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Models and Computation. We modified the Bayesian epistasis
association mapping (BEAM) method designed for SNP-based,
genome-wide association studies to suit for the analysis of
HIV drug resistance data. The original BEAM model assumes
that each marker (or variable) takes on the same number of
possible values, which is reasonable for SNP data. Here in drug
resistance data, each variable (mutation position) can take up to
20 amino acid types. But in reality only a small number of the 20
amino acid types can be observed at each mutation position. Be-
cause the sample size of our data is fairly large, we assume that
the number of possible values each variable takes is the number
of distinct values observed for that variable in the data.

Details of BVP. Suppose Nt and Nu HIV protease sequences were
extracted from treated (Y ¼ 1) and untreated (Y ¼ 0 ) patients,
resp. These sequences have p-mutation-prone positions (we also
call them “explanatory variables,” or “variables,” henceforth).
Each position, j, can take Lj possible values. Following the
description in Methods and Materials, we seek to partition the
p-positions into three groups. Group one contains positions that
independently influence the status variable Y , group two collects
positions that interactively influence Y , and group zero holds
those that are independent of Y . We use the indicator vector I ¼
ðI1; :::; IpÞ with Ij ¼ 0; 1; 2 to denote the partition of the variables,
and let l0;, l1;, and l2 denote the numbers of variables in each
group, resp.

Let ðX;YÞ represent all the observed data. We can write the
partition of the p-positions (variables) of each observed sequence
as Xi;G0

¼ fXij : Ij ¼ 0g; Xi;G1
¼ fXij : Ij ¼ 1g; and Xi;G2

¼
fXij : Ij ¼ 2g, which leads to the decomposition of all the treated
sequences as X1

G0
¼ fXi;G0

: Y i ¼ 1g, X1
G1

¼ fXi;G1
: Y i ¼ 1g, and

X1
G2

¼ fXi;G2
: Y i ¼ 1g. The corresponding decomposition of all

the untreated sequences, X0, is X0 ¼ X0
G0
∪X0

G1
∪X0

G2
¼

fXij : Y i ¼ 0g. Because variables in group zero are independent
of Y , X1

G0
, and X0

G0
follow the same multinomial distribution. On

the other hand, observations X1
G1

and X1
G2

from the treated se-
quences on variables in groups one and two should follow distri-
butions different from the corresponding observations X0

G1
and

X0
G2

from the untreated sequences.
For variables in group one, we let Θ1 ¼ fðθj1; θj2; :::; θjLj

ÞT :

Ij ¼ 1g be the mutation frequencies of the treated population,
we then have

PðX1
G1
jΘ1;I;YÞ¼

Y
i:Y i¼1

Y
j:Ij¼1

PðXijjΘ1;I;YÞ¼
Y
j:Ij¼1

YLj

k¼1

ðθjkÞnjk ;

where fnj1; :::; njLj
g are the counts of different types of mutations

observed at each j of all the treated sequences. Using Dirichlet
ðαjÞ as a prior distribution for fθj1; :::; θjLj

g, in which
αj ¼ ðαj1; :::; αjLj

Þ are called prior pseudo-counts, we integrate
out Θ1to obtain that

PðX1
G1
jI;YÞ¼

Y
j:Ij¼1

��YLj

k¼1

ΓðnjkþαjkÞ
ΓðαjkÞ

�
ΓðjαjjÞ

ΓðNtþjαjjÞ
�
: [S1]

Here, the operation jαjj sums over all elements in αj.
In group two, multiple positions contribute jointly to the drug

resistance through interactions. Correspondingly, each possible

mutation configuration over the l2 variables (positions) in group
two represents a potential interaction. Thus, we use a saturated
multinomial distribution for X1

G2
. There are Q ¼ Q

j:Ij¼2Lj possi-
ble mutation configurations and each has a corresponding
frequency ρk in the treated population. Let Θ2 ¼ ðρ1; :::; ρQÞ.
Then, the conditional probability of X1

G2
is

PðX1
G2
jΘ2;Y;IÞ¼

YQ
k¼1

ρnkk ;

where nk is the number of occurrences of mutation configuration
k observed in X1

G2
. Using a Dirichlet (β) prior for Θ2 with pseudo-

counts vector β ¼ ðβ1; :::; βQÞ, we integrate out Θ2 and obtain the
marginal probability:

PðX1
G2
jI;YÞ¼

�YQ
k¼1

ΓðnkþβkÞ
ΓðβkÞ

�
ΓðjβjÞ

ΓðNtþjβjÞ: [S2]

The data X1
G0

consist of observations from the treated population
on positions that are not associated with the drug resistance.
Hence, they follow the same distribution as X0

G0
and can be com-

bined with the untreated data. In the main paper, we also intro-
duce a model indicator Jun so that the observations at positions in
G2 in the untreated population are modeled as mutually indepen-
dent when Jun ¼ 0, and as a saturated multinomial distribution
when Jun ¼ 1. We derive the marginal probability of X1

G0
∪X0 un-

der the independence model (Jun ¼ 0) below and note that the
computation is similar when Jun ¼ 1. Let Θ ¼ ðθ1;…; θpÞdenote
the mutation frequencies in the untreated population over the p
positions, where θj ¼ ðθj1; θj2;…; θjLj

Þ is the frequency at position
j. We have

PðX1
G0
;X0jΘ;I;Y;Jun¼0Þ¼

Yp
j¼1

YLj

k¼1

θ
mjk

jk ;

where mjk is the number of occurrences of mutation type k ob-
served at position j in fX1

G0
∪X0g. Using Dirichlet (αj) priors for θj

with αj ¼ ðαj1; αj2;…; αjLj
Þ, we integrate out the θj and obtain that

PðX1
G0
;X0jI;Y;Jun¼0Þ¼

Yp
j¼1

��YLj

k¼1

ΓðmjkþαjkÞ
ΓðαjkÞ

�

×
ΓðjαjjÞ

Γð∑
Lj

k¼1
mjkþjαjjÞ

�
: [S3]

