.4, 114.10, 114.07, 100.9, 99.4, 73.2, 72.89, 72.88, 72.1, 71.7, 60.8, 60.2, 54.79, 54.77, 47.6, 47.1, 38.7, 38.4, 20.6, 20.3, 15.5, 15.4, 12.7, 12.0; IR (film) v_{max} 1723, 1612, 1513, 1248, 1087 cm⁻¹; HRMS (ESI-TOF) calcd for $C_{18}H_{28}O_5 + Na^+ 347.1829$; found 347.1831.

1-(((2S,3S)-6,6-Dibromo-3-(1-ethoxyethoxy)-2-methylhex-5-enyloxy)methyl)-4-

methoxybenzene (16). Triphenylphosphine (17.3 g, 66.3 mmol) was added to a solution of CBr₄ (11.0 g, 33.1 mmol) in CH₂Cl₂ (138 mL) at 0 °C. After stirring for 15 min, **15** (6.50 g, 20.0 mmol) in 51 mL of CH₂Cl₂ was added. After stirring for 10 min, the mixture was concentrated under reduced pressure, and the resulting sludge was triturated repeatedly with hexanes. The combined hexanes mixture was concentrated, and the residue was purified by flash chromatography (SiO₂ pretreated with 2% Et₃N/hexanes, 5–20% EtOAc/hexanes gradient) to give 6.80 g (71%) of **16** as a mixture of acetal isomers as a yellow oil and 0.32 g (4%) of (2*S*,3*S*)-6,6-dibromo-1-(4-methoxybenzyloxy)-2-methylhex-5-en-3-ol, which could be reprotected with ethylvinyl ether and PPTS. For **16**: $[\alpha]^{25}_{D}$ – 5.8 (*c* 0.99, CHCl₃); ¹H NMR (C₆D₆, 500 MHz) δ 7.24–7.17 m (4H), 6.83–

6.77 (m, 4H) 6.52 (t, J = 7.0 Hz, 1H), 6.25 (t, J = 7.0 Hz, 1H), 4.56–4.49 (m, 2H), 4.35–4.22 (m, 4H) 3.72 (td, J = 6.5, 4.5 Hz, 1H), 3.76 (td, J = 6.5, 4.0 Hz, 1H), 3.46–3.32 (m, 3H), 3.30 (s, 6H), 3.30–3.21 (m, 4H), 3.15 (dd, J = 5.5, 9.0 Hz, 1H), 2.38–2.10 (m, 4H), 1.86–1.80 (m, 1H), 1.80–1.73 (m, 1H), 1.95 (d, J = 5.5 Hz, 3H), 1.18 (d, J = 5.0 Hz, 3H), 1.11 (t, J = 7.0 Hz, 3H), 1.09 (t, J = 7.0 Hz, 3H), 1.01 (d, J = 7.0 Hz, 3H), 0.88 (t, J = 7.0 Hz, 3H); ¹³C NMR (C₆D₆, 125 MHz) δ 159.8, 159.7, 136.9, 136.1, 131.2, 131.0, 129.6, 129.4, 114.11, 114.08, 100.9, 99.0, 90.1, 89.5, 75.8, 74.2, 73.0, 72.4, 71.9, 60.7, 60.4, 54.79, 54.77, 37.84, 37.79, 37.1, 36.0, 20.8, 20.4, 15.7, 15.6, 12.4, 11.8; IR (film) ν_{max} 1512, 1245, 1081, 1032 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₉H₂₈Br₂O₄ + Na⁺ 501.0246; found 501.0236.

1-(((2S,3S)-3-(1-Ethoxyethoxy)-2-methylhex-5-ynyloxy)methyl)-4-methoxybenzene

(10). n-BuLi (2.4 M in hexanes, 15.4 mL, 37.0 mmol) was added to a solution of 16 (8.12 g, 16.9 mmol) in 96 mL of THF at -78 °C. After stirring for 1 h, the solution was allowed to warm gradually to room temperature and was stirred overnight. H₂O was then slowly added and the phases were separated. The aqueous phase was extracted with Et₂O, and the combined organic phases were washed with saturated aqueous NaCl, dried (Na_2SO_4) , and concentrated. The residue was purified by flash chromatography (SiO_2) pretreated with 2% Et₃N/hexanes, 5-10% EtOAc/hexanes gradient) giving 5.03 g (93%) of **10** as a colorless oil and as a mixture of acetal isomers: $[\alpha]^{25}_{D}$ +0.91 (c 0.55, CHCl₃); ¹H NMR (C₆D₆, 500 MHz) δ 7.24–7.16 (m, 4H), 6.81–6.75 (m, 4H), 4.69 (q, J = 5.0 Hz, 1H), 4.54 (g, J = 5.0 Hz, 1H), 4.36-4.23 (m, 4H), 4.03 (ddd, J = 7.5, 6.0, 4.0 Hz, 1H), 3.93 (ddd, J = 8.5, 5.0, 3.5 Hz, 1H), 3.52-3.22 (m, 8H), 3.31 (s, 6H), 2.60 (ddd, J = 16.5, 5.0, 3.5 Hz, 1H), 3.52-3.22 (m, 8H), 3.31 (s, 6H), 3.60 (ddd, J = 16.5, 5.0, 3.5 Hz, 1H), 3.52-3.22 (m, 8H), 3.31 (s, 6H), 3.60 (ddd, J = 16.5, 5.0, 3.5 Hz, 1H)5.0, 2.5 Hz, 1H), 2.47 (ddd, J = 16.5, 8.5, 2.5 Hz, 1H), 2.43–2.35 (m, 1H), 2.40 (ddd, J =16.5, 6.0, 2.5 Hz, 1H), 2.33–2.26 (m, 1H), 2.30 (ddd, 16.5, 7.5, 3.0 Hz, 1H), 1.78–1.75 (m, 2H), 1.24 (d, J = 5 Hz, 3H), 1.17 (d, J = 5.0 Hz, 1H), 1.07 (t, J = 7.0 Hz, 3H), 1.05 (t, J = 7.0 Hz, 3H), 1.01 (d, J = 7.0 Hz, 1H), 0.94 (d, J = 7.0 Hz, 3H); ¹³C NMR (C₆D₆, 125) MHz) δ 159.7, 159.6, 131.3, 131.1, 129.5, 129.3, 114.1, 114.0, 101.2, 99.3, 81.8, 81.7, 75.6, 74.1, 72.81, 72.80, 72.6, 72.2, 70.4, 70.3, 61.0, 60.3, 54.78, 54.76, 37.3, 36.4, 23.1, 22.5, 20.9, 20.4, 15.59, 1.56, 11.5, 10.8; IR (film) v_{max} 3292, 1512, 1245 cm⁻¹; HRMS (ESI-TOF) calcd for $C_{19}H_{28}O_4 + Na^+ 343.188$; found 343.187.

(5S,6S)-5-(1-Ethoxyethoxy)-1-(furan-2-yl)-7-(4-methoxybenzyloxy)-6-methylhept-2yn-1-one (17). 2-Furoyl chloride (1.2 g, 9.5 mmol), Pd(PPh₃)₂Cl₂ (0.011 g, 0.015 mmol), and CuI (0.012 g, 0.065 mmol) were added to a stirred solution of 10 (2.40 g, 7.51 mmol)

in Et₃N (12 mL) under N₂ at room temperature. The mixture was stirred for 24 h before being diluted with Et₂O and filtered. The filtrate was concentrated, and the residue was purified by flash chromatography (SiO₂ pretreated with 2% Et₃N/hexanes, 10-20% EtOAc/hexanes gradient) to give 2.65 g (85%) of 17 as a yellow oil and as a mixture of acetal isomers: $[\alpha]_{D}^{25} - 7.2$ (c 0.12, CHCl₃); ¹H NMR (C₆D₆, 400 MHz) δ 7.25–7.17 (m, 4H), 7.12 (t, J = 1.2 Hz, 1H), 7.11 (t, J = 1.2 Hz, 1H), 6.84–6.82 (m, 2H), 6.82–6.77 (m, 4H), 5.79–5.76 (m, 2H), 4.74 (q, J = 5.2 Hz, 1H), 4.52 (q, J = 5.2 Hz, 1H), 4.35–4.21 (m 4H), 4.02 (td, J = 6.4, 4.0 Hz, 1H), 3.93–3.87 (m, 1H), 3.50–3.18 (m, 8H), 3.29 (s, 6H), 2.71 (dd, J = 17.4, 5.0 Hz, 1H), 2.55 (dd, J = 17.4, 7.8 Hz, 1H), 2.45 (dd, J = 17.4, 5.8 Hz, 1H), 2.35 (dd, J = 17.4, 6.6 Hz, 1H), 2.30–2.14 (m, 2H), 1.24 (d, J = 5.2 Hz, 3H), 1.17 (d, J = 5.2 Hz, 3H), 1.07 (t, J = 7.2 Hz, 3H), 1.06 (t, J = 7.2 Hz, 3H), 0.98 (d, J = 7.2Hz, 3H), 0.09 (d, J = 6.8 Hz, 3H); ¹³C NMR (C₆D₆, 125 MHz) δ 164.5, 164.4, 159.8, 159.7, 154.1, 147.21, 147.20, 131.1, 131.0, 129.6, 129.4, 119.7, 119.6, 114.11, 114.09, 112.29, 112.25, 101.4, 99.4, 91.8, 91.7, 81.23, 81.17, 75.5, 73.4, 72.9, 72.8, 72.2, 71.8, 61.0, 60.4, 54.8, 37.8, 37.0, 23.7, 23.1, 20.7, 20.3, 15.6, 11.9, 11.2; IR (film) v_{max} 2209, 1634, 1461, 1013 cm⁻¹; HRMS (ESI-TOF) calcd for $C_{24}H_{30}O_6 + Na^+ 437.1934$; found 437.1951.

