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Methodological Approach for the Optimization Procedure. To inves-
tigate the accuracy of random location models, these models
must first be parameterized to match epidemics on the spatially
clustered data. This is done in the following way.

For the UK counties, we use the parameters which have
previously been identified to provide the best fit to the UK
2001 foot-and-mouth disease (FMD) epidemic (S1) and run
1,000 epidemics within each county using the 2001 farm demog-
raphy data for those counties (Cumbria, Devon, Aberdeenshire,
and Clwyd). For each epidemic, on each day, the cumulative
number of farms reported and culled, as well as the cumulative
number of cattle and sheep on such farms (parameter γ), are
stored. Ignoring any epidemics that do not takeoff, one epidemic
is then selected at random for the matching procedure (we note
that the particular choice of epidemic is incidental—this work is
focused on the ability of random location models to capture
epidemic behavior and control that would be seen on the spatially
clustered data). For each county, each farm is now allocated a
random location within the county borders and the random
location farm database model is now reparameterized to provide
a “best fit” to the epidemic seen on the “true” data. This param-
eterization is achieved by running 10,000 simulations of the
random location model and allowing the transmission kernel
parameters (kernel width and height, Kw and Kh, respectively)
to vary such that the average difference on a daily basis between
“simulated epidemics” from the random location data to the
“observed epidemic” simulated on the true spatial data for
parameter γ is minimized. Once this optimization has been
carried out, 10,000 simulations are run for the true data model
and for the random location model (with best fit parameters)
with ring culling included, to determine the optimal ring-cull
radius for each demography which minimizes the epidemic
impact.

In the US scenario, for datasets of all four counties investi-
gated (Lancaster, PA; Franklin, TX; Cuming, NE; and the adjoin-
ing counties of Wright and Humboldt, IA), the same procedure is
carried out. However, owing to much lower livestock densities in
the United States, should the United Kingdom parameters be ap-
plied directly to the US system, epidemics in these five counties
are restricted to a handful of farms in each case. However, it
would be naive to assume that the same transmission kernel
would be valid for an outbreak of FMD in the United States.
For the US counties, the kernel width Kw is scaled for the true
data in each county such that

KwðUSÞ
KwðUKÞ ¼

Df ðUKÞ
Df ðUSÞ [S1]

where KwðUKÞ is the width of the UK dispersal kernel,Df ðUKÞ is
the overall density of farms in the United Kingdom, and KwðUSÞ
and Df ðUSÞ are the width of the dispersal kernel and the overall
density of farms in the US county under consideration, respec-
tively. This scaling will, on average, preserve the overall number
of contacts per farm and result in much larger epidemics. The
epidemic impacts presented in Table 1 of the main text are there-
fore not an indication of epidemic impacts we would necessarily
expect in the event of an epidemic but are a feature of this scaling.
The scaling itself is carried out to investigate robustness of the
random location model results in the US scenario—a random
model will fit very easily to epidemics that do not takeoff and
optimal control policies for both the random model and true data

model will be identical (i.e., no ring culling); when the epidemics
do takeoff, the fitting procedure is much more complex and pre-
ferred ring-culling strategies are not obvious without simulation.

Random Density. To investigate clustering properties of the farm
data discussed in the main body of the paper, we consider a po-
pulation of N farms, indexed by i ¼ 1;…; N. Then NiðrÞ is the
number of farms a distance r from farm i, and

DiðrÞ≔
NiðrÞ
πr2

; N ¼ Nið∞Þ þ 1; ∀i: [S2]

We are particularly interested in the mean density

DðrÞ≔ 1

N∑
i

DiðrÞ; [S3]

although we may also wish to consider measures of farm-level
variability such as prediction intervals. In the case of an infinite
population with random locations, we expect DðrÞ ¼ �D. For a
finite l × l square, with internal uniform density of farms
�D ¼ N∕ðl2Þ and no external farms,

DðrÞ ¼ �D
�
1 −

r
l

�
þO

�
r
l

�
2

: [S4]

This explains the negative linear slope seen in spatially unclus-
tered farm networks in the main text.