The posterior probability of the partition indicator I can be
expressed as

PðIjY;X;Jun¼0Þ∝PðX1
G1
jI;YÞPðX1

G2
jI;YÞ

×PðX1
G0
;X0jI;Y;Jun¼0ÞπðIÞ: [4]

The prior distribution πðIÞ of the group indicator reflects the
prior knowledge of both the total number and importance of po-
sitions associated to the drug resistance. In our implementation,
we chose the multinomial prior πðIÞ ∝ pl11 p

l2
2 ð1 − p1 − p2Þp−l1−l2 , in

which parameters p1; p2 are the expected proportions of candi-
date positions that belong to groups one and two, resp. The prior
on Jun was Bernoulli (0.5). We observed that the final results were
insensitive to the priors on I and Jun.
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Recursive Model Selection. Model likelihood for the chain-dependence
model. Suppose that XG follows a chain-dependence model and
has the structure XA → XB → XC. Assume that XA takes onNA
possible values, following Multinom (ΘA), where ΘA ¼
ðθA1 ; :::; θANA

Þ. The prior distribution for ΘA is DirichletðβAÞ with
the pseudo-counts vector βA ¼ ðβA1 ; :::; βANA

Þ in which βAk ¼
n0∕NA. This prior (and others) is chosen based on the likelihood
equivalent principle of the Bayesian network (1). Marginally,
this prior gives n0 pseudo-counts per variable. We ran the
RMS method with n0 ¼ 1, 2, 3, . . . . . , 7 and found no difference
in the results (see next section). Suppose XB takes onNB possible
va lues , andPðXBjXAÞ ¼ Multinom (ΘBjXA

) wi th ΘBjXA
¼

ðθB1;XA
;…; θBNB;XA

Þ. We let ΘBjXA
∼Dirichlet (fβBjAijXA

gi¼1;:::;NB
) a

priori, with βBjAijXA
¼ n0∕ðNANBÞ. Lastly, suppose XC takes onNC

possible values; PðXCjXBÞ ¼ Multinom(ΘCjXB
) with ΘCjXB

fol-

lowing DirichletðfβCjBi;XB
gi¼1;…;NC

Þ a priori. Again, we set βCjBi;XB
¼

n0∕ NBNCð Þ.
Suppose our data D consists of n-iid observations (n ¼ Nt in

treated group and n ¼ Nu in untreated group) on
XG ¼ ðXA; XB; XCÞ, we want to compute the likelihood of the
chain-dependence model, that is , PðDjΠ; ICV ¼ 1Þ. For simpli-
city, we suppress the model indication variable ICV ¼ 1 in the fol-
lowing derivation. We summarize the data as counts
corresponding toXA, XBjXA, and XCjXB, and decompose the
model likelihood as

PðDjΠÞ¼PðDAjΠÞPðDBjDA;ΠÞPðDCjDB;ΠÞ: [S5]

That is, we let nA ¼ ðnA1 ;…; nANA
Þ, where nAk is the number obser-

vations whoseXA takes on the kth configuration. Integrating out
the multinomial parameters, we obtain that

PðDAjΠÞ¼
ΓðnAþβAÞ

ΓðjnAjþjβAjÞ
ΓðjβAjÞ
ΓðβAÞ

≡
�YNA

k¼1

ΓðnAk þβAk Þ
ΓðβAk Þ

� Γð∑
NA

k¼1
βAk Þ

Γðnþ∑
NA

k¼1
βAk Þ

; [S6]

where we define ΓðvÞ ¼ Γðv1Þ⋯ΓðvkÞ for v ¼ ðv1;⋯; vkÞ. Simi-
larly, we obtain that

PðDBjDA;ΠÞ¼
YNA

i¼1

�ΓðnBjA·ji þβBjA·ji Þ
ΓðnAi þjβBjA·ji jÞ

ΓðjβBjA·ji jÞ
ΓðβBjA·ji Þ

�
; [S7]

where nBjA
·ji ¼ ðnBjA

1ji ;…; nBjANB jiÞ, with nBjAjji recording the number of

observations in which XA ¼ i and XB ¼ j. Thus, jnBjA
·ji j ¼

nBjA
1ji þ⋯þ nBjANB ji ¼ nAi . Finally, we get

PðDCjDB;ΠÞ¼
YNB

j¼1

�ΓðnCjB
·jj þβCjB·jj Þ

ΓðnBj þjβCjB·jj jÞ
ΓðjβCjB·ji jÞ
ΓðβCjB·jj Þ

�
: [S8]

Thus, the likelihood PðDjΠÞ for the chain-independence model is
the product of Eq. S6minus S8. If we assign a prior on Π, such as
uniform, we obtain its posterior distribution by combining the
prior with the likelihood PðDjΠÞ and use an MCMC algorithm
to sample from or optimize this posterior distribution.

Model likelihood for the V-structure model. Now suppose the set of
variables XG follow a V-structure model. Then the model likeli-
hood (suppressing the notation ICV ¼ 0), can be decomposed as

PðDjΠÞ¼PðDAjΠÞPðDCjΠÞPðDBjDA;DC;ΠÞ: [S9]

With the samemultinomial-Dirichlet distribution on XA, we com-
pute PðDAjΠÞ as in Eq. S6. Let NC be the number of possible
values XC can take. We let XC ∼ Multinom , ðΘCÞ, with ΘC ¼
ðθC1 ; :::; θCNC

Þ following the Dirichlet ðβCÞ distribution a priori,
where βC ¼ ðβC1 ; :::; βCNC

Þ with βCj ¼ n0∕NC. Let nCk be the number
of times XC takes on value k in our observations DC. Thus, we
have

PðDCjΠÞ¼
ΓðnCþβCÞ
ΓðnþjβCjÞ

ΓðjβCjÞ
ΓðβCÞ : [S10]

Finally, we let θBjACi ¼ fθBjACjji ; j ¼ 1; :::; NBg for i ¼ 1; :::; NA × NC

be transition probabilities between A∪C and B, and let nBjACjji be
the number of transitions from allele combination i of
the union of A and C to allele combination j of group B.
We assign a Dirichlet prior to θBjACi with parameter βBjACi ¼
ðβBjACjji ; j ¼ 1; :::; NBÞ. We set βBjACjji ¼ n0∕ðNANCNBÞ in our analy-

sis. Integrating out θBjACi , we get

PðDBjDA;DC;ΠÞ¼
YNA×NC

i¼1

��YNB

j¼1

ΓðnBjACjji þβBjACjji Þ
ΓðβBjACjji Þ

�
ΓðjβBjACi jÞ

ΓðnACi þjβBjACi jÞ

�
:

[S11]

The model likelihood Eq. S9, in this case, is thus the product of
Eqs. S6, S10, and S11.