(1S,5S,6S)-5-(1-Ethoxyethoxy)-1-(furan-2-yl)-7-(4-methoxybenzyloxy)-6-methylhept-2-yn-1-ol (S3). BH₃-Me₂S (2.0 M in THF, 8.5 mL, 17 mmol) was added dropwise over 15 min to a stirred solution of 17 (1.37 g, 3.31 mmol), methyl (R)-CBS-oxazaborolidine (1.0 M in toluene, 8.5 mL, 8.5 mmol), and powdered 4 Å molecular sieves (0.31 g) in THF (16.5 mL) at -40 °C. The mixture was stirred for 3 h at -40 °C before being warmed to 0 °C, and then MeOH (14 mL) was slowly added. The mixture was slowly warmed to room temperature and concentrated. The residue was purified by flash chromatography (SiO₂ pretreated with 2% Et₃N/hexanes, 10-20% EtOAc/hexanes gradient) to give a mixture of the product and residual CBS reagent as a colorless oil and as a mixture of acetal isomers which was taken to the next step without further purification. Analytically pure material was obtained as a mixture of acetal isomers by repetitive chromatography: $[\alpha]^{25}_{D}$ –2.3 (c 1.3, CHCl₃); ¹H NMR (C₆D₆, 500 MHz) δ 7.26–7.18 (m, 4H), 7.05–7.02 (m, 2H), 6.82–6.76 (m, 4H), 6.40–6.36 (m, 2H), 6.02–6.00 (m, 2H), 5.38-5.35 (m, 2H), 4.74 (q, J = 5.0 Hz, 1H), 4.56 (q, J = 5.0 Hz, 1H), 4.37-4.25(m, 4H), 4.05 (ddd, J = 7.0, 5.5, 4.0 Hz, 1H), 3.94 (ddd, J = 8.5, 5.0, 3.5 Hz, 1H), 3.54– 3.23 (m, 8H), 3.03 (s, 6H), 2.71 (ddd, J = 17, 5.0, 2.0 Hz, 1H), 2.53 (ddd, J = 17, 8.5, 2.5 Hz, 1H), 2.47 (ddd, J = 16.5, 5.5, 2.0 Hz, 1H), 2.42–2.26 (m, 2H), 2.37 (ddd, J = 16.5, 7.0, 2.0 Hz, 1H), 1.26 (d, J = 5.0 Hz, 3H), 1.19 (d, J = 5.0 Hz, 3H), 1.09 (t, J = 7.0 Hz, 3H), 1.08 (t, J = 7.0 Hz, 3H), 1.03 (d, J = 7.0 Hz, 3H), 0.95 (d, J = 7.0 Hz, 3H); ¹³C NMR (C₆D₆, 125 MHz) δ 159.8, 159.7, 154.80, 154.75, 142.6, 131.3, 131.1, 129.6, 129.4, 114.10, 114.08, 110.50, 110.48, 107.4, 101.3, 99.3, 83.5, 83.4, 80.55, 80.51, 75.8, 74.1, 72.84, 72.81, 72.6, 72.1, 60.9, 60.4, 58.6, 54.80, 54.78, 37.4, 36.6, 23.4, 22.9, 20.9, 20.4,

15.60, 15.59, 11.6, 11.0; IR (film) ν_{max} 3397, 1512, 1246, 1007 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₄H₃₂O₆ + Na⁺ 439.2091; found 439.2073.

(1S,5S,6S,E)-5-(1-Ethoxyethyloxy)-1-(furan-2-yl)-7-(4-methoxybenzyloxy)-6methylhept-2-en-1-ol (18). A LiAlH₄ solution (1.0 M in THF, 9.9 mL, 9.9 mmol) was added slowly to a solution of (1S,5S,6S)-5-(1-ethoxyethoxy)-1-(furan-2-yl)-7-(4methoxybenzyloxy)-6-methylhept-2-yn-1-ol (S3) (from previous reaction, 3.3 mmol) in 22 mL of THF at 0 °C with stirring. The mixture was allowed to warm to room temperature and was stirred for 24 h at room temperature. The solution was cooled to 0 °C, and the reaction was guenched by slow addition of H₂O, and the mixture was extracted with EtOAc. The combined organic phases were dried (Na₂SO₄), concentrated, and purified by flash chromatography (SiO₂ pretreated with 2% Et₃N/hexanes, 20–50% EtOAc/hexanes gradient) to give 1.16 g (84%, 2 steps) of 18 as a colorless oil as a mixture of acetal isomers: $\left[\alpha\right]^{25}_{D}$ +16 (c 0.30, CHCl₃); ¹H NMR (C₆D₆, 500 MHz) δ 7.26-7.18 (m, 4H), 7.07-7.05 (m, 2H), 6.82-6.78 (m, 4H), 6.13-6.10 (m, 2H), 6.06-6.03 (m, 2H), 5.85-5.64 (m, 4H), 5.03 (d, J = 5.5 Hz, 1H), 5.00 (d, J = 5.0 Hz, 1H), 4.64 (q, J= 5.0 Hz, 1H), 4.62 (q, J = 5.5 Hz, 1H), 4.40–4.26 (m, 4H), 3.85 (td, J = 6.5, 3.5 Hz, 1H), 3.79 (ddd, J = 9.5, 6.0, 3.5 Hz, 2H), 3.58 (dd, J = 9.0, 7.0 Hz, 1H), 3.54-3.46 (m, 2H),3.40 (dd, J = 9.0, 7.5 Hz, 1H), 3.37-3.30 (m, 3H), 3.30 (s, 6H), 3.20 (dd, J = 9.0, 5.5 Hz)1H), 2.45 (td, J = 14.0, 6.0 Hz, 1H), 2.34–2.25 (m, 2H), 2.22–2.16 (m 1H), 2.10–1.98 (m, 2H), 1.65-1.52 (m, 2H), 1.24 (d, J = 5.5 Hz, 3H), 1.24 (d, J = 5.0 Hz, 3H), 1.12 (t, J = 7.0Hz, 3H), 1.11 (t, J = 7.0 Hz, 3H), 1.06 (d, J = 7.0 Hz, 3H), 0.95 (d, J = 7.0 Hz, 3H); ¹³C NMR (C₆D₆, 125 MHz) δ 159.8, 159.7, 157.0, 156.8, 142.0, 132.2, 131.9, 131.4, 131.2, 129.8, 129.6, 129.43, 129.41, 114.09, 114.06, 110.5, 110.4, 106.24, 106.21, 100.7, 99.0, 76.7, 75.6, 72.91, 72.86, 72.3, 68.7, 60.5, 60.3, 54.78, 54.76, 37.4, 36.8, 36.0, 35.3, 20.9, 20.6, 15.69, 15.67, 11.9, 11.3; IR (film) v_{max} 3417, 3117, 1612, 1513, 1247, 1084 cm⁻¹; HRMS (ESI-TOF) calcd for $C_{24}H_{34}O_6 + Na^+ 441.2247$; found 441.2252.

(S)-6-(*t*-Butyldimethylsilyloxy)-2-((4S,5S,E)-4-(1-ethoxyethoxy)-6-(4methoxybenzyloxy)-5-methylhex-1-enyl)-2H-pyran-3-(6H)-one (20). N-Bromosuccinimide (1.25 g, 7.02 mmol) was added to a solution of 18 (2.44 g, 5.83 mmol), NaHCO₃ (0.98 g, 12 mmol), and NaOAc (0.46 g, 5.6 mmol) in THF (104 mL) and H₂O (27 mL) at 0 °C with stirring. After 1 h, the reaction was quenched by addition of saturated aqueous NaHCO₃, and the phases were separated. The aqueous layer was extracted with CH₂Cl₂, and the combined organic phases were washed with saturated aqueous NaCl, dried (Na₂SO₄), and concentrated to ~5% of the original volume (note:

complete concentration leads to decomposition as indicated by a color change from colorless/pale yellow to yellow/brown). The residue containing **19** was immediately dissolved in CH₂Cl₂/pyridine (1:1, 59 mL), and AgNO₃ (2.38 g, 14.0 mmol) was added followed by TBSCI (2.22 g, 14.7 mmol) at room temperature. After stirring for 15 min, the reaction mixture was diluted with Et₂O and filtered through a pad of Celite. The filtrate was concentrated, and the residue was used immediately in the next step. Purification of 20 by flash chromatography (SiO₂, 1-10% EtOAc/hexanes gradient) resulted in very low yields but gave access to analytically pure 20 as a mixture of isomers: $[\alpha]_{D}^{25} + 18$ (c 0.54, CHCl₃); ¹H NMR (C₆D₆, 500 MHz) δ 7.27–7.21 (m, 8H), 6.84-6.78 (m, 8H), 6.25 (dt, J = 10.5, 1.5 Hz, 2H), 6.12 (dt, J = 10.0, 3.0 Hz, 2H), 6.08-5.82 (m, 8H), 5.82-5.75 (m, 4H), 5.29 (d, J = 3.0 Hz, 1H), 5.28 (d, J = 3.0 Hz, 1H), 5.27-5.24 (m, 2H), 5.05–5.00 (m, 2H), 4.73–4.66 (m, 2H), 4.66–4.60 (m, 2H), 4.41–4.27 (m, 8H), 4.26–4.19 (m, 2H), 3.91–3.85 (m, 2H), 3.85–3.80 (m, 2H), 3.62–3.56 (m, 2H), 3.56– 3.48 (m, 4H), 3.45–3.40 (m, 2H), 3.40–3.33 (m, 6H), 3.31 (s, 12H), 3.26–3.22 (m, 2H), 2.56–2.48 (m, 2H), 2.43–2.29 (m, 4H), 2.28–2.21 (m, 2H), 2.15–2.04 (m, 4H), 1.31 (t, J = 5.0 Hz, 6H, 1.255 (d, J = 5.5 Hz, 3H), 1.248 (d, J = 5.0 Hz, 3H), 1.16–1.05 (m, 18 H), 0.99–0.93 (m, 6H), 0.95 (s, 18H), 0.90 (s, 18H), 0.17–0.03 (m, 24H); ¹³C NMR (C₆D₆, 125 MHz) δ194.04, 194.02, 193.50, 193.46, 159.7, 159.6, 149.3, 149.2, 145.62, 145.58, 132.0, 131.9, 131.8, 131.7, 131.6, 131.5, 131.32, 131.30, 129.5, 129.3, 127.5, 126.9, 126.7, 126.13, 126.10, 125.9, 114.1, 114.0, 100.64, 100.62, 99.2, 91.6, 88.5, 79.53, 79.48, 76.7, 76.6, 75.92, 75.85, 74.94, 74.92, 72.85, 72.83, 72.80, 72.3, 60.65, 60.61, 60.32, 60.26, 54.77, 54.76, 37.58, 37.57, 36.77, 36.75, 36.23, 36.19, 35.7, 35.6, 25.9, 25.8, 21.0, 20.6, 18.20, 18.15, 15.7, 12.1, 11.5, -3.7, -4.4, -4.8, -5.39, -5.41; IR (film) v_{max} 1697, 1513, 1249, 1096 cm⁻¹; HRMS (ESI-TOF) calcd for $C_{30}H_{48}O_7Si + Na^+ 571.3061$; found 571.3074.

(2S,3R)-6-(t-Butyldimethylsilyloxy)-2-((4S,5S,E)-4-(1-ethoxyethoxy)-6-(4methoxybenzyloxy)-5-methylhex-1-enyl)-3,6-dihydro-2H-pyran-3-ol (21). A stirred solution of 20 (from previous reaction, 5.83 mmol) in 58.3 mL of Et₂O was treated with a solution of LiAlH₄ (1.0 M in THF, 5.9 mL, 5.9 mmol) at -78 °C under N₂. The mixture was stirred at -50 °C for 3 h after which time the reaction was quenched by slow addition of H₂O. The mixture was extracted with Et₂O and the combined organic phases were washed with H₂O, saturated aqueous NaCl, dried (Na₂SO₄), and concentrated. The residue was purified by flash chromatography (SiO₂ pretreated with 2% Et₃N/hexanes, 10-20% EtOAc/hexanes) to give 1.63 g (51%, 3 steps) of 21 as a mixture of anomers and EE isomers as a colorless oil: $\left[\alpha\right]^{25}$ –7.0 (c 1.1, CHCl₃); ¹H NMR (C₆D₆, 500 MHz) see spectrum; ¹³C NMR (C₆D₆, 125 MHz) & 159.8, 159.7, 132.2, 132.14, 132.09, 131.8, 131.7, 131.6, 131.4, 131.3, 131.0, 130.7, 130.6, 130.3, 130.1, 130.0, 129.9, 129.7, 129.6, 129.5, 129.4, 128.8, 128.6, 114.09, 114.07, 101.0, 98.5, 93.6, 93.3, 93.2, 93.1, 89.71, 89.68, 80.8, 79.8, 76.8, 76.6, 76.5, 75.90, 75.85, 75.73, 75.70, 74.3, 73.4, 73.0, 72.93, 72.92, 72.9, 72.4, 72.3, 67.8, 67.6, 67.5, 67.3, 62.0, 61.9, 60.6, 60.5, 60.2, 54.79, 54.77,

37.9, 37.8, 37.50, 37.45, 37.0, 36.7, 36.6, 36.3, 35.5, 35.4, 26.1, 26.04, 26.00, 21.0, 20.83, 20.80, 20.78, 20.7, 20.6, 18.29, 18.26, 15.7, 15.64, 15.55, 12.1, 11.8, 11.7, 11.62, 11.58, 11.5, -3.4, -3.5, -3.9, -4.3, -4.4, -4.56, -4.60, -5.20, -5.24; IR (film) ν_{max} 3443, 1512, 1247, 1026 cm⁻¹; HRMS (ESI-TOF) calcd for C₃₀H₅₀O₇Si + Na⁺ 573.3218; found 573.3211.

(2S,3S)-6-(t-Butyldimethylsilyloxy)-2-((4S,5S,E)-4-(1-ethoxyethoxy)-6-(4methoxybenzyloxy)-5-methylhex-1-enyl)-3,6-dihydro-2H-pyran-3-yl Pivalate (22). A mixture of 21 (0.45 g, 0.82 mmol), PPh₃ (0.47 g, 1.8 mmol), and trimethylacetic acid (0.18 g, 1.8 mmol) was dried under vacuum for 1 h. THF (2.0 mL) was added, and the mixture was cooled to 0 °C while stirring. DIAD (0.36 g, 1.8 mmol) was added slowly. and the mixture was allowed to warm to room temperature while stirring overnight. The mixture was concentrated, and the residue was purified by flash chromatography (SiO_2) pretreated with 2% Et₃N/hexanes, 3% EtOAc/hexanes) [note: there are two difficult-toseparate product spots visible by TLC ($R_f \sim 0.7$ and 0.65, 25% EtOAc/hexanes, top spot is major); both are isomers of the 22 as shown by TBS and EE removal and oxidation to the lactone and are therefore not separated at this stage] affording 0.39 g (75%) of 22 as a yellow oil as a mixture of isomers: $[\alpha]^{25}_{D}$ +50 (c 0.25, CHCl₃); ¹H NMR (C₆D₆, 500 MHz) see spectrum; ¹³C NMR (C_6D_6 , 125 MHz) δ 177.3, 159.74, 159.66, 132.9, 131.5, 131.3, 130.7, 130.2, 130.0, 129.5, 129.3, 129.1, 128.7, 128.6, 124.4, 124.3, 114.1, 114.0, 100.7, 99.8, 99.0, 89.4, 76.7, 75.8, 73.0, 72.9, 72.5, 71.7, 70.2, 70.1, 65.2, 65.1, 60.5, 60.5, 60.1, 54.77, 54.76, 39.0, 37.3, 36.7, 36.3, 35.6, 27.4, 27.2, 26.1, 26.0, 25.9, 21.0, 20.5, 19.1, 18.2, 15.7, 11.9, 11.3, -4.09, -4.12, -5.3; IR (film) v_{max} 1724, 1024, 836 cm⁻¹; HRMS (ESI-TOF) calcd for $C_{35}H_{58}O_8Si + Na^+ 657.3793$; found 657.3770.