Generation of Nonrandom Spatial Arrangement. Given a number of
points in a unit square, we generate a spatial arrangement with
target mean distribution DðrÞ using the following highly sche-
matic algorithm:

1. Assign x and y locations randomly to each point i, giving
ri ¼ ðxi; yiÞ.

2. Calculate the current mean distribution ~DðrÞ and calculate the
error ~ϵ ¼ jD − ~Dj2.

3. Pick a random point j and propose a new location
r̂j ¼ ðxj þ δx; yj þ δyÞ where δx, δy are drawn from a normal dis-
tribution of unit variance until the proposed location lies with-
in the square.

4. Calculate the modified distribution D̂ðrÞ if the location of j
were changed to the proposal.

5. If ϵ̂ ¼ jD − D̂j2 > ~ϵ, accept by setting rj → r̂j and ~D → D̂.
Otherwise leave the system unchanged.

6. Repeat steps 3–5 until convergence or failure.

Empirically, we find convergence for all the distributions that we
wish to consider.

Parameterization of Nonrandom Spatial Arrangement. We are inter-
ested in monotonically decreasing functional forms for DðrÞ,
which means from the theory of Z transforms that we can write
the mean density in the form

DðrÞ ¼ Sþ ∑
mmax

m¼1

Ame−kmr; [S5]

where mmax represents the number of terms used in the sum of
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exponentials, and the total number of parameters in the model
will beM ¼ 1þ 2mmax. Clearly, increasingM will provide a more
accurate description of the mean spatial arrangement, but poten-
tially at the expense of introducing excess parameters into the
model. We therefore make use of the Akaike information criter-
ion (S2) to justify an ansatz for mean density. Given a set of n
distances, at which the mean density is sampled, we use nonlinear
least squares fitting to fit a model to the data points fDðraÞg for
a ¼ 1;…; n. For a model prediction f ~DðraÞg, the residual sum of
squares is

R ¼ ∑
n

a¼1

ðDðraÞ − ~DðraÞÞ2: [S6]

We then try to minimize the standard AIC:

A ¼ 2M þ n
�
ln
�
2πR
n

�
þ 1

�
: [S7]

This process is applied in Fig. S1. Fig. S1A shows the distance
kernel for infection, which motivates a set of distance bins and
a distance cutoff. The binned mean density distribution of farms
defined in Eq. S3 in Cumbria is shown in Fig. S1B, together with
prediction intervals showing the variability at individual farm le-
vel. This binned mean is shown as a series of circles in Fig. S1C. A
sequence of fitted curves corresponding to different values of M
within the general ansatz of Eq. S5 is also shown in Fig. S1C. The
value ofA as defined above for each of these is shown in Fig. S1D,
showing that the value of M ¼ 3 used in the text provides a good
fit, andM ¼ 5 (investigated below) is actually preferred.M ¼ 7 is
formally optimal—over this value extra parameters do not pro-
vide a better adjusted fit, however, given both the extremely small
information-theoretical likelihood gain and our epidemiological
results, we do not consider this extra complexity to be justified.

Results for the Two-Exponential Model. For the two-exponential
model, we again generate farm populations in a 50 × 50 km grid,
with a variety of density profiles as defined by the parameters in
Eq. 2 in the main text. To explore networks with highly spatial
clustering, we assign the following ranges to the parameters in
Eq. 2:

1 ≤ S0 ≤ 100 0.1 ≤ Sinf ≤ 1.0 0 ≤ A ≤ 1

0.1 ≤ B0 ≤ 10
[S8]

With these parameter values, farm networks of 1,000 and 2,000
premises are generated. We note that, given that all other para-
meters are defined, in addition to the number of farms in the net-

work and the area of the domain, the final parameter B1 can be
calculated in terms of the remaining parameter values. The same
investigation as described in the main text is carried out, in that
epidemics are simulated on the generated farm networks and a
random location model is fitted to each one with variation of Kh
and Kw. Each network is then investigated for the optimal value
of ring-cull radius which minimizes the epidemic impact for the
random and spatially clustered networks.