Robustness of BVP and RMS to prior specifications. To check the sen-
sitivity of the posterior analysis to different prior distributions
used for the group partition of the BVP model, we tested two
different priors: the first prior assumes that the variables are
equally likely to be unassociated, individually associated, or inter-
actively associated with the treatment (i.e., 1∕3 of all the markers
to be in group zero, group one, or group two); the second prior
assumes that, on average, there are only two variables in group
one, two variables in group two, and all the others in group zero.
For each prior, we ran 1,000 independent MCMC chains to sam-
ple from the posterior distribution. Fig. 1B shows the posterior
probabilities for each variable to be associated with indinavir
treatment interactively based on the samples from 1,000 chains.
We can see that the results from using different priors are not
much different from each other, thus, in this case, the posterior
probabilities are not sensitive to priors. We also tested the robust-
ness of the BVP with respect to the total number of pseudo
counts: jαjj in Eq. S1, jβj in Eq. S2, and jαjj in Eq. S3. For them
being 1 and 10, we got the same results.

For the RMS method, we prescribe the prior distributions for
the multinomial parameters in each candidate model according
to the rules of likelihood equivalence and prior modularity
described in Heckerman et al. (1995)1. Marginally, the Dirichlet
prior gives n0 pseudo-counts per variable. In other words, the
“strength” of the prior belief is equivalent to n0 observations
on each of the variables. We tested the robustness of RMS with
respect to the specification of n0. For n0 ¼ 1, 2, . . . . . ,7 the results
for the HIV drug resistance data were the same as that shown in
Fig. 2. For n0 ¼ 8, 9, 10 some ambiguities between different
model types arose, but the main structures remained the same.

MCMC sampling for RMS. We use a MCMC algorithm to simulate
from Eq. 1 of the main text so as to estimate the posterior dis-
tribution of ICV and Π. We use the Metropolis-Hastings (MH)
algorithm (2) to update the variables under the constraints that,
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for the chain-dependence model, groups A and B cannot be
empty, and for the V-dependence model, group A cannot be
empty. Three types of proposals were used: (i) randomly changing
a marker’s group membership, (ii) randomly exchanging two
markers between groups A, B, and C, or (iii) randomly switch
ICV . The proposed move is accepted according to the MH ratio,
which is a ratio of Gamma functions. We use an annealing strat-
egy in burn-in iterations with a temperature set high initially and
gradually reduced to one.

Results for Indinavir. Phenotype data confirm the top interaction pat-
terns.The first interaction pattern discovered by the BVP method
from the treated sequences (with posterior probability >0.5) in-
volves positions f24; 32; 46; 54; 82g. We found 24 configurations
of this five-way interaction showing up at least five times in both
treated and untreated samples (Table S2), of which all have
significantly different frequencies in treated versus untreated
samples (p-value <0.001 after Bonferroni correction). More
than 96% of the untreated samples bear the wild type
fL24; V32;M46; I54; V82g, while only 53.7% of the treated
samples have this configuration. The occurrence frequency of
configuration fL24; V32; M46; I54; V82Ig in the treated samples
is also significantly lower than that in the untreated ones, which
supports the hypothesis that V82I makes the virus more suscep-
tible to indinavir (3).

For the other 22 significant configurations, they all occurred
more frequently in the indinavir-treated samples than in the
untreated. Phenotypic data provide confirming evidence for 21
of them: median-fold resistance (defined as fold-decreased sus-
ceptibility compared to wildtype of viruses in Stanford HIVdb
website) ≥3.2, the first quartile ≥2.0, and the third quartile
≥10. The only configuration that phenotypic data do not provide
confirming evidence is fL24; V32;M46; I54; V82Tg, with only
nine phenotypic samples. However, V82T is listed as a major
indinavir resistance mutation in the Drug resistance Mutation list
(4) of 2008. Because we found no positional mutation that is
present in all the interaction patterns, it is possible that multiple
genetic pathways and different mechanisms exist for indinavir
drug resistance3.

Dependence structures of drug resistance interactions of indinavir.
After finding those interacting mutations, we applied our
Bayesian model selection method to detect detailed structures
of interaction to those mutations: 10, 24, 32, 46, 47, 54, 71, 73,
82, and 90. Fig. 2 shows the process of RMS for inferring the
dependence structure. At each step, we tried to distribute the
variables into two or three subsets which entail the chain-
dependence or V-dependence structure models (Methods and
Materials). At each step if there is one structure with overwhelm-
ingly high posterior probability (e.g., the posterior probability
>0.9), we choose that structure and proceed. If there are two
or more competing structures, like the case for 10 and 71, then
we are not able to confidently infer the dependence structure
model and in Fig. 2 we use a “?” to denote such situations.

