Supporting Information

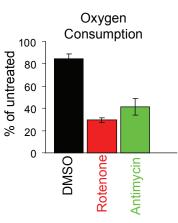
Tables

• Table S1: Demographic, clinical, biochemical and molecular characteristics of RCD patients in two cohorts.

Figures

AS PNAS PNAS

- Figure S1: Decrease in oxygen consumption following respiratory chain inhibition with rotenone and antimycin.
- Figure S2: Intracellular levels of nucleotides in myotubes treated with RC inhibitors.


Materials and Methods

- LC-MS/MS Measurement of Plasma Metabolites in Cohort 2.
- Proton NMR Measurement of Intracellular Creatine and Phosphocreatine.

ID	M/F	Age (yrs)	Clinical Presentation	Biochemical Features	Molecular Diagnosis
Cohort	1				
				c. I,III,IV, RRF,	Large mtDNA
1018	М	57	Chronic progressive external ophthalmoplegia and myopathy	SDH+/COX- (muscle)	deletion
1024	F	51	Stroke, migraine, SNHL and expressive aphasia	Elevated CK	mt A3243G
1031	F	46	Exercise intolerance, dystonia	c. IV (muscle)	
	_		TIA, complex migraine, Crohn's disease, hearing loss, muscle weakness and		
1033	F	44	cramps, exercise intolerance	c. III (muscle)	
1043	M	42	Myopathy, chronic fatigue, exercise intolerance and hemochromatosis	c. III,IV (muscle)	
1046	F	46	Myopathy, neuropathic pain, exercise intolerance and stroke	c. I (muscle), elevated CK	
1047	м	54	Exercise intolerance, myopathy, myoclonus, neuropathy, diabetes, dysphagia, lipomatosis and SNHL	Lastia asidamia	mt A8344G
1047	М	54	iipomatosis and SNHL	Lactic acidemia c. I (muscle), lactic	mt A8344G
1050	F	35	Neurodegenerative encephalopathy with spasticity and involuntary movements	acidemia, elevated CK	
1050	M	22	Seizures, myoclonus, cardiomyopathy, mild dementia	Lactic acidemia	mt A3243G
1004	F	17	Headaches, GI dysmotility, hypotonia, muscle cramps	c. I (muscle)	IIII A32430
1070	1	17	Myopathy, exercise intolerance, myalgias with fasciculations, SNHL, complex	c. I,III,IV (muscle),	
1072	М	51	migraine and atrial fibrillation	elevated CK	mtDNA depletion
1072	M	29	Myopathy, chronic headache, sleep apnea, exercise intolerance, GI dysmotility	c. I,III (muscle)	inter a copied on
1075	F	25	Muscle cramps, exercise intolerance, TIA and complex migraine	Lactic acidemia	mt A3243G
1075	1	20	Wasele eranps, excretse intolerance, Th Fand complex inigitante	Eactic acracinia	Multiple mtDNA
1079	М	62	Encephalomyopathy	c. I,II,III,IV (muscle)	deletions
1080	F	52	Cerebellar ataxia, dysarthria, peripheral neuropathy and SNHL	c. I,II,IV (muscle)	
1086	F	54	Exercise intolerance, GI dysmotility		mt A3243G
Cohort	2				
1058	М	53	Myopathy, exercise intolerance, sleep disorder, cardiomyopathy, GI dysmotility	c. II (muscle)	
			Developmental delay, language delay, learning delay, dystonia, seizure, exercise		
1062	F	12	intolerance, temperature intolerance, precocious puberty	c. III (muscle)	
			Myoclonic seizures, dystonia, exercise intolerance, arrhythmia, GI dysmotility,	c. I,III,IV, SDH+/COX-	
1074	F	48	myocardial infarction, affective disorder, diabetes mellitus	(muscle)	
			Infantile spasms, seizure disorder, autonomic dysfunction, ataxic movements,		
1088	М	24	abnormal motor movements		mt 8993
1002	-			CoQ10 deficiency, c. II	
1093	F	66	Exercise intolerance, myopathy, affective disorder, GI dysmotilty, overweight	(muscle)	
1113	М	9	Seizure disorder, malignant hyperthermia, developmental delay, developmental regression		
1115	IVI	9	Exercise intolerance, tremors, myoclonus, migraines, affective disorder, panic	c. I (muscle)	
1137	F	45	attacks	c. III,IV (muscle)	
1137	M	17	Hypertrophic cardiomyopathy, myopathy, diabetes mellitus, headache	c. IV (muscle), elevated CK	
1139	IVI	17	Exercise intolerance, dypsnea on exertion, stomach pain, bursitis both knees,	c. I,II,III (muscle), exercise	
1140	F	30	carpal tunnel right hand	test: elevated CvO2max	
	1	50	Muscle cramping, recurrent sinus infections/otitis media, hearing changes noted,	test. cievated evozinax	
1153	М	18	GI dysmotility, sleep disorder, migraines	c. I,III (muscle)	
1154	M	7	Hypotonia, exercise intolerance, dyspnea	c. I,III (muscle)	
	-/-		Exercise intolerance, temperature intolerance, pervasive developmental disorder,	c. I,II,IV, CoQ10 deficiency	
1157	М	11	nonverbal, overweight	(muscle)	
			Myopathy, exercise intolerance, opthalmoplegia, visual failure, sensory cerebellar		POLG1 A467T
1163	F	29	ataxia, seizures, headaches, palpitations, heat intolerance, hyperhydrosis		(homozygous)
			leg cramps, fatigue, bi-lateral hearing loss, retinitis pigmentosa, tremor right hand		
			leg eramps, rangue, or-raterar nearing 1055, retinitis prementosa, tremor right hand		