(2*S*,3*S*)-6-(*t*-Butyldimethylsilyloxy)-2-((4*S*,5*S*,*E*)-4-(1-ethoxyethoxy)-6-hydroxy-5methylhex-1-enyl)-3,6-dihydro-2*H*-pyran-3-yl Pivalate (23). H₂O (5.8 mL) and DDQ (1.5 g, 6.5 mmol) were added to a solution of 22 (1.40 g, 22 mmol) in CH₂Cl₂ (103 mL) at 0 °C with stirring. After 1 h, saturated aqueous NaHCO₃ was added and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were washed with H₂O, saturated aqueous NaCl, dried (Na₂SO₄), and concentrated. The residue was purified by flash chromatography (SiO₂ pretreated with 2% Et₃N/hexanes, 10–20% EtOAc/hexanes gradient) to provide 23a (0.43 g, 38%) along with some *p*-anisaldehyde as a colorless oil, 23b (0.20 g, 18%) as a colorless oil, and a mixture of 23a and 23b (0.20 g, 18%) as a colorless oil [note: two product spots (23a and 23b, R_f ~ 0.35 and 0.3 respectively, 25% EtOAc/hexanes) are isolated along with some *p*-anisaldehyde which co-elutes with 23a. Each spot, **23a** and **23b**, is comprised of one major isomer and a small amount of a minor isomer]. Data for **23a** (major isomer): $[\alpha]^{25}_{D}$ +88 (*c* 0.06, CHCl₃); ¹H NMR (C₆D₆, 500 MHz) δ 5.93 (dd, *J* = 10.0, 5.5 Hz, 1H), 5.78–5.63 (m, 3H), 5.35 (d, *J* = 3.0 Hz, 1H), 5.00 (dd, *J* = 5.5, 2.5 Hz, 1H), 4.65–4.60 (m, 1H), 4.52 (q, *J* = 5.0 Hz, 1H), 3.91 (td, *J* = 7.0, 3.0 Hz, 1H), 3.80–3.70 (m, 1H), 3.65–3.55 (m, 1H), 3.28–3.17 (m, 2H), 3.07 (t, *J* = 7.0 Hz, 1H), 2.36–2.26 (m, 1H), 2.21–2.14 (m, 1H), 1.90–1.80 (m, 1H), 1.22–1.19 (m, 12 H), 1.07 (t, *J* = 7.0 Hz, 3H), 0.95 (s, 9H), 0.86 (d, *J* = 7.0 Hz, 3H), 0.14 (s, 3H), 0.09 (s, 3H); ¹³C NMR (C₆D₆, 125 MHz) δ 177.4, 133.0, 129.8, 129.0, 124.2, 100.1, 89.4, 76.0, 70.1, 65.3, 65.0, 61.4, 39.0, 38.8, 35.9, 27.3, 25.9, 20.4, 18.2, 15.3, 10.2, -4.1, -5.3; IR (film) ν_{max} 3502, 1727, 1026 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₇H₅₀O₇Si + Na⁺ 537.3218; found 537.3216.

Data for **23b** (major isomer): $[\alpha]^{25}_{D}$ +59 (*c* 0.12, CHCl₃); ¹H NMR (C₆D₆, 500 MHz) δ 5.88 (dd, J = 9.5, 5.5 Hz, 1H), 5.81 (dt, J = 15.5, 7.0 Hz, 1H), 5.76–5.65 (m, 2H), 5.35 (d, J = 2.5 Hz, 1H), 5.01 (dd, J = 5.5, 2.5 Hz, 1H), 4.69 (q, J = 5.0 Hz, 1H), 4.66–4.61 (m, 1H), 3.71 (ddd, J = 7.5, 6.0, 3.5 Hz, 1H), 3.55–3.45 (m, 2H), 3.45–3.30 (m, 2H), 2.51–2.40 (m, 1H), 2.40–2.31 (m, 1H), 1.90–1.73 (m, 2H), 1.25 (d, 5.0 Hz, 3H), 1.20 (s, 9H), 1.12 (t, J = 7.0 Hz, 3H), 0.95 (s, 9H), 0.87 (d, J = 7.0 Hz, 3H), 0.15 (s, 3H), 0.10 (s, 3H); ¹³C NMR (C₆D₆, 125 MHz) δ 177.7, 133.0, 130.3, 128.8, 124.2, 100.4, 89.4, 77.3, 70.4, 65.2, 60.2, 39.1, 38.3, 35.6, 27.3, 25.9, 20.4, 18.2, 15.6, 11.1, -4.1, -5.3; IR (film) v_{max} 3501, 1726, 1024, 838 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₇H₅₀O₇Si + Na⁺ 537.3218; found 537.3222.

(2S,3S)-6-(t-Butyldimethylsilyloxy)-2-((4S,5R,E)-4-(1-ethoxyethoxy)-5-methyl-6oxohex-1-enyl)-3,6-dihydro-2H-pyran-3-yl Pivalate (8). Dess-Martin periodinane (0.08 g, 0.20 mmol) was added to a solution of 23b (0.064 g, 0.12 mmol) in CH₂Cl₂ (5.8 mL) at room temperature with stirring. After 1 h, saturated aqueous NaHCO₃ (1 mL), saturated aqueous Na₂S₂O₃ (1 mL), and Et₂O (10 mL) were added and the mixture was stirred vigorously for 15 min. The phases were separated and the aqueous phase was extracted with Et₂O. The combined organic phases were washed with saturated aqueous NaCl, dried (Na₂SO₄), and concentrated. The residue was purified through a short column (SiO₂, 5% EtOAc/hexanes) to give 0.059 g (92%; yield typically ranges from 83-92%) of **8b** as a colorless oil. Data for **8a** (major isomer): $\left[\alpha\right]^{25}$ +46 (c 0.87, CHCl₃); ¹H NMR (C₆D₆, 500 MHz) δ 9.70 (s, 1H), 5.93 (dd, J = 10.0, 5.5 Hz, 1H), 5.72 (dd, J = 10.0, 3.0 Hz, 1H), 5.70–5.58 (m, 2H), 5.34 (d, J = 2.5 Hz, 1H), 4.98 (dd, J = 5.5, 2.5 Hz, 1H), 4.63–4.53 (m, 2H), 4.02 (td, J = 7.0, 3.5 Hz, 1H), 3.35–3.26 (m, 1H), 3.26–3.17 (m, 1H), 2.32–2.20 (m, 2H), 2.15–2.07 (m, 1H), 1.19 (s, 9H), 1.70 (d, J = 5.5 Hz, 3H), 1.10 (d, J = 7.0 Hz, 3H), 1.07 (t, J = 7.0 Hz, 3H), 0.94 (s, 9H), 0.12 (s, 3H), 0.08 (s, 3H);NMR (C₆D₆, 125 MHz) δ 202.8, 177.3, 132.9, 129.8, 128.8, 124.2, 99.0, 89.4, 74.8, 70.0, 64.9, 59.7, 49.9, 39.0, 35.6, 27.3, 25.9, 20.3, 18.2, 15.4, 7.8, -4.2, -5.3; IR (film) v_{max} 1725, 1025, 838 cm⁻¹; HRMS (ESI-TOF) calcd for $C_{27}H_{48}O_7 + Na^+$ 535.3061; found 535.3056.

Data for **8b** (major isomer): $[\alpha]^{25}_{D}$ +45 (*c* 0.60, CHCl₃); ¹H NMR (C₆D₆, 500 MHz) δ 9.60 (s, 1H), 5.93 (dd, *J* = 10.0, 5.5 Hz, 1H), 5.77–5.67 (m, 2H), 5.62 (dd, *J* = 15.5, 5.5 Hz, 1H), 5.33 (d, *J* = 3.0 Hz, 1H), 4.97 (dd, *J* = 5.5, 2.5 Hz, 1H), 4.64–4.57 (m, 1H), 4.55 (q, *J* = 5.5 Hz, 1H), 3.95 (ddd, *J* = 8.0, 5.5, 4.0 Hz, 1H), 3.43–3.32 (m, 1H), 3.32–3.20 (m, 1H), 2.49–2.32 (m, 1H), 2.32–2.21 (m, 2H), 1.18 (s, 9H), 1.14 (d, *J* = 5.5 Hz, 3H), 1.08 (t, *J* = 7.0 Hz, 3H), 1.02 (d, *J* = 7.0 Hz, 3H), 0.93 (s, 9H), 0.11 (s, 3H), 0.07 (s, 3H); ¹³C NMR (C₆D₆, 125 MHz) δ 202.7, 177.3, 132.9, 129.8, 129.1, 124.2, 100.1, 89.3, 75.1, 70.1, 65.0, 60.1, 49.7, 39.0, 36.4, 27.3, 25.9, 20.2, 18.2, 15.5, 7.8, -4.2, -5.3; IR (film) v_{max} 1725, 1025, 838 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₇H₄₈O₇ + Na⁺ 535.3061; found 535.3061.

0=______C₅H₁₁

(2Z,4*E*)-Deca-2,4-dienal (24). A solution of 1-iodopentane (3.03 g, 15.4 mmol) in 31 mL of anhydrous Et₂O was cooled under argon to -78 °C and was treated with *t*-BuLi (1.5 M in pentane, 25.3 mL, 38 mmol) slowly. After stirring for 1 h, the solution was allowed to warm to room temperature and was transferred via cannula to a suspension of pyrilium tetrafluoroborate² (2.0 g, 11.9 mmol) in THF (86 mL) at -78 °C. The reaction mixture was stirred for 4 h before saturated aqueous NH₄Cl was added, and the mixture was warmed to room temperature. The organic phase was extracted with Et₂O, washed with saturated aqueous NaCl, dried (Na₂SO₄), and carefully concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂ pretreated with 2% Et₃N/hexanes, 10% EtOAc/hexanes) to yield 24 as a volatile yellow liquid that was used immediately in the next step.