We first applied RMS to the set of mutation positions: 10, 24,
32, 46, 47, 54, 71, 73, 82, and 90. The top structure we found has a
posterior probability >0.9. This splits the 10 positions into two
independent groups: group A contains 24, 32, 46, 47, 54, and
82; group C contains 10, 71, 73, and 90; and group B is empty.
This special V-dependence structure suggests that the drug resis-
tance effects of these two groups have little to do with each other
(Fig. 2). Then, we applied the same method to each group and
found that the group f10; 71; 73; 90g can be further split into two
smaller marginally independent groups: one of 10 and 71, the
other of 73 and 90. This structure has a posterior probability
>0.9. However, for the group f24; 32; 46; 47; 54; 82g, we found
two competing structures each with posterior probability >0.4:
one is a marginal independence structure with 24 alone in one

group and all the other 5 in another, the other structure is also
a marginal independence structure with 47 in one group and all
the other 5 in another. This ambiguity suggests that either the
data do not contain enough information for us to figure out
the underlying structure, or both 24 and 47 are marginally inde-
pendent (very weak interactions) with all the other four and with
each other (in this case, both of the top two structures we found
are correct). Similarly, we are not able to confidently detect in-
dependences (either conditional or marginal) between 10 and 71,
and also between 32, 46, 54, and 82. But for 73 and 90, there is a
very strong interaction between them. For 46, 54, and 82 (which
are known as the main mutations for indinavir drug resistance), a
very strong chain-dependence structure is detected with a poste-
rior probability almost one. That is, 46 and 54 are conditionally
independent given 82, denoted as 42⊥54j82 in Fig. 2.

Double mutations at positions of 46 and 54 rescue the resistance
caused by mutation at position 46. From Table 1 we found that,
although a single mutation at 46 decreases the binding affinity
of indinavir, 46 and 54 together do not. To understand how muta-
tions at positions 46 and 54 compensate each other, we conducted
free energy decomposition analyses on M46I and M46I/I54V, as
shown in Fig. 3. There are 14 residues with an absolute value of
ΔΔG larger than 0.75 kcal/mol (Fig. 3A1). Nine of these residues
formmore favorable interactions with indinavir in theM46I/I54V
mutant than in the M46I mutant, and the remaining five residues
do the opposite. Fig. 3B1 shows the structural distributions of
these important residues in the HIV-1 protease. Compared with
the single mutation M46I, the additional mutation at 54 also
significantly changes the conformation of the binding pocket
(The p-value associated with the difference in the mean RMSD
values of ligand in M46I single mutant versus that in M46I/I54V
double mutant is <10−20), which affects the interactions between
indinavir and residues located distantly from the mutated posi-
tions of 46 and 54, and neutralizing the loss of affinity caused
by the mutation at position 46. Such a conformational change
of the binding pocket can be seen clearly when the average struc-
tures of the M46I/I54V and the M46I complexes are superim-
posed (Fig. 3C1).

Double mutations at positions of 54 and 82 amplify the resistance
caused by mutations at position 82.Although the single I54V muta-
tion does not weaken the binding of indinavir, it reinforces the
virus’ drug resistance capability caused by the V82A mutation.
Fig. 3A1–C1 shows the comparison between free energy decom-
position results of the I54V/V82A double mutations and the
V82A single mutation. There are 14 residues with an absolute
value of ΔΔG larger than 0.75 kcal/mol (Fig. 3A2), among which
seven form more favorable interactions with indinavir in the
I54V/V82A mutant than in the V82A mutant. Fig. 3B2 shows
the structural distributions of these important residues in the
HIV-1 protease. Similar to the M46I/I54V double mutations,
the mutation at position 54 also significantly changes the confor-
mation of the binding pocket (The p-value associated with the
difference in the mean RMSD values of ligand in V82A single
mutant versus that in I54V/V82A double mutant is 9.85 � 10−19),
as shown by the alignment of the average structures of the
I54V/V82A and the V82A complexes in Fig. 3C2 that
affects the interactions between indinavir and residues located
distantly from the mutated positions of 54 and 82 and may have
amplified the drug resistance caused by the mutation at posi-
tion 82.

Group of 73 and 90: Another mechanism. For the three mutations in
group two (i.e., G73S, L90M, and G73S/L90M), the calculated
relative binding free energies are 0.85, -0.37, and 0.51 kcal/mol
(Table 1), resp., suggesting that these three mutations do not

Zhang et al. www.pnas.org/cgi/doi/10.1073/pnas.0907304107 3 of 15

http://www.pnas.org/cgi/doi/10.1073/pnas.0907304107


significantly impair the binding of indinavir. Because G73S usual-
ly occurs with L90M and the mechanism by which L90M causes
PI resistance is still unknown (3). These calculations are consis-
tent with observations made in previous experiments (2, 5) In Liu
et al., (5) little change was observed in the inhibitory effect of
indinavir to the G73S mutant (ki ¼ 0.55 nM) compared with
the wild-type protease (ki ¼ 0.54 nM), while obvious differences
were observed for inhibition by different substrates. In Mahalin-
gam et al. (2) the non-active site mutant, L90M, was observed to
slightly improve the inhibition by indinavir but lower the dimer’s
stability. Taking together our calculations and previous experi-
ments, we hypothesize that the non-active site mutations G73S
and L90M may cause drug resistance by affecting the inhibition
of substrates or the dimer stability of the HIV-1 protease instead
of impairing the binding of indinavir. The facts that the binding
free energy analysis can explain very well the resistance of the
f46; 54; 82g group but not the f73; 90g group, and that they form
independent interaction groups statistically indicate that these
two groups may cause drug resistance through two independent
mechanisms.

Results for zidovudine. Zidovudine is not designed to bind to RT
and block the function of RT (unlike indinavir and nevirapine in
the following), but rather to compete with natural dNTPs for
incorporation into the newly synthesized DNA chains where it
causes chain termination. Therefore, we cannot investigate its
structural basis of resistant mutations using MD simulations
and free energy decompositions like what we do for indinavir
and nevirapine. To date, three biochemical mechanisms of NRTI
drug resistance have been identified or proposedS4,22. The first
mechanism enables RT to discriminate against NRTIs from
the analogous dNTP, so the NRTIs are not added to the growing
DNA chain. The second mechanism alters RT-template/primer
interactions, and thus may influence subsequent NRTI incorpora-
tion. The third mechanism increases the rate of removal of the
chain-terminating NRTI residue from the 3’ end of the primer
and enables DNA synthesis. These different resistance mechan-
isms seem to correlate with different sets of mutations in RT22.
But further biochemical investigations are needed to confirm
which mechanism corresponds to which independent muta-
tion set.