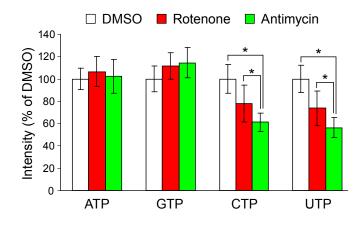

PNAS PNAS

Table S1. Demographic, clinical, biochemical and molecular characteristics of RCD patients in two cohorts. Abbreviations: M/F, Male/Female; CK, creatine kinase (serum); CvO2max, Venous oxygen content at maximal exercise; GI, Gastrointestinal; RRF, ragged-red fibers; SDH+/COX-, succinate dehydrogenase positive / cytochrome C oxidase negative; SNHL, sensorineural hearing loss; TIA, transient ischemic attack.

PNAS PNAS

Figure S1. Decrease in oxygen consumption following respiratory chain inhibition with rotenone and antimycin. Oxygen consumption was measured minutes before and after addition of inhibitors. Data presented as mean +/- s.d. (n=3).

DNAS

Figure S2. Intracellular levels of nucleotides in myotubes treated with RC inhibitors. Levels of purine and pyrimidine nucleotides were measured in cell extract following 8 hours of inhibition with rotenone or antimycin, and compared to treatment with vehicle (DMSO). Data is presented as mean +/- s.d. over 8 biological replicates per condition. *denotes p-value < 0.05. Abbreviations: ATP, adenine triphosphate; GTP, guanine triphosphate; CTP, cytidine triphosphate; UTP, uridine triphosphate.

Materials and Methods

SANG SANG

LC-MS/MS Measurement of Plasma Metabolites in Cohort 2

Measurement of plasma metabolites in Cohort 2 was done using LC-MS/MS with the same equipment as in Cohort 1 (Materials and Methods) but different liquid chromatography methods. A hydrophobic interaction chromatography (HILIC) method was used to profile metabolites in the positive ion mode (e.g. amino acids, biogenic amines) and modification of the ion paring chromatography (IPC) method described by Luo et al (1) was used to profile metabolites is the negative ion mode (e.g. organic acids). Plasma samples (10 μ L) were extracted for the HILIC method using nine volumes of acetonitrile/methanol (75:25, v/v) and a separate plasma aliquot (150 μ L) was extracted with 80% methanol and reconstituted in water for the IPC method. HILIC separations were achieved using an Atlantis HILIC column (150 x 2.1 mm; Waters, Milford, MA) that was eluted at 250 µL/min with a 10 min linear gradient, initiated with 95% mobile phase B (acetonitrile with 0.1% formic acid, v/v) and concluding with 60% mobile phase A (10 mM ammonium formate and 0.1% formic acid, v/v). The modified IPC method was performed using an Atlantis T3 column (150 x 2.1 mm; Waters, Milford, MA). IPC mobile phases were 10 mM tributylamine/15 mM acetic acid (mobile phase A) and methanol (mobile phase B), and the column was eluted at a flow rate of 300 µL/min using the following program: 100% mobile phase A at initiation, 100% A at 4.0 min, 2% A at 34.0 min, and held at 2% mobile phase A to 39.0 min. Multiple reaction monitoring (MRM) was used to acquire MS data for targeted metabolites. The scheduled MRM algorithm in the Analyst 1.5 software (Applied Biosystems/Sciex; Foster City, CA) was used to automatically set dwell times for each transition.

Proton NMR Measurement of Intracellular Creatine and Phosphocreatine

Quantitative NMR analyses of cellular metabolites were performed on a Varian ^{UNITY}Inova 700 MHz NMR (Palo Alto, CA) as described before (2). The 1D proton NMR spectra were acquired using the WET (Water suppression Enhanced through T1 effects) pulse sequence. The 1D proton NMR covered a spectral window of -2.37 ppm to 11.91

ppm. The acquisition time was set to 3 seconds, corresponding to a digital resolution of 0.33 Hz. The delay between acquisitions was set to 15 seconds. The selective excitation profile in WET was based on a sinc wave function of 50 Hz coverage around the HDO peak. Each NMR spectrum was collected from accumulation of 512 scans. Identification of endogenous metabolites and calculation of their quantitative levels were carried out using dataChord (One Moon Scientific, Inc., Newark, NJ) based on a 600-compound reference library. Metabolite quantification was based on 2.0 mM internal reference standard DSS- d_6 .

References

PNAS PNAS

- 1. Luo, B., Groenke, K., Takors, R., Wandrey, C., & Oldiges, M. (2007) Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. *J Chromatogr A* 1147:153-164.
- 2. Xu, E. Y., *et al.* (2008) Integrated pathway analysis of rat urine metabolic profiles and kidney transcriptomic profiles to elucidate the systems toxicology of model nephrotoxicants. *Chem Res Toxicol* 21:1548-1561.