(3Z,5*E*)-1,1-Dibromoundeca-1,3,5-triene (25). PPh₃ (11.6 g, 44.2 mmol) was added to a solution of CBr₄ (17.6 g, 53.1 mmol) in 60 mL of anhydrous CH₂Cl₂ at 0 °C. After 5 min, Et₃N (16.7 g, 165 mmol) was added slowly followed by 24 (from previous reaction, 11.9 mmol) in 11 mL of anhydrous CH₂Cl₂. After 10 min, the mixture was concentrated, and the resulting sludge was triturated repeatedly with hexanes. The combined hexanes mixture was concentrated, and the residue was purified by flash chromatography (SiO₂ pretreated with 2% Et₃N/hexanes, hexanes) to give 3.12 g (85%, 2 steps) of 25 as a yellow oil: ¹H NMR (C₆D₆, 500 MHz) δ 7.26 (d, *J* = 9.9 Hz, 1H), 6.08–6.01 (m, 1H), 5.93–5.84 (m, 2H), 5.54 (dt, *J* = 15.0, 7.0 Hz, 1H), 1.89–1.81 (m, 2H), 1.20–1.15 (m, 6H), 0.82 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (C₆D₆, 125 MHz) δ 139.9, 133.6, 133.0, 126.0, 123.2, 92.2, 33.2, 31.7, 29.0, 22.9, 14.2; IR (film) ν_{max} 1548, 944, 818 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₁H₁₆Br₂ + Cl⁻ 340.9313; found 340.9310.

² Belosludtsev, Y. Y.; Borer, B. C.; Taylor, R. J. K. Synthesis 1991, 320-322.

(1Z,3Z,5*E*)-1-Bromoundeca-1,3,5-triene (9). A solution of 25 (0.36 g, 1.2 mmol) in Et₂O (3.0 mL) at 0 °C was treated with Pd(PPh₃)₄ (0.15 g, 0.13 mmol) followed by Bu₃SnH (0.59 g, 2.0 mmol). After the reaction was complete as judged by TLC (~30 mir; note: depending on the quality of Bu₃SnH, it is sometimes necessary to add a small amount of additional Bu₃SnH in order to achieve complete conversion), the mixture was concentrated, and the crude product was purified by flash chromatography (SiO₂ pretreated with 2% Et₃N/hexanes, hexanes) to provide 0.21 g (78%) of **9** as a colorless oil that was immediately diluted in ether and used in the next reaction. For **9**: ¹H NMR (C₆D₆, 400 MHz) δ 6.70 (dd, *J* = 10.8, 7.2, Hz, 1H), 6.35 (t, *J* = 10.8 Hz, 1H), 6.31–6.23 (m, 1H), 6.03 (t, *J* = 10.8 Hz, 1H), 5.83 (d, *J* = 7.2 Hz, 1H), 5.58 (dt, *J* = 15.2, 6.8 Hz, 1H), 1.93 (q, *J* = 7.2 Hz, 2H), 1.30–1.10 (m, 6H), 0.86 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (C₆D₆, 150 MHz) δ 140.6, 138.9, 133.7, 126.2, 122.6, 108.9, 33.3, 31.7, 29.0, 22.9, 14.2; IR (film) ν_{max} 1296, 947, 694, 638 cm⁻¹; GCMS calcd for C₁₁H₁₇Br⁺ 228; found 228.

(2S,3S)-6-(t-Butyldimethylsilyloxy)-2-((1E,4S,5S,6S,7Z,9Z,11E)-4-(1-ethoxyethoxy)-6-hydroxy-5-methylheptadeca-1,7,9,11-tetraenyl)-3,6-dihydro-2H-pyran-3-yl Pivalate (26). t-BuLi (1.6 M in pentane, 0.90 mL, 1.43 mmol) was slowly added to a degassed solution of 9 (0.187 g, 0.816 mmol) in Et₂O (5.6 mL) with stirring at -78 °C under N₂. After 1.5 h, a solution of CuI–PBu₃³ (0.126 g, 0.322 mmol) in 1.9 mL of Et₂O was added at -78 °C and the mixture was stirred for 15 min. A solution of **8b** (0.075 g, 0.146 mmol) in 4.6 mL of anhydrous Et₂O was added slowly to the mixture down the side of the flask over 15 min at -78 °C. After 1 h, the reaction was quenched by addition of saturated aqueous NH₄Cl/NH₄OH (pH 8, 2 mL) and warmed to room temperature. The mixture was extracted with Et₂O and the combined organic phases were washed with H₂O, saturated aqueous NaCl, dried (Na₂SO₄), and concentrated. The residue was purified by flash chromatography (SiO₂ pretreated with 2% Et₃N/hexanes, 10-20% EtOAc/hexanes gradient) to give 0.095 g (85%) of 26b as a yellow oil. Data for 26a (major isomer): $[\alpha]_{D}^{25} + 43$ (c 0.76, CHCl₃); ¹H NMR (C₆D₆, 500 MHz) δ 6.69 (t, J = 11.5 Hz, 1H), 6.57 (dd, J = 14.5, 11.5 Hz, 1H), 6.42 (t, J = 11.0 Hz, 1H), 6.00 (t, J = 11.5Hz, 1H), 5.94 (dd, J = 9.5, 5.5 Hz, 1H), 5.80–5.65 (m, 4H), 5.60 (dt, J = 15.0, 7.5 Hz, 1H), 5.36 (d, J = 2.5 Hz, 1H), 5.00 (dd, J = 5.5, 2.5 Hz, 1H), 4.86 (t, J = 9.0 Hz, 1H), 4.64 (dd, J = 4.0, 2.5 Hz, 1H), 4.55 (q, J = 5.0 Hz, 1H), 4.22 (td, J = 7.0, 2.0 Hz, 1H), 3.98 (brs, 1H), 3.25 (q, J = 7.0 Hz, 2H), 2.44–2.36 (m, 1H), 2.26–2.18 (m, 1H), 1.98 (q, J = 7.0 Hz, 2H), 1.77-1.69 (m, 1H), 1.38-1.12 (m, 6H), 1.23 (d, J = 5.0 Hz, 3H), 1.21 (s, 9H), 1.09 (t, J = 7.0 Hz, 3H), 1.00 (d, J = 7.0 Hz, 3H), 0.97 (s, 9H), 0.85 (t, J = 7.0 Hz, 3H), 0.17 (s, 3H), 0.11 (s, 3H); ¹³C NMR (C₆D₆, 150 MHz) δ 177.2, 136.8, 134.5, 133.0, 131.0, 129.5, 129.1, 126.1, 125.1, 124.2, 123.3, 100.2, 89.4, 75.2, 70.1, 68.8, 65.0, 61.9, 43.0, 39.0, 36.0, 33.3, 31.7, 29.3, 27.4, 25.9, 22.9, 20.4, 18.2, 15.3, 14.2, 9.9, -4.0, -5.3;

³ Kauffman, G. B.; Teter, L. A. Inorg. Synth. 1963, 7, 9.

IR (film) ν_{max} 3468, 1726, 1025 cm⁻¹; HRMS (ESI-TOF) calcd for C₃₈H₆₆O₇Si + Na⁺ 685.4470; found 685.4460.

Data for **26b** (major isomer): $[\alpha]^{25}_{D}$ +32 (*c* 0.48, CHCl₃); ¹H NMR (C₆D₆, 500 MHz) δ 6.63 (t, *J* = 11.5 Hz, 1H), 6.57 (dd, *J* = 15.0, 12.5 Hz, 1H), 6.37 (t, *J* = 11.5 Hz, 1H), 6.05 (t, *J* = 11.0 Hz, 1H), 5.90 (dd, *J* = 10.0, 5.5 Hz, 1H), 5.80–5.67 (m, 3H), 5.65 (dt, *J* = 15.0, 7.0 Hz, 1H), 5.53 (t, *J* = 10.5 Hz, 1H), 5.35 (d, *J* = 2.5 Hz, 1H), 4.99 (dd, *J* = 5.5, 2.5 Hz, 1H), 4.84 (q, *J* = 5.5 Hz, 1H), 4.66–4.59 (m, 2H), 4.11 (ddd, *J* = 8.0, 5.5, 2.0 Hz, 1H), 3.60–3.53 (m, 1H), 3.42–3.50 (m, 1H), 2.67–2.59 (m, 1H), 2.42–2.33 (m, 1H), 2.00 (q, *J* = 7.0 Hz, 2H), 1.80–1.72 (m, 1H), 1.34 (d, *J* = 5.5 Hz, 3H), 1.33–1.15 (m, 6 H), 1.20 (s, 9H), 1.13 (t, *J* = 7.0 Hz, 3H), 0.97 (s, 9H), 0.97–0.94 (m, 3H), 0.87 (t, *J* = 7.0 Hz, 3H), 0.17 (s, 3H), 0.11 (s, 3H); ¹³C NMR (C₆D₆, 125 MHz) δ 177.7, 137.4, 134.3, 133.0, 131.6, 130.2, 128.9, 125.9, 125.6, 124.2, 122.6, 100.5, 89.4, 76.2, 70.4, 68.8, 65.3, 60.3, 41.8, 39.1, 35.9, 33.3, 31.7, 29.3, 27.3, 26.0, 22.9, 20.6, 18.3, 15.6, 14.2, 10.1, -4.0, -5.3; IR (film) ν_{max} 3480, 1726, 1150, 1025, 837 cm⁻¹; HRMS (ESI-TOF) calcd for C₃₈H₆₆O₇Si + Na⁺ 685.4470; found 685.4470.