Results for nevirapine.
Molecular dynamic simulation results.
As the case of indinavir, we also conducted molecular dynamics
simulations and free energy calculations for single mutations we
found for nevirapine. The predicted binding free energies and the
corresponding energy components for the wild-type and five mu-
tated RT/nevirapine complexes are shown in Table 2. Among all
energy components, the van derWaals interaction (−39.4 ∼ −42.6
kcal/mol) is much more favorable for the nevirapine’s binding
than the other energy terms, whereas the total electrostatic con-
tribution to inhibitor binding (ΔEeleþ ΔGGB) is unfavorable
(12.9 ∼ 15.2 kcal/mol). The correlations between the predicted
binding free energies and each of the three important energy
terms, ΔEvdw, ΔEele, and ΔGPB, were calculated, and the
corresponding correlation coefficients are 0.84, 0.63, and
−0.29, resp., implying that the drug resistant mutations primarily
affect the van der Waals interactions between nevirapine and RT.

The mechanism of drug resistance caused by single mutations.
According to the experimental data, the five mutation patterns
we studied here are the most common mutations in viruses from
patients with virologic failure (6). According to Table 2, for the
five mutations we studied here, three of them lead to the obvious
decrease of the total binding free energy of nevirapine, including
G190A (3.02 kcal/mo), K103N (0.72 kcal/mol), and Y188C

(3.33 kcal/mol), and four of them lead to the decrease of the
van der Waals interactions between nevirapine and RT, including
G190A (2.23 kcal/mol), V106N (0.59 kcal/mol), Y181C
(0.37 kcal/mol), and Y188C (2.48 kcal/mol).

In order to make a thorough investigation of influence of the
mutations to the binding of nevirapine, the nevirapine/residue in-
teractions in each of the mutated complexes and the wild-type
complex were decomposed and compared to one another. Fig. S3
shows the subtraction between the nevirapine/residue interac-
tions of the wild-type complex and those of the mutated com-
plexes (the residues with absolute difference larger than 1.5
kcal/mol were labeled).

Drug resistance caused by K103N. In Fig. S3, for K103N no residue
was found to have large difference of binding free energy; that is
to say, the K103N mutation does not significantly change the
binding mode of nevirapine in the active site of RT. This is
consistent with the previous structural investigation of mutations
at 103. Structural Studies of HIV-1 RT with K103N, in both
unliganded and bound to an NNRTI, have shown that the struc-
ture is only minimally changed in that, in the unliganded form, it
forms a network of hydrogen bonds that are not present in the
wild-type enzyme24. It is likely that those changes stabilize the
closed pocket form of the enzyme and interfere with the ability
of inhibitors to bind to the enzyme.

Drug resistance caused by other single mutations.
For the other four mutation patterns, 2 ∼ 6 residues were found
to have large differences of binding free energies. According to
Fig. S6, the interactions between nevirapine and the mutated re-
sidue usually decrease significantly. For example, at position 106,
the loss of interaction caused by the V106Amutation is ∼3.0 kcal/
mol. At position 181, the loss of the interaction caused by the
Y181C mutation is ∼4.0 kcal/mol. At position 188, the loss of
the interaction caused by the Y188C mutation is ∼4.0 kcal/
mol. Therefore, the loss of the binding of the mutated residue
is an important contributor for the loss of the binding free
energies of nevirapine. Another observation from Fig. 1 is that
some residues, in addition, to the mutated residues are also in-
volved in the change of the binding. For example, the V106A mu-
tation impair the interactions between nevirapine and two
residues at positions 181 and 188 while enhance the interactions
between nevirapine and three residues at positions 227, 235,
and 236.

Clinical implications of dependence structures of drug resistance inter-
actions. For clinical practitioners, not only a drug resistance mu-
tation list, like the one published by the IAS–USA Drug
Resistance Mutations Group (Fig. 1A), is very useful, but also
a table that provides information about interaction patterns
and the probability that the HIV virus in the infected patient’s
body will resist to the drug given the configuration of these inter-
action patterns (a table, like Table S2, with a probability or risk
attached to each configuration) will be very handy for clinicians
treating these patients. Knowing the conditional or marginal in-
dependence structures of these interaction patterns will greatly
reduce the size of such tables. For example, since we know group
f24; 32; 46; 47; 54; 82g and group f73; 90g are marginally inde-
pendent, it is not necessary to make a large table containing
all the markers of 24, 32, 46, 47, 54, 73, 82, and 90. Instead,
we only need two smaller tables, one for each group.

Let A denote the configurations of group f24; 32; 46;
47; 54; 82g. Suppose there are totallyGA configurations, then A
can take values from 1–GA. Let B denote the configurations
of group 73 and 90, taking values from 1–GB. Let R denote
whether the virus resists to the drug: R ¼ 1 or R ¼ 0. The odds
(the ratio of chance that a virus resists to a drug to the chance that
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it does not) of a configuration of AB is wAB ¼ PðR¼1jABÞ
PðR¼0jABÞ ¼

PðR¼1Þ
PðR¼0Þ

PðABjR¼1Þ
PðABjR¼0Þ.