The results for networks of 2,000 farms are summarized in
Fig. S2 (the same overall behavior is found for 1,000 farm net-
works). As S0∕Sinf is increased, withA and B0 fixed, farms become
increasingly spatially clustered (Fig. S2A–D). For farm networks
with low S0∕Sinf and a corresponding low degree of clustering
(Fig. S2A and B), optimal ring-cull radius is independent of pre-
cise knowledge of farm location after reparameterization
(Fig. S2A and B). As S0∕Sinf is increased, farms appear more spa-
tially clustered (Fig. S2C and D) and a random location model
tends to overestimate optimal ring-cull radius (Fig. S2C and
D). In the case of a 2,000 farm network, the increased overall
density means that there is more spatial structure apparent be-
tween clusters than for a 1,000 farm network. The effect of over-
culling in this case results in an increase in epidemic impact of
around 20% (or around 25 farms) over ring culling at the optimal
radius in the worst-case scenario (Fig. S2C). However, ring cul-
ling at this radius still “saves” around 88% of the farms that would
have livestock culled if no ring culling were carried out. We again
observe a flattening out of the epidemic impact curve for the
spatially clustered data in this case (Fig. S2C). For very highly
clustered farm networks (S0∕Sinf ¼ 1; 000), although the random
model still predicts larger ring sizes than the optimal value on the
spatially clustered data, the effect of this overculling is reduced
(Fig. S2D). The effects of increasing B0 (with S0∕Sinf ¼ 250 and
A ¼ 0.8) are summarized in panes Fig. S2E–H. A similar effect to
increasing S0∕Sinf is observed: increasing B0 causes farms to be
increasingly densely clustered (Fig. S2E–H). The random data
again slightly overpredict the optimal ring-cull radius with, in a
worst-case scenario, a corresponding increase in epidemic impact
of around 20% (or 40 farms, Fig. S2E). As farms become increas-
ingly clustered, the effect on epidemic impact of this overculling is
found to decrease (Fig. S2F–H). Therefore, as the density of the
farm network increases, it is not, as might be naively suggested,
the very highly clustered demographies that would result in the
largest increase in epidemic impact if the random model were
assumed. Rather it is the “larger cluster” networks, with limited
intermediate structure between clusters, for which the random
model causes the greatest increase in epidemic impact. We note
that, of all the county data analyzed in this paper, none are as
clustered as these “intermediate” cases, and it is important to es-
tablish whether such farm demographies exist in practice.
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Fig. S1. Parameterization of spatial clustering in Cumbria. (A) Model infectivity kernel, which motivates a set of distance bins and a cutoff. (B) the mean
binned density is shown together with the intervals within which 50% and 95% of farm-level binned density profiles sit. A sequence of exponential fits and
their AIC values are shown in (C) and (D).
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(a) S0/Sinf=10, B0=5, A=0.2
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(b) S0/Sinf=20, B0=5, A=0.2

0 10 20 30
0

500

1000

1500

2000

ring-cull radius (km)

E
pi

de
m

ic
 Im

pa
ct

Random data
Truth data

0 10 20 30 40 50
0

10

20

30

40

50

(c) S0/Sinf=100, B0=5, A=0.2
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(d) S0/Sinf=1000, B0=5, A=0.2
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(e) B0=0.1, S0/Sinf=250, A=0.8
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(f) B0=1, S0/Sinf=250, A=0.8
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(g) B0=5, S0/Sinf=250, A=0.8
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(h) B0=10, S0/Sinf=250, A=0.8

Fig. S2. Spatial location of farms (first column) and mean epidemic impact against ring cull radius for the random data (red line) and the spatially clustered
data (blue line) for farm networks with different degrees of spatial clustering. Each network consists of 2,000 farms. In (A)–(D), B0 ¼ 5 and A ¼ 0.2with S0∕Sinf
varying such that (A) S0∕Sinf ¼ 10, (B) S0∕Sinf ¼ 20, (C) S0∕Sinf ¼ 100, and (D) S0∕Sinf ¼ 1; 000. In (E)–(H), S0∕Sinf ¼ 250, A ¼ 0.8 with B0 varying such that
(E) B0 ¼ 0.1, (F) B0 ¼ 1, (G) B0 ¼ 5, and (H) B0 ¼ 10. For the epidemic impact panes, raw data for both the random data (red dots) and spatially clustered
data (blue dots) are also given.
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