(2S,3S)-6-(*t*-Butyldimethylsilyloxy)-2-((1*E*,4S,5S,6S,7Z,9Z,11*E*)-4-(1-ethoxyethoxy)-6-hydroxy-5-methylheptadeca-1,7,9,11-tetraenyl)-3,6-dihydro-2*H*-pyran-3-ol (27). DIBAL (1.0 M in hexanes, 0.27 mL, 0.27 mmol) was added to a solution of 26b (0.026 g, 0.039 mmol) in CH₂Cl₂ (0.33 mL) at -78 °C under N₂. After 2 h, the reaction was quenched by slow addition of saturated aqueous sodium potassium tartrate (2 mL). The mixture was extracted with EtOAc, and the combined organic phases were dried (Na₂SO₄) and concentrated under vacuum. Purification of 27 by silica gel chromatography resulted in very low yields, so the crude material was used directly in the next reaction. IR (film) ν_{max} 3394, 1000, 836, 779 cm⁻¹; HRMS (ESI-TOF) calcd for C₃₃H₅₈O₆Si + Na⁺ 601.3895; found 601.3898.

(5S,6R,7S)-7-((E)-3-((2S,3S)-6-(t-Butyldimethylsilyloxy)-3-(t-butyldiphenylsilyloxy)-3,6-dihydro-2*H*-pyran-2-yl)allyl)-2,2,6,9-tetramethyl-3,3-diphenyl-5-((1Z,3Z,5E)undeca-1,3,5-trienyl)-4,8,10-trioxa-3-siladodecane (28). A solution of crude diol 27b (from previous reaction, 0.039 mmol) in 1:1 CH₂Cl₂/pyridine (0.78 mL) was treated with TBDPSCl (0.11 g, 0.39 mmol) and AgNO₃ (0.06 g, 0.36 mmol) at room temperature with stirring. After stirring overnight, the mixture was diluted with Et₂O and filtered through Celite. The filtrate was concentrated and the residue purified by flash chromatography (SiO₂ pretreated with 2% Et₃N/hexanes, 3% EtOAc/hexanes) to give 0.033 g (80%, 2 steps) of **28b** as a colorless oil: (major isomer) $[\alpha]^{25}_{D}$ +34 (*c* 0.39, CHCl₃); ¹H NMR (C₆D₆, 600 MHz) δ 7.94–7.70 (m, 8H), 7.30–7.18 (m, 12 H), 6.40–6.30 (m, 2H), 6.08 (dd, J = 15.6, 6.6 Hz, 1H), 5.90–5.82 (m, 3H), 5.66–5.59 (m, 3H), 5.56 (dt, J = 15.0, 7.2 Hz, 1H), 5.45 (d, J = 2.4 Hz, 1H), 4.90 (t, J = 9.0 Hz, 1H), 4.75 (q, J = 5.4 Hz, 1H), 4.56-4.52 (m, 1H), 4.26 (ddd, J = 8.4, 4.8, 3.0 Hz, 1H), 3.89 (dd, J = 4.8, 2.4 Hz, 1H), 3.46-3.40 (m, 2H), 2.87–2.81 (m, 1H), 2.62–2.54 (m, 1H), 2.19–2.12 (m, 1H), 1.94 (q, J = 7.2 Hz, 2H), 1.26–1.00 (m, 15H), 1.23 (s, 9H), 1.18 (s, 9H), 1.03 (s, 9H) 0.85 (t, J = 7.2 Hz, 3H), 0.30 (s, 3H), 0.18 (s, 3H); ¹³C NMR (C₆D₆, 150 MHz) δ 137.1, 136.6, 136.5, 136.4, 136.1, 136.0, 135.9, 135.6, 135.3, 135.0, 134.9, 134.4, 134.3, 134.2, 133.0, 131.3, 130.9, 130.6, 130.0, 129.9, 129.81, 129.77, 129.4, 129.0, 127.5, 127.4, 126.0, 124.0, 122.6, 101.1, 89.6, 77.3, 72.7, 71.2, 66.2, 58.9, 43.4, 37.4, 33.3, 31.8, 31.2, 29.3, 27.6, 27.22, 27.15, 27.1, 26.8, 26.5, 26.1, 22.9, 20.5, 19.83, 19.79, 19.2, 18.3, 15.8, 14.2, 9.4, -3.6, -5.1; IR (film) v_{max} 1110, 702 cm⁻¹; HRMS (ESI-TOF) calcd for C₆₅H₉₄O₆Si₃ + Na⁺ 1077.6250; found 1077.6267.

HO^{NOR}OHORC₅H₁₁

(55,65)-5-(*t*-Butyldiphenylsilyloxy)-6-((1*E*,4*S*,5*R*,6*S*,7*Z*,9*Z*,11*E*)-6-(*t*butyldiphenylsilyloxy)-4-hydroxy-5-methylheptadeca-1,7,9,11-tetraenyl)-5,6dihydro-2*H*-pyran-2-ol (S4). 0.5 M aqueous HCl (0.62 mL) was added to a solution of 28 (0.033 g. 0.031 mmol) in THE (12.7 mL) at room temperature, and the mixture was

28 (0.033 g, 0.031 mmol) in THF (12.7 mL) at room temperature, and the mixture was stirred overnight. The reaction was quenched by addition of saturated aqueous NaHCO₃, and the aqueous phase was extracted with EtOAc. The combined organic phases were washed with saturated aqueous NaCl, dried (Na₂SO₄), concentrated, and the residue was purified by flash chromatography (SiO₂, 10-30% EtOAc/hexanes gradient) to give 0.019 g (71%) of the lactol as a mixture of anomers as a glassy white solid: $[\alpha]^{25}_{D}$ +37 (c 0.20, CHCl₃); ¹H NMR (C₆D₆, 600 MHz) δ 7.89–7.76 (m, 8H), 7.29–7.16 (m, 12H), 6.34 (dd, J = 14.4, 11.4 Hz, 1H), 6.24 (t, J = 12.0 Hz, 1H), 6.06 (dd, J = 15.6, 7.2 Hz, 1H), 5.93 (dt, J= 14.4, 7.2 Hz, 1H), 5.80 (t, J = 10.8 Hz, 1H), 5.65 (t, J = 10.2 Hz, 1H), 5.62 (t, J = 11.4Hz, 1H), 5.60–5.57 (m, 3H), 5.30 (s, 1H), 4.90 (dd, J = 9.0, 5.4 Hz, 1H), 4.50 (dd, J =7.2, 1.8 Hz, 1H), 4.35–4.30 (m, 1H), 3.83 (dd, J = 4.2, 2.4 Hz, 1H), 2.73 (brs, 1H), 2.45– 2.38 (m, 1H), 2.21–2.15 (m, 1H), 1.94 (q, J = 7.2 Hz, 1H), 1.79–1.70 (m, 1H), 1.28–1.12 (m, 6H), 1.20 (s, 9H), 1.17 (s, 9H), 1.08 (d, J = 7.2 Hz, 3H), 0.84 (t, J = 7.2 Hz, 3H); ¹³C NMR (C₆D₆, 150 MHz) & 137.2, 136.53, 136.47, 136.4, 136.3, 135.0, 134.3, 134.2, 133.9, 132.89, 132.85, 131.4, 130.9, 130.7, 130.08, 130.05, 129.911, 129.906, 129.3, 129.2, 125.9, 124.6, 122.1, 89.1, 73.7, 72.5, 70.7, 65.8, 44.7, 39.1, 33.2, 31.7, 29.4, 29.3, 27.4, 27.2, 22.9, 19.7, 14.2, 10.1; IR (film) v_{max} 3417, 1107, 702 cm⁻¹; HRMS (ESI-TOF) calcd for $C_{55}H_{72}O_5Si_2 + Na^+ 891.4811$; found 891.4804.

(5*S*,6*S*)-5-(*t*-Butyldiphenylsilyloxy)-6-((1*E*,4*S*,5*R*,6*S*,7*Z*,9*Z*,11*E*)-6-(*t*-butyldiphenylsilyloxy)-4-hydroxy-5-methylheptadeca-1,7,9,11-tetraenyl)-5,6-