Because group f24; 32; 46; 47; 54; 82g and group f73; 90g are
marginally independent in both populations (R ¼ 1 and
R ¼ 0), the odds can be written as wAB ¼ PðR¼1jABÞ

PðR¼0jABÞ ¼
PðR¼1Þ
PðR¼0Þ

PðABjR¼1Þ
PðABjR¼0Þ ¼ PðR¼1Þ

PðR¼0Þ
PðAjR¼1Þ
PðAjR¼0Þ

PðBjR¼1Þ
PðBjR¼0Þ. The odds ratio of a mu-

tant type AB to wildtype A0B0 is

wAB

wA0B0

¼
PðR¼1Þ
PðR¼0Þ

PðAjR¼1Þ
PðAjR¼0Þ

PðBjR¼1Þ
PðBjR¼0Þ

PðR¼1Þ
PðR¼0Þ

PðA0jR¼1Þ
PðA0jR¼0Þ

PðB0jR¼1Þ
PðB0jR¼0Þ

¼
PðR¼1jAÞ
PðR¼0jAÞ

PðR¼1jBÞ
PðR¼0jBÞ

PðR¼1jA0Þ
PðR¼0jA0Þ

PðR¼1jB0Þ
PðR¼0jB0Þ

¼ wAwB

wA0
wB0

;

, which is equivalent to log wAB
wA0B0

¼ log wA
wA0

þ log wB
wB0

.
Thus, if we have tabulated the logarithm of the odds ratios for

each configuration in each group, the log-odds ratios for the con-
figurations resulting from the combination of the two groups of
variables is trivial to derive. Similarly, if groups A and C are con-
ditionally independent given the group B, just as 46 and 54 are
conditionally independent given 82, we have

log
wABC

wA0B0C0

¼log
wB

wB0

þlog
wAB

wA0B0

þlog
wBC

wB0C0

:

Instead of a large table of all the configurations in the three
groups, we need three smaller tables: one for group B, one for
the union of group A and B, and one for the union of group
B and C. The log-odds ratio of a configuration of A, B, and C
is just the summation of the corresponding terms in these three
tables. In this way, clinicians are able to tell, given the genotype of
the virus from an infected patient, what is the relative risk of re-
sistance to a drug compared to a patient with a wild-type isolate.

Molecular Mechanics (MM) Minimizations and Molecular Dynamics
(MD) Simulations. Preparation of the initial structures. We have stu-
died indinavir binding to the wild-type HIV-1 protease and its ten
mutants. The crystal structure of the HIV-1 protease complexed
with indinavir [(PDB entry: 1hsg (7)] was used as the starting
structure. All missing hydrogen atoms of the protein were added
using the tleap program in AMBER9.0. (3) The side chains of the
wild-type protease were then mutated using the scap program (8)
to model the complex structures of resistant mutants. We consid-
ered five single mutations, M46I, I54V, L90M, G73S, and V82A;
four double mutations, M46I/I54V, M46I/V82A, 54V/82A, and
G73S/L90M; and one triple mutation, M46I/I54V/V82A. These
mutations can be divided into two groups: group one involves two
positions of 73 and 90, and group two involves residues mutated
at positions 46, 54, and 82. Moreover, we have studied nevirapine
binding to the wild-type HIV-1 reverse transcriptase and its five
mutants. The crystal structure of the HIV-1 reverse transcriptase
complexed with nevirapine (PDB entry: 3hvt) (4) was used as the
starting structure. We considered five single mutations, including
G190A, K103N, V106A, Y181C, and Y188C.

Indinavir and nevirapine were optimized by the semiempirical
AM1 method, and the atom partial charges were derived by fit-
ting the electrostatic potentials to the single-point Hartree-Fock
(HF)/6-31G* calculations using the RESP fitting technique (9).
The quantum optimization and the electrostatic potentials were
calculated using Gaussian 98 (10). In the MM minimizations and
MD simulations, AMBER03 force field was used for proteins
(11) and general AMBER force field (gaff) (6) was used for
drugs. Partial charges and force field parameters for indinavir
and nevirapine were automatically assigned using the antecham-
ber program in AMBER (12). Each complex was immersed in a
rectangular box of TIP3P water molecules. The water box ex-
tended 10Å away from any solute atom.

Molecular dynamics (MD) simulations. In MM minimization and
MD simulations, particle mesh Ewald (PME) was employed
for considering long-range electrostatic interactions (13). Prior
to the MD simulations, the systems were optimized by 1,000 steps
of steepest descent minimizations by constraining all Cα atoms
with a harmonic force of 50 kcal∕mol∕ Å2 and the following
1,000 steps of steepest descent minimizations by constraining
all Cα atoms with a harmonic force of 10 kcal∕mol∕ Å2. Subse-
quently, MM minimization (1,000 steps of steepest descent and
4,000 steps of conjugate gradient minimization) was used to op-
timize the structures without any constraint. Next, the system was
gradually heated from 10 to 300 K over 25 ps using NVTensem-
ble. Initial velocities were assigned from a Maxwellian distribu-
tion at the starting temperature. We conducted 3 and 2 ns
MD simulations for the protease and the reverse transcriptase
complexes, resp., at the NPTensemble with a target temperature
of 300 K and a target pressure of 1 atm. The SHAKE procedure
was employed to constrain all hydrogen atoms (14), and the time
step was set to 2.0 fs. During the sampling process, coordinates
were saved every 4 ps. TheMMoptimization andMD simulations
were accomplished using the sander program in AMBER9.0.

MM/GBSA calculations. The absolute binding free energy (ΔGbind)
was calculated by using the Molecular Mechanics/Generalized
Born Surface Area (MM/GBSA) technique according to Eq. S12;
(5, 15, 16)

ΔGbind¼ΔH−TΔS≈ΔEMMþΔGsol−TΔS

¼ΔEeleþΔEvdwþΔGGBþΔGSA−TΔS: [S12]

The gas-phase interaction energy between protease and ligand,
ΔEMM , denotes the sum of MM energies of the molecules from
electrostatic (ΔEele) and van der Waals (ΔEvdw) energies. The sol-
vation free energy ΔGsolvation is computed as the sum of polar
(ΔGGB) and non-polar (ΔGSA) contributions. The ΔGGB was cal-
culated by using the modified generalized born (GB) model
(igb ¼ 2) developed by Onufriev and coworkers (2). The exterior
and the interior dielectric constants were set to 80 and 2, resp.
The nonpolar contribution was computed based on solvent-
accessible surface area (SASA) using the LCPO method (17):
ΔGSA ¼ 0.0072 × ΔSASA: − TΔS is the conformational entropy
change upon binding, which was not considered in this study
due to high computational cost (15). Each energy term was cal-
culated using 125 snapshots extracted from the MD simulations
between 0.5 and 3.0 ns for the protease complexes and 75
snapshots extracted from the MD simulations between 0.5 ns
and 2.0 ns for the reverse transcriptase complexes.