dihydro-2H-pyran-2-one (29). Ag₂CO₃ (~50% on Celite, 1.96 g, 3.55 mmol) was added in four portions over the course of 1 h to a solution of (5S,6S)-5-(tbutyldiphenylsilyloxy)-6-((1E,4S,5R,6S,7Z,9Z,11E)-6-(t-butyldiphenylsilyloxy)-4hydroxy-5-methylheptadeca-1,7,9,11-tetraenyl)-5,6-dihydro-2*H*-pyran-2-ol (S4) (0.043 g, 0.049 mmol) in 4.9 mL of benzene at reflux. After the final addition, the mixture was stirred for 30 min before being cooled to room temperature and filtered through Celite while washing with EtOAc. The filtrate was concentrated and the residue was purified by flash chromatography (SiO₂, 10–20% EtOAc/hexanes gradient) to give 0.039 g (91%) of **29** as a glassy solid: $[\alpha]_{D}^{25} + 20$ (c 0.33, CHCl₃); ¹H NMR (C₆D₆, 600 MHz) δ 7.90– 7.78 (m, 4H), 7.70–7.59 (m, 4H), 7.30–7.18 (m, 12 H), 6.34 (dd, J = 14.4, 12.0 Hz, 1H), 6.25 (t, J = 11.4 Hz, 1H), 5.94 (dd, J = 15.6, 7.2 Hz, 1H), 5.89–5.81 (m, 2H), 5.86 (dd, J= 9.6, 4.2 Hz, 1H), 5.70–5.65 (m, 1H), 5.67 (d, J = 9.6 Hz, 1H), 5.64–5.54 (m 2H), 4.86 (dd, J = 9.0, 5.4 Hz, 1H), 4.30-4.23 (m, 1H), 4.21 (dd, J = 6.6, 3.0 Hz, 1H), 3.84 (dd, J = 6.6, 3.0 Hz, 1H)4.8, 3.0 Hz, 1H), 2.59 (brs, 1H), 2.39–2.31 (m, 1H), 2.08–2.01 (m, 1H), 1.95 (q, J = 7.2Hz, 2H), 1.70-1.62 (m, 1H), 1.30-1.12 (m, 6H), 1.20 (s, 9H), 1.07 (s, 9H), 1.04 (d, J =7.2 Hz, 3H), 0.84 (t, J = 7.2 Hz, 3H); ¹³C NMR (C₆D₆, 150 MHz) δ 162.3, 144.2, 137.5, 136.51, 136.50, 136.21, 136.18, 134.1, 133.8, 133.63, 133.60, 133.2, 132.8, 131.7, 130.4, 130.3, 130.2, 130.0, 127.1, 125.8, 124.6, 122.5, 121.8, 81.2, 74.2, 70.5, 65.3, 44.6, 38.8, 33.2, 31.7, 29.4, 29.2, 27.3, 27.0, 22.9, 19.5, 14.2, 10.1; IR (film) v_{max} 3512, 1732, 1109 cm^{-1} ; HRMS (ESI-TOF) calcd for $C_{55}H_{70}O_5Si_2 + Na^+ 889.4654$; found 889.4656.

R = TBDPS Me

(55,65)-5-(t-Butyldiphenylsilyloxy)-6-((1E,45,55,65,7Z,9Z,11E)-6-(t-

butyldiphenylsilyloxy)-5-methylheptadeca-1,7,9,11-tetraen-4-yl sulfate)-5,6-dihydro-2H-pyran-2-one (30). SO₃-pyridine complex (0.003 g, 0.016 mmol) was added to a solution of 29 (0.0064 g, 0.0074 mmol) in 0.31 mL of THF with stirring at room temperature. After 10 min, the mixture was transferred directly onto a short silica gel column and eluted with 15% MeOH/CH2Cl2. The product-containing fractions were concentrated to give 0.0056 g (80%) of **30** as a white solid: $[\alpha]^{25}_{D}$ +5.6 (c 0.14, MeOH); ¹H NMR (CD₃OD, 600 MHz) δ 7.75–7.60 (m, 8H), 7.49–7.29 (m, 12H), 6.54 (dd, J = 9.9, 5.4 Hz, 1H), 6.34 (dd, J = 14.4, 11.4 Hz, 1H), 6.24 (t, J = 11.4 Hz, 1H), 5.95 (d, J = 11. 9.9 Hz, 1H), 5.78–5.62 (m, 4H), 5.55 (t, J = 11.4 Hz, 1H), 5.36 (t, J = 10.2 Hz, 1H), 4.81 (dd, J = 10.2, 6.0 Hz, 1H), 4.59-4.55 (m, 1H), 4.53 (dd, J = 6.6, 2.7 Hz, 1H), 4.19 (dd, J)= 5.4, 2.7 Hz, 1H), 2.51–2.41 (m, 2H), 2.12–2.05 (m, 2H), 2.03–1.97 (m, 1H), 1.43–1.36 (m, 2H), 1.35–1.25 (m, 4H), 1.03 (s, 9H), 1.00 (m, 12H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (CD₃OD, 150 MHz) *δ*178.1 165.8, 147.0, 138.0, 137.3, 137.2, 137.1, 135.9, 135.2, 134.6, 133.9, 132.9, 132.3, 131.5, 131.42, 131.35, 130.6, 130.5, 129.1, 129.0, 128.7, 128.53, 128.50, 128.2, 126.7, 126.4, 123.2, 122.8, 83.0, 79.7, 70.7, 66.1, 44.4, 37.0, 34.0, 32.7, 30.2, 29.8, 27.7, 27.5, 23.6, 20.2, 14.5, 10.4; IR (film) v_{max} 3461, 1726, 1251, 1110 cm^{-1} .

Sultriecin (1). A solution of HF–pyridine complex (0.27 mL) in 0.40 mL of THF was added to a solution of **30** (0.0056 g, 0.0059 mmol) in 0.40 mL of THF and 0.10 mL of pyridine with stirring at room temperature. After 96 h, the reaction mixture was carefully transferred to a mixture of saturated aqueous NaHCO₃ (6.3 mL) and EtOAc (2.4 mL). The mixture was extracted with EtOAc (5 \times 4 mL), and the combined organic fractions were dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, 20% MeOH/CH₂Cl₂) to give 0.0017 g (60%) of sultriecin (1) as a white solid: $[\alpha]_{D}^{25} + 9.0$ (c 0.20, MeOH); ¹H NMR (CD₃OD, 600 MHz) δ 7.03 (dd, J = 9.6, 5.4 Hz, 1H), 6.59 (t, J = 12.0 Hz, 1H), 6.54 (dd, J = 14.4, 12.0 Hz, 1H), 6.21(t, J = 12.0 Hz, 1H), 6.05 (d, J = 9.6 Hz, 1H), 6.02 (t, J = 12.0 Hz, 1H), 5.91 (dt, J = 15.6, J = 12.0 Hz, 1H)7.8 Hz, 1H), 5.83 (dd, J = 15.6, 7.2 Hz, 1H), 5.76 (dt, J = 14.4, 7.2 Hz, 1H), 5.38 (dd, J = 14.4, 7.2 Hz, 1H), 5.83 (dd, J = 14.4, 7.2 Hz, 1H), 5.88 (dd, J = 14.4, 7.8 Hz, 1H), 5. 10.8, 9.6 Hz, 1H), 4.82 (ddd, J = 8.4, 6.6, 2.4 Hz, 1H), 4.61 (t, J = 9.6 Hz, 1H), 4.17 (dd, J = 5.4, 3.0 Hz, 1H), 2.80–2.74 (m, 1H), 2.50–2.43 (m, 1H), 2.13 (q, J = 7.2 Hz, 2H), 1.67–1.63 (m, 1H), 1.46–1.39 (m, 2H), 1.37–1.24 (m, 4H), 0.90 (t, J = 7.2 Hz, 3H), 0.83 (d, J = 7.2 Hz, 3H); ¹H NMR (DMSO- d_6 , 600 MHz) δ 7.00 (dd, J = 9.6, 5.4 Hz, 1H), 6.56 (dd, J = 14.4, 10.8 Hz, 1H), 6.51 (t, J = 11.4 Hz, 1H), 6.09 (t, J = 10.8 Hz, 1H), 6.01(t, J = 10.8 Hz, 1H), 5.98 (d, J = 9.6 Hz, 1H), 5.81–5.68 (m, 3H), 5.35 (t, J = 10.2 Hz, 1H), 4.97 (d, J = 4.2 Hz, 1H), 4.82 (dd, J = 6.6, 3.0 Hz, 1H), 4.51(ddd, J = 7.8, 5.4, 2.4Hz, 1H), 4.32 (td, J = 9.0, 4.2 Hz, 1H), 4.15–4.09 (m, 1H), 4.08–4.04 (m, 1H), 2.63–2.57 (m, 1H), 2.32-2.26 (m, 1H), 2.11 (q, J = 7.2 Hz, 2H), 2.02-1.96 (m, 1H), 1.48-1.20 (m, 6H), 0.86 (t, J = 7.2 Hz, 3H), 0.66 (d, J = 7.2 Hz, 3H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ 176.1, 163.3, 146.6, 136.8, 134.1, 131.3, 126.8, 125.5, 124.0, 122.3, 121.1, 80.9, 73.7, 66.9, 61.6, 41.2, 35.4, 32.2, 30.8, 28.3, 21.9, 13.9, 8.8; IR (film) v_{max} 3426, 1720, 1253, 1042, 945 cm⁻¹; HRMS (ESI-TOF) calcd for $C_{23}H_{34}O_8S - H^+$ 469.1902; found 469.1887.