Inhibitor-residue free energy decomposition analysis.The interaction
between indinavir and the protease was decomposed by using the
MM/GBSA decomposition procedure implemented in AMBER9
(3). We calculated van der Waals (ΔEvdw), electrostatic (ΔEele),
and desolvation (ΔGGB þ ΔGSA) energies between the inhibitor
and each of the protease residue (Eq. S13).

ΔGinhibitor−residue¼ΔEvdwþΔEeleþΔGGBþΔGSA [S13]

The polar contribution (ΔGGB) of desolvation was computed
using the modified GB model developed by Onufriev and
coworkers (2). The non-polar contribution of desolvation
(ΔGSA) was computed using the surface area. The charges used
in GB calculations were taken from the AMBER parameter set.
All energy components were calculated using 125 snapshots from
0.5 ns to 3.0 ns for the protease complexes and 75 snapshots from
0.5 ns to 2.0 ns for the reverse transcriptase complexes.
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Results and discussions of MD simulations for the protease complexes.
Root-mean-square deviations (RMSDs) of the protease Cα atoms
in the MD simulation relative to the starting structures were cal-
culated (Fig. S2). The RMSD plots indicate that these complexes
reached equilibrium at about 500 ps.

Free-energy decomposition analyses showed that the most
favorable energy component to inhibitor binding is van der Waals
(−70.8 ∼ −83.3 kcal/mol) (Table 1). The favorable electrostatic
energies ΔEele are partially cancelled by the unfavorable electro-
static solvation energies ΔGGB. The total electrostatic contribu-

tion to inhibitor binding (ΔEele þ ΔGGB) is slightly unfavorable
(8.4 ∼ 12.2 kcal/mol). Non-polar solvation terms, which corre-
spond to the burial of solvent accessible surface area (SASA)
upon binding, contribute slightly favorably (−9.6 ∼ −10.4 kcal/
mol). We also computed the correlations between the measured
binding free energies and each of the four free energy compo-
nents,ΔEvdw,ΔEele,ΔGPB, and ΔGSA, and the corresponding cor-
relation coefficients are 0.94, 0.42, −0.43, and 0.08, resp. It is
obvious that the drug resistant mutations primarily affect the
van der Waals interactions between indinavir and the protease.
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Fig. S1. The snapshot from drug resistance mutation list (6), updated spring 2008, and the posterior probabilities of each mutation position to be associated
interactively with indinavir treatment. A) A snapshot from drug resistance mutation list (4) update spring 2008 [The International AIDS Society—USA publishes
a drug resistant mutation list for every Food and Drug Administration-approved drug and updates it twice each year (4)]. The one highlighted in Circle is the
drug we investigated in this paper, indinavir.
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Fig. S2. Root-mean-square deviation (RMSD) of the backbone Cα atoms of (a) the wild-type HIV-1 protease complex and three mutated complexes in group 1
and (b) seven mutated complexes in group 2.
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Fig. S3. The difference between the nevirapine/RT residue interactions of the wild-type complex and those of the (a) G190A, (b) K103N, (c) V106A, (d) Y181C,
and (e) Y188C mutated complexes. Left is the total binding free energy and right is the van der Waals interactions. The residues with absolute value larger than
1.50 kcal/mol are labeled. (ΔΔG equals to the interactions between nevirapine and the wild-type WT minus those between nevirapine and the mutated RT).
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Fig. S4. (a) Zidovudine-resistant mutations from Drug resistance Mutation list updated in spring 2008 and the posterior probabilities of each marker to be
associated interactively with zidovudine treatment. (b) The procedure and results of detecting detail structure of interaction of resistance to zidovudine.
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Fig. S5. (a) Nevirapine-resistant mutations from Drug resistance Mutation list updated in spring 2008 and the posterior probabilities of each marker to be
associated (both individually and interactively) with nevirapine treatment. (b) The procedure and results of detecting detail structure of interaction of re-
sistance to nevirapine.
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Fig. S6. Illustration of the chain-dependencemodel structure. The variables in set A are independent of the variables in set C conditional on the variables in set
B. There are three different formulizing directions shown in the figure, but they are all equivalent (for a detailed proof, see Heckerman et al. (1995) (1). If set C
is empty, the chain-dependence model is equivalent to the saturated model 1) (note that saturated model is also used for group 2 in BVP).

Illustration of the V-dependence model structure. The variables in set A are marginally independent of the variables in set C, but the variables in set B are
dependent of the variables in both A and C. Thus, the variables in set A are NOT conditionally independent of the variables in set C.
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Fig. S7. The flow chart of the analysis pipeline we used in this paper.
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Fig. S8. The detailed steps of applying RMS to HIV drug resistant mutations 10, 24, 32, 46, 47, 54, 71, 73, 82, and 90.
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Table S1. Mutation patterns that are found to be associated with
indinavir treatment

Interaction patterns Posterior prob.

24 32 46 54 82 0.571011
24 32 47 54 71 82 0.160826
32 46 54 82 0.126203
10 54 73 82 90 0.011326
46 54 82 0.010719
71 73 90 0.003396
10 54 82 0.001243
32 47 71 73 90 0.001
24 32 54 73 82 90 0.001
24 32 46 47 54 82 0.000833
73 90 0.000752
54 71 73 82 90 0.000675
73 90 95 0.000531
32 46 54 82 88 0.000397
32 47 54 71 82 0.000342
24 32 47 54 82 0.000145
24 32 54 71 82 0.000101

Interactions found to be associated with indinavir treatment. Shown here
are the first 17 of them, with their respective posterior probabilities of asso-
ciation. The top interaction pattern has a posterior probability >0.5.

Table S2. Configurations of interaction pattern 24, 32, 46, 54, and 82 for indinavir treatment

24 32 46 54 82

Case (949
treated with
INDINAVIR)

Control
(4146

untreated)

chi square
p.value (degree
freedom=1)

N (Number of matching
sequences in geno-
pheno dataset)

Median (fold
relative to
wild type)

Q1 (1st

quartile)
Q3 (3rd

quartile)

I V L V A 0.018967 0 0 42 34.9 15.8 73.15
L V L V A 0.030558 0.000241 0 67 20.2 11.7 52.1
L V M V A 0.048472 0.000241 0 134 16.15 7.7 39
L I I I A 0.017914 0 0 18 16 8.05 28.65
L V I I V 0.070601 0.001206 0 181 12 4 39.7
L V L I A 0.020021 0 0 16 7.5 2.1 22
L V M I A 0.045311 0 0 33 4.7 1.8 10
L V M I V 0.537408 0.966956 0 1068 1 0.7 2
L V L I V 0.021075 0.001206 6.95E−14 35 4 2 10.25
L I L I A 0.014752 0 1.19E−13 8 9.8 6 21
L V I V A 0.013699 0.000241 2.27E−11 55 33.2 13 70.9
L V M I T 0.011591 0 9.83E−11 9 1 1 2
L V I I A 0.010537 0 9.23E−10 9 13 9.6 25
I V M V A 0.009484 0 8.68E−09 20 15.05 9 42.35
I V L I A 0.009484 0 8.68E−09 4 11.25 7.7 14.8
L I I I V 0.009484 0 8.68E−09 21 8 4.4 25.5
I V I I V 0.00843 0 8.23E−08 3 3.2 2.45 13.85
I V I V A 0.007376 0 7.83E−07 31 18 6.7 37.3
I V I I A 0.007376 0 7.83E−07 3 10 9 25.5
L V I I T 0.007376 0 7.83E−07 30 8.5 4 25
L V I V F 0.006322 0 7.53E−06 11 79 42.05 104.9
L V L I T 0.006322 0 7.53E−06 2 44.6 44.6 60
L V M V F 0.005269 0 7.30E−05 11 32 30 72.95
L V M I I 0.001054 0.024843 7.35E−05 33 0.8 0.4 1.3

Detailed configurations of the first interaction 24, 32, 46, 54, and 82. The “case” column is the frequencies of this configuration in 949 indinavir-treated
sample; the “control” column is the frequencies of this configuration in 4146 untreated sample. The “chi square p.value” column shows the p-value for the χ2

test (testing whether this configuration has different frequencies in cases and controls, d:f: ¼ 1) after the Bonferroni correction. For those configurations that
occurred fewer than 5 times in both cases and controls, we did not do the χ2 test, thus, they are not shown in this table. “N” is the number of matching
sequences in Stanford genotype-phenotype database. “Median” is the median of the fold resistance relative to the wild type, “Q1” and “Q3” are the 1st and
3rd quartiles, respectively. The configuration highlighted as red is the wild type configuration at these five positions 24, 32, 46, 54, and 82.
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Table S3. Mutation patterns that are found to be associated with
zidovudine treatment

Interactions Posterior Prob

41 67 210 215 219 0.278588
41 67 70 210 215 219 0.267
41 67 69 70 210 219 0.262
41 67 210 219 0.063238
41 210 215 0.05279
41 210 215 219 0.048
41 67 70 210 219 0.028
41 44 210 215 0.00021
41 44 67 210 219 0.00011

Interactions found to be associated with zidovudine treatment. Shown here
are the interactions with their posterior probabilities of association >0.0001.

Table S4. Configurations of interaction pattern 41, 67, 210, 215, 219 for zidovudine treatment

41 67 210 215 219

Case (339
treated with
zidovudine)

Control
(2187

untreated)

chi square
p.value
(degree

freedom=1)

N (Number of
matching sequences in
geno-pheno dataset)

Median (fold
relative to
wild type)

Q1 (1st

quartile)
Q3 (3rd

quartile)

M D L T K 0.469027 0.951532 0 769 1 0.7 1.5
L D L Y K 0.088496 0.000457 0 136 5.4 2.3 18.9
L D W Y K 0.061947 0.000457 0 148 19.8 4.9 122
M D L Y K 0.061947 0.000457 0 60 4.9 1.5 22
M N L T Q 0.058997 0.000457 0 54 3.95 1.9 13.4
L N W Y K 0.029499 0.000457 6.23E−13 172 48.5 12 146
M N L Y Q 0.017699 0 7.04E−09 22 23 5 150
M N L T K 0.014749 0 1.96E−07 14 2.5 1.5 7.1
M D L X K 0.014749 0 1.96E−07 2 2 2 2
M N L F Q 0.020649 0.000914 2.09E−07 63 9.9 3.05 82.7
M D L S K 0.00885 0.002286 0.680554 1 3 3 3
M D F T K 0 0.005944 1 1 0.8 0.8 0.8
M A L T K 0 0.00503 1 1 2.1 2.1 2.1
L D L T K 0.0059 0.003201 1 15 2 0.65 4.5

Detailed configurations of the first interaction 41, 67, 210, 215, and 219 for zidovudine treatment. The “case” column is the frequencies of this configuration
in 339 zidovudine-treated sample; the “control” column is the frequencies of this configuration in 2,187 untreated sample. “chi square p.value” shows the p-
value for χ2 test (testing whether this configuration has different frequencies in case and control, degree freedom equals 1) after Bonferroni correction. For
those configurations that occurred fewer than five times in both case and control groups, we did not do the χ2 test, thus they are not shown in this table. “N” is
the number of matching sequences in the Stanford genotype-phenotype database. “Median” is the median of the fold resistance relative to the wild type,
“Q1” and “Q3” are the 1st and 3rd quartiles, respectively. The configuration highlighted as red is the wild type configuration at these five positions 41, 67, 210,
215, 219.
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