Bis((9H-fluoren-9-yl)methyl)(1E,4S,5S,6S,7Z,9Z,11E)-6-(t-butyldiphenylsilyloxy)-1-((2S,3S)-3-(t-butyldiphenylsilyloxy)-6-oxo-3,6-dihydro-2H-pyran-2-yl)-5-

methylheptadeca-1,7,9,11-tetraen-4-yl phosphate (31). i-Pr₂NP(OFm)₂⁴ (0.035 g, 0.067 mmol) in CH₂Cl₂ (0.50 mL) was added at room temperature to a stirred solution of **29** (0.016 g, 0.018 mmol) and tetrazole (0.45 M in MeCN, 0.10 mL, 0.051 mmol) in anhydrous MeCN (0.39 mL) under N₂. After 1 h, aqueous H₂O₂ (35%, 0.10 mL, 0.8 mmol) was added, and the mixture was stirred vigorously for 15 min. Saturated aqueous NaHCO₃ (3.9 mL) was added, and the mixture was extracted with CH₂Cl₂. The

⁴ (a) Lawhorn, B. G.; Boga, S. B.; Wolkenberg, S. E.; Colby, D. A.; Gauss, C.-M.; Swingle, M. R.;

Amable, L.; Honkanen, R. E.; Boger, D. L. *J. Am. Chem. Soc.* **2006**, *128*, 16720. (b) Bialy, L.; Waldmann, H. *Chem. Eur. J.* **2004**, *10*, 2759. (c) Watanabe, Y.; Nakamura, T.; Mitsumoto, H. *Tetrahedron Lett.* **1997**, *38*, 7407.

combined organic extracts were dried (Na₂SO₄), concentrated, and the residue was purified by flash chromatography (SiO₂, 25% EtOAc/hexanes) to give 0.023 g (96%) of **31** as a colorless oil: $[\alpha]^{25}_{D}$ +16 (c 0.24, CHCl₃); ¹H NMR (C₆D₆, 600 MHz) δ 7.97–7.85 (m, 4H), 7.67–7.58 (m, 4H), 7.56–7.43 (m, 8H), 7.35–7.07 (m, 20H), 6.27 (dd, J = 14.4, 10.8 Hz, 1H), 6.20 (t, J = 11.4 Hz, 1H), 5.96–5.88 (m, 2H), 5.85–5.72 (m, 2H), 5.76 (t, J= 10.8 Hz, 1H), 5.70 (d, J = 10.2 Hz, 1H), 5.57 (dt, J = 14.4, 7.2 Hz, 1H), 5.41 (t, J = 14.4, 7.4 (t, 10.8 Hz, 1H), 5.18-5.11 (m, 1H), 5.04 (dd, J = 9.6, 7.8 Hz, 1H), 4.34-4.17 (m, 5H), 4.01(t, J = 7.2 Hz, 1H), 3.97 (t, J = 6.6 Hz, 1H), 3.85 (dd, J = 4.8, 3.0 Hz, 1H), 2.70-2.63 (m, J = 4.8, 3.0 Hz, 1H), 2.70-2.63 (m, J = 4.8, 3.0 Hz, 1H), 3.85 (dd, J = 4.8, 3.0 Hz, 1Hz), 3.85 (dd, J = 4.8, 3.0 Hz, 1Hz), 3.85 (dd, J = 4.8, 3.0 Hz), 3.85 (dd, J = 4.8,1H), 2.54–2.46 (m, 1H), 2.15–2.07 (m, 1H), 1.93 (q, J = 7.2 Hz, 2H), 1.40–1.11 (m, 6H), 1.23 (s, 9H), 1.04 (s, 9H), 1.02 (d, J = 7.2 Hz, 3H), 0.85 (t, J = 7.2 Hz, 3H); ¹³C NMR (C₆D₆, 150 MHz) δ 162.2, 144.0, 143.93, 143.89, 143.83, 143.76, 141.78, 141.77, 141.76, 137.3, 136.5, 136.4, 136.2, 136.1, 135.1, 134.2, 133.7, 133.1, 131.9, 131.0, 130.8, 130.5, 130.4, 129.9, 129.8, 128.6, 127.5, 127.42, 127.38, 127.23, 127.20, 126.0, 125.9, 125.72, 125.66, 125.63, 125.56, 122.7, 122.0, 120.24, 120.17, 80.8, 78.8, 78.7, 70.5, 69.44, 69.40, 69.22, 69.19, 65.1, 48.5, 48.42, 48.39, 37.32, 37.31, 33.3, 31.8, 29.4, 29.2, 27.4, 27.0, 22.9, 19.7, 19.5, 14.2, 9.9; ³¹P NMR (C₆D₆, 160 MHz) δ-0.34; IR (film) ν_{max} 1732, 1108, 1006 cm⁻¹; HRMS (ESI-TOF) calcd for $C_{83}H_{91}O_8PSi_2 + Na^+$ 1325.5882; found 1325.5894.

Phostriecin (2). HF–pyr (0.38 mL) in 0.57 mL of THF was added at room temperature to a solution of **31** (11.2 mg, 0.00859 mmol) in THF (0.57 mL) and pyridine (0.14 mL) and was stirred for 4 d in the dark. The reaction mixture was carefully transferred to a gently stirred mixture of saturated aqueous NaHCO₃ (9 mL) and EtOAc (3.5 mL) and was stirred until CO_2 evolution ceased. The phases were separated, and the aqueous phase was extracted with EtOAc (5×6 mL). The combined organic extracts were dried (Na_2SO_4) and concentrated under vacuum. The crude residue of 32 was dissolved in MeCN (1.6 mL), and Et₃N (0.45 mL) was added at room temperature. The mixture was stirred overnight before toluene (1.9 mL) was added, and the mixture was concentrated under a stream of N₂. H₂O (2.7 mL) was added to the residue, and the mixture was washed with hexanes (5 \times 3 mL). The aqueous layer was concentrated under reduced pressure, and the residue was dissolved in 1:1 MeCN/H₂O and passed through a short column of Dowex–Na⁺ (2 cm \times 1 cm, 1:1 MeCN/H₂O eluent). The product-containing fractions were then concentrated under reduced pressure (the H₂O was azeotoped with MeCN), and the remaining residue was further purified by flash column chromatography (C₁₈ reverse phase SiO₂, 0–10% MeCN/H₂O gradient) to give 2.67 mg (63%) of 2 as a white solid: $[\alpha]^{25}_{D}$ +21 (c 0.12, MeOH; lit. $[\alpha]^{24}_{D}$ +23 (c 1.0, MeOH))⁵; ¹H NMR (CD₃OD, 600 MHz) δ 7.04 (dd, J = 9.6, 5.4 Hz, 1H), 6.60 (t, J = 11.4 Hz, 1H), 6.55 (dd, J = 15.0, 11.4 Hz, 1H), 6.25 (t, J = 11.4 Hz, 1H), 6.06 (d, J = 9.6 Hz, 1H), 6.01 (t, J = 11.4 Hz, 1H), 6.06 (d, J = 10.6 Hz, 1H), 6.01 (t, J = 10.6 Hz, 10.6 Hz) 11.4 Hz, 1H), 5.93 (dt, J = 15.6, 7.2 Hz, 1H), 5.82 (dd, J = 15.6, 7.2 Hz, 1H), 5.76 (dt, J =

⁵ Ohkuma, H.; Naruse, N.; Nishiyama, Y.; Tsuno, T.; Hoshino, Y.; Sawada, Y.; Konishi, M.; Oki, T. J. *Antibiot.* **1992**, *45*, 1239.

15.0, 7.2 Hz, 1H), 5.39 (dd, J = 10.8, 9.6 Hz, 1H), 4.86 (m, 1H), 4.64 (dddd, J = 9.6, 7.8, 7.2, 1.8 Hz, 1H), 4.58 (t, J = 9.6 Hz, 1H), 4.20 (dd, J = 5.4, 3.0 Hz, 1H), 2.67–2.59 (m, 1H), 2.40–2.32 (m, 1H), 2.14 (q, J = 7.2 Hz, 1H), 1.57–1.51 (m, 1H), 1.45–1.25 (m, 6H), 0.91 (t, J = 7.2 Hz, 3H), 0.82 (d, J = 7.2 Hz, 3H); ¹H NMR (DMSO- d_6 , 600 MHz) δ 6.98 (dd, J = 9.6, 5.4 Hz, 1H), 6.55 (dd, J = 14.4, 11.1 Hz, 1H), 6.47 (t, J = 11.4 Hz, 1H), 6.14 (t, J = 11.4 Hz, 1H), 5.98 (t, J = 11.1 Hz, 1H), 5.95 (d, J = 9.6 Hz, 1H), 5.80–5.72 (m, 2H), 5.63 (dd, J = 15.6, 7.2 Hz, 1H), 5.34 (t, J = 10.2 Hz, 1H), 4.79 (dd, J = 7.2, 3.0 Hz, 1H), 4.49–4.39 (m, 1H), 4.28 (t, J = 9.6 Hz, 1H), 4.08 (dd, J = 6.0, 3.0 Hz, 1H), 2.35–2.26 (m, 1H), 2.12–2.04 (m, 3H), 1.40–1.32 (m, 2H), 1.32–1.16 (m, 5H), 0.86 (t, J = 6.6 Hz, 3H); ¹³C NMR (CD₃OD, 150 MHz) δ 178.1, 166.3, 147.4, 138.0, 133.77, 133.75, 132.0, 127.9, 126.8, 126.6, 123.6, 122.7, 83.4, 74.21, 74.17, 68.8, 63.7, 44.44, 44.41, 38.2, 34.0, 32.7, 30.2, 23.6, 14.4, 9.2; ³¹P NMR (CD₃OD, 160 MHz) δ 3.4 (3.4–4.0, condition dependent); IR (film) ν_{max} 3414, 1719, 1662, 1088 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₃H₃₅O₈P + Na⁺ 493.1962; found 493.1